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Abstract— In the robust secure aggregation problem, a server
wishes to learn and only learn the sum of the inputs of a number
of users while some users may drop out (i.e., may not respond).
The identity of the dropped users is not known a priori and
the server needs to securely recover the sum of the remaining
surviving users. We consider the following minimal two-round
model of secure aggregation. Over the first round, any set of no
fewer than U users out of K users respond to the server and
the server wants to learn the sum of the inputs of all responding
users. The remaining users are viewed as dropped. Over the
second round, any set of no fewer than U users of the surviving
users respond (i.e., dropouts are still possible over the second
round) and from the information obtained from the surviving
users over the two rounds, the server can decode the desired sum.
The security constraint is that even if the server colludes with any
T users and the messages from the dropped users are received by
the server (e.g., delayed packets), the server is not able to infer
any additional information beyond the sum in the information
theoretic sense. For this information theoretic secure aggregation
problem, we characterize the optimal communication cost. When
U ≤ T , secure aggregation is not feasible, and when U > T ,
to securely compute one symbol of the sum, the minimum number
of symbols sent from each user to the server is 1 over the first
round, and 1/(U − T ) over the second round.

Index Terms— Secure aggregation, information theoretic secu-
rity, capacity region.

I. INTRODUCTION

THE rapidly increasing volume of data available at mas-
sive distributed nodes enables powerful large-scale learn-

ing applications. For example, in federated learning [1]–[3],
a large number of mobile users wish to collaboratively train
a shared global model, coordinated by a central server. While
the distributed users are willing to cooperate with the server
to learn the shared model, they do not fully trust the server
and do not want to reveal any information beyond what is
necessary to train the desired model. Specifically, when the
local models of the distributed users are aggregated (in the
form of summation usually) at the server to produce the global
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model, each user does not want to reveal any additional
information about its local data. Therefore, regarding security,
the central technical problem is secure sum computation or
secure aggregation [4], [5], i.e., how to compute, with as little
communication as possible, the sum of the inputs of a number
of users without exposing any information beyond the sum.
A particular challenge in secure aggregation brought by feder-
ated learning is the phenomenon of user dropouts, i.e., some
users whose identities are not known beforehand may drop
from the learning procedure (due to unreliable communication
connections or limited battery life) and the server needs to be
able to robustly recover the sum of the inputs of the remaining
surviving users while learning nothing else at the same time.
The robustness to dropped users is a key requirement that
calls for novel models and analysis. The main objective of this
work is to understand the fundamental communication limits
of information theoretic secure aggregation with user dropouts.

A. Secure Aggregation With User Dropouts

The secure aggregation problem is comprised of one server
and K users. User k, k ∈ {1, 2, · · · , K} holds an input Wk,
which is a vector of L elements from a field. In federated
learning, the input Wk may represent the local model, model
update, gradient, loss, or parameters of User k, from one
iteration of the iterative training optimization process and is
typically high-dimensional, i.e., L is large, which matches
well with the Shannon theoretic formulation where L is
allowed to approach infinity. In this work, we focus on such
inputs from one iteration as the secure aggregation problem
remains the same for all iterations. A randomness variable
Zk, independent of all inputs, is generated offline (before the
values of W1, · · · , WK are known) and is available to User k
to assist with the secure aggregation task.

The server wishes to compute the element-wise sum of the
vector inputs of all users. To do so, each user sends a message
Xk, as a function of Wk and Zk, to the server. However, due
to user dropouts, the server may not receive all messages;
if only the messages from the set of users U1 arrive at the
server and other messages are dropped, then the server wants
to securely compute

�
k∈U1

Wk , i.e., the sum of the inputs
of all responding users, from (Xk : k ∈ U1). For example,
suppose K = 4 and U1 = {1, 2, 3}. Then the server sees only
X1, X2, X3 and wants to recover W1+W2+W3 while learning
no other information, e.g., the server cannot infer W1 + W2.
We now observe an inherent deficiency of such a model,
caused by the uncertainty of the identity of the dropped users.
As it is not known a priori which users will drop, the sent
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messages Xk cannot depend on the set of dropped users and
must enable secure computation for all possible responding
users. For example, if U1 = {1, 2}, then the server must be
able to decode W1 + W2 from X1, X2, which contradicts the
security constraint for the case where U1 = {1, 2, 3}, i.e.,
from X1, X2, X3, the server can learn only W1 + W2 + W3.
Therefore, for the above communication model as the identity
of the responding users is unknown beforehand, it is not
feasible to learn only the sum of their inputs and nothing else.

The remedy is to include additional rounds of communica-
tion, and this solution has been taken in prior works on secure
aggregation [4]–[8]. In this work, we consider the simplest
model of two rounds. We refer to the round that is discussed
above and parameterized by X1, · · · , XK , as the first round.
At the end of the first round, the server informs all responding
users about the surviving user set U1 and the remaining
users are viewed as dropped thus no further communication
with them is requested. One additional round of messages
are requested from the surviving users in U1. This round is
referred to as the second round and the message from User
k ∈ U1 is denoted as Y U1

k , where the superscript highlights
that the identity of the surviving users over the first round is
known when the user decides the second round message (also
as a function of Wk and Zk). User dropouts are still possible
over the second round and we denote the set of responding
users over the second round by U2, which is a subset of U1.
We assume that |U2|, the cardinality of U2, is at least U , a pre-
determined threshold parameter. That is, the server will wait
for at least U users, e.g., by setting up a proper time deadline.
As U2 ⊂ U1, we have |U1| ≥ U . The setup of this U parameter
is interpreted as the worst case estimate of the number of
surviving users, and is also to make the secure aggregation
problem more interesting. See Figure 1 for an example where
K = 4, U = 2, and U1 = {1, 3, 4}, U2 = {1, 4}.

After describing the communication model, we now proceed
to state the two constraints of secure aggregation - correctness
and security.

• Correctness constraint: From only the messages received
from the surviving users over the two rounds, the server
can decode

�
k∈U1

Wk with no error. For example,
in Figure 1, it is required that W1 + W3 + W4 can be
recovered from X1, X3, X4, Y

{1,3,4}
1 , Y

{1,3,4}
4 .

• Information theoretic security constraint: From all the
messages sent from the users over the two rounds
(including those from dropped users as their packets
may be merely delayed) and even if the server col-
ludes with any set of at most T users, the server
cannot infer any additional information in the informa-
tion theoretic sense about all inputs W1, W2, · · · , WK

beyond what is already known from the collud-
ing user(s) and the desired sum. For example, sup-
pose T = 1 and the colluding user is User 4 in
Figure 1, then it is required that from all the messages
X1, X2, X3, X4, Y

{1,3,4}
1 , Y

{1,3,4}
3 , Y

{1,3,4}
4 and collud-

ing user’s information W4, Z4, no information about
W1, W2, W3, W4 is revealed, except W4 and W1 +W3 +
W4. Specifically, while W1+W3 can be obtained, nothing
more about W1 or W3 can be learned.

Importantly, we emphasize that a feasible secure aggregation
protocol must satisfy the correctness and security constraints
for any first round responding user set U1 where |U1| ≥ U ,
any second round responding user set U2 where U2 ⊂ U1 and
|U2| ≥ U , and any colluding user set T where |T | ≤ T .
A secure aggregation protocol specifies a design of the mes-
sages Xk, Y U1

k and we are interested in characterizing the
optimal communication efficiency, i.e., minimizing the number
of symbols contained in the messages Xk and Y U1

k .
As a recap, our information theoretic secure aggregation

formulation contains 3 parameters, K (the number of users), U
(a threshold parameter on the minimum number of responding
users), and T (a threshold parameter on the maximum number
of colluding users). We assume that 1 ≤ U ≤ K − 1, so there
may exist dropped users; otherwise U = K and the problem
becomes degraded as all users must respond. We also assume
that 0 ≤ T ≤ K − 2; otherwise T = K − 1 or K , then when
the colluding user set contains at least K − 1 users, there is
nothing to hide, as from the desired sum and K−1 inputs from
the colluding users, the server can decode all K inputs. For
this model, our main goal is to answer the following question
- to compute one symbol of the desired sum function securely,
what is the minimum number of symbols that must be sent
from the users over the first round and over the second round,
as a function of K, U, T ?

B. Summary of Results
We obtain a complete answer to the above question, i.e.,

the exact characterization of the optimal communication effi-
ciency of information theoretic secure aggregation. Specially,
we show that

• when U ≤ T , secure aggregation is not feasible in the
information theoretic sense;

• when U > T , the minimum number of symbols that each
user needs to send is 1 symbol over the first round, and
1/(U − T ) symbols over the second round, per symbol
of desired sum.

The proofs of the above result are fairly standard. The
protocol design uses and adapts elements that are frequently
encountered in secure (sum) computation literature [9]–[13]
(see Section IV). The entropy based proof of impossibility
claims uses Shannon’s information theoretic security frame-
work [14], which will be adapted to robust secure aggregation
(see Section V) and is conceptually similar to that in (sym-
metric) private information retrieval context [15]–[20]. While
the optimal communication efficiency is established, a number
of relevant problems remain widely open, e.g., the minimum
randomness consumption (see Section VI).

Let us conclude the introduction section by summarizing
the major differences between our work and existing works on
secure aggregation for federated learning, which has attracted
tremendous recent attention [4]–[8], [21]–[31]. First of all,
to the best of our knowledge, our work is the only one
that considers information theoretic security, i.e., uncondi-
tional security based on statistical independence; while all
prior works focus on cryptographic security, i.e., conditional
security against computationally bounded adversaries. Second,
we first define the system parameters (e.g., allowed user
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Fig. 1. A robust secure aggregation problem instance with K = 4 users. (a). Over the first round, User 2 is dropped; (b). Over the second round, User 3 is
dropped. The server securely computes W1 + W3 + W4.

dropouts and collusions), and then study the fundamental
limits (i.e., the best possible protocols) given the specified
parameters; while most existing works first propose a specific
protocol and then analyze its performance (e.g., allowed user
dropouts and collusions). Last but not least, we assume that
the randomness variables of certain joint distribution are
distributed to the users by a trusted third-party1 before the
communication protocol starts (i.e., offline); while most prior
works jointly consider randomness generation/distribution and
message transmission (i.e., online). We view randomness gen-
eration as a separate problem to be studied in a future work,2

e.g., how to efficiently generate and distribute the required
correlated randomness variables.

II. PROBLEM STATEMENT

The secure aggregation problem involves a server and K
users, where K ≥ 2 and User k ∈ {1, 2, · · · , K} � [K]
holds an input vector Wk and a randomness variable Zk.
The input vectors (Wk)k∈[K] are independent. Each Wk

is an L × 1 column vector and the L elements are i.i.d.
uniform symbols from the finite field3

Fq. (Wk)k∈[K] is
independent of (Zk)k∈[K].

H
�
(Wk)k∈[K] , (Zk)k∈[K]

�
=
�

k∈[K]

H(Wk)

+ H
�
(Zk)k∈[K]

�
, (1)

H(Wk) = L (in q-ary units), ∀k ∈ [K]. (2)

1Including a trusted third-party removes the need for inter-user communi-
cation, leaving us with a one-hop communication model that facilitates the
study of fundamental limits (e.g., the converse derivation). Using interactive
user communication to efficiently generate randomness without a third-party
has been studied recently [32]–[34]. Notably, the user-server communication
cost achieved in [32] is the same as that of this work while the randomness
consumption in [32] is much lower than that of this work.

2To make fair comparisons in terms of overall end-to-end communication
and computation cost with existing protocols in [4]–[8], we need to 1) relax
information theoretic security to cryptographic security, and 2) generalize the
randomness generation protocol to be interactive among the users only (i.e.,
without relying on a trusted third-party), which goes beyond the scope of this
work and is left to future work.

3The uniformity and independence of the input vectors are required for
the converse proof, but are not necessary for the achievability proof (see
Remark 1). Non-identically distributed inputs and the modulo ring of integers
(versus finite fields) will be discussed in Section VI.

The communication protocol between the server and the users
has two rounds. Over the first round, User k sends a message
Xk, k ∈ [K] to the server. The message Xk is a function of
Wk, Zk and consists of LX symbols from Fq.

H(Xk|Wk, Zk) = 0, ∀k ∈ [K]. (3)

Some users may drop and the set of surviving users after the
first round is denoted as U1, which can be any set of at least U
users, and 1 ≤ U ≤ K − 1. The server receives the messages
(Xk)k∈U1

and wishes to securely compute
�

k∈U1
Wk, where

the vector summation is defined as the element-wise addition
over Fq. To do so, the server informs all surviving users about
U1 and requests a second round of messages from them. The
second round message sent from User k ∈ U1 is denoted
as Y U1

k , which is a function of Wk, Zk and consists of LY

symbols4 from Fq .

H(Y U1
k |Wk, Zk) = 0, ∀k ∈ U1, ∀U1 ⊂ [K], |U1| ≥ U. (4)

Some users may drop and the set of surviving users after the
second round is denoted as U2, where U2 ⊂ U1 and |U2| ≥ U .

Then the server receives the messages
�
Y U1

k

�
k∈U2

over the

second round.
From the messages received from surviving users, the server

must be able to decode the desired sum
�

k∈U1
Wk with

no error,5 i.e., the following correctness constraint must be
satisfied for any U1,U2, where U2 ⊂ U1 ⊂ [K], |U2| ≥ U .

[Correctness]

H

��
k∈U1

Wk

����� (Xk)k∈U1
,
�
Y U1

k

�
k∈U2

�
= 0. (5)

We impose that security must be guaranteed even if the
messages sent from all surviving and dropped users are
received by the server and the server may collude with any
set of at most T users, where 0 ≤ T ≤ K − 2. Specifically,

4In general, the message length LY may depend on the user index k and
the first round surviving user set U1, while we assume that LY is a constant
in this work. Equivalently, we consider the maximum (worst case) message
length LY over all k and U1. Similarly, LX is also a constant and represents
the maximum first round message length.

5Note that the results of this work also hold under vanishing error and
leakage framework, i.e., when 0 is replaced by o(L) in (5) and (6).
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security refers to the constraint that the server cannot infer any
additional information about (Wk)k∈[K] beyond that contained
in
�

k∈U1
Wk and known from the colluding users. That is, the

following security constraint must be satisfied for any U1, T ,
where U1, T ⊂ [K], |U1| ≥ U, |T | ≤ T .

[Security] I

�
(Wk)k∈[K] ; (Xk)k∈[K] ,

�
Y U1

k

�
k∈U1

����� . . .
. . .
�
k∈U1

Wk, (Wk, Zk)k∈T

�
= 0. (6)

The communication rate characterizes how many symbols
each message contains per input symbol, and is defined as
follows.

R1 � LX

L
, R2 � LY

L
(7)

where R1 is the first round message rate and R2 is the second
round message rate.

A rate tuple (R1, R2) is said to be achievable if there
exists a secure aggregation scheme (i.e., a design of the
correlated randomness variables (Zk)k∈[K] and the messages

(Xk)k∈[K] ,
�
Y U1

k

�
k∈U1

), for which the correctness and secu-

rity constraints (5), (6) are satisfied, and the first round
and second round message rates are smaller than or equal
to R1 and R2, respectively. The closure of the set of all
achievable rate tuples is called the optimal rate region, denoted
as R∗.

III. MAIN RESULT: OPTIMAL RATE REGION OF SECURE

AGGREGATION

Theorem 1 states the main result.
Theorem 1: For the information theoretic secure aggrega-

tion problem with K users, at least U responding users, and
at most T colluding users, where 1 ≤ U ≤ K − 1, 0 ≤ T ≤
K − 2, the optimal rate region is

R∗ =

	
∅ when U ≤ T,


(R1, R2) : R1≥1, R2≥ 1
U−T

�
when U > T.

(8)
From Theorem 1 and its proof (see Section IV for achiev-

ability and Section V for converse), we have the following
observations.

• When U ≤ T , i.e., the minimum number of responding
users is no greater than the maximum number of collud-
ing users, the information theoretic secure aggregation
problem is not feasible, i.e., it is not possible to simul-
taneously satisfy the correctness constraint (5) and the
security constraint (6).

• When U > T , the optimal communication-wise strategy
is such that each user sends 1 symbol over the first round,
and 1/(U − T ) symbols over the second round, for each
input symbol (i.e., to compute one symbol of the desired
sum). Note that the optimal rate does not depend on
the number of users K , and it depends on U, T only
through their difference U − T . In particular, when the
difference between the two threshold parameters U−T is

larger, fewer symbols need to be sent. While the optimal
communication cost (per user) may not depend on K , the
minimum randomness consumption (i.e., the entropy of
each Zk and the joint entropy of (Zk)k∈[K]) depends on
K (see Section VI).

• While the input length L is allowed to approach infinity in
the rate definition (7), the achievable scheme (presented
in Section IV) only requires L = U − T (or integer
multiples of U − T ) when the field size q satisfies
q ≥ K + U , and for any field size, it suffices to have
L = B(U − T ), where B is any integer such that
qB ≥ K + U .

IV. PROOF OF THEOREM 1: ACHIEVABILITY

Before presenting the general achievability proof, we first
consider two examples to illustrate the idea, which is fairly
straightforward and relies on generic vector linear codes.

A. Example 1: K = 3, U = 2, T = 0

Consider K = 3 users, where at least U = 2 users will
respond, and no user will collude with the server (T = 0).
Suppose the input length is L = U − T = 2, i.e., Wk =
(Wk(1); Wk(2)) ∈ F

2×1
q .

We first specify the randomness variables. Consider
3 i.i.d. uniform 2 × 1 vectors over Fq, denoted as Sk =
(Sk(1); Sk(2)), k ∈ {1, 2, 3} and yield generic linear combina-
tions of the sum of all subsets of {S1, S2, S3} with cardinality
no fewer than U = 2.�

Z
{1,2}
1

Z
{1,2}
2


� MDS2×2

�
S1(1) + S2(1)
S1(2) + S2(2)

�
,�

Z
{1,3}
1

Z
{1,3}
3


� MDS2×2

�
S1(1) + S3(1)
S1(2) + S3(2)

�
,�

Z
{2,3}
2

Z
{2,3}
3


� MDS2×2

�
S2(1) + S3(1)
S2(2) + S3(2)

�
,⎡

⎢⎣ Z
{1,2,3}
1

Z
{1,2,3}
2

Z
{1,2,3}
3

⎤
⎥⎦ � MDS3×2

�
S1(1) + S2(1) + S3(1)
S1(2) + S2(2) + S3(2)

�
(9)

where MDSa×b denotes any MDS matrix of dimension a× b.
MDS2×2 can be any full rank matrix, and it is presented
using MDS matrices to facilitate generalizations to larger
parameters. Note that the MDS matrices appeared in (9) exist
over any finite field. When T > 0, we require slightly stronger
properties on theses matrices and will use Cauchy matrices
(see the next section). Then we set

Z1 =
�
S1, Z

{1,2}
1 , Z

{1,3}
1 , Z

{1,2,3}
1

�
,

Z2 =
�
S2, Z

{1,2}
2 , Z

{2,3}
2 , Z

{1,2,3}
2

�
,

Z3 =
�
S3, Z

{1,3}
3 , Z

{2,3}
3 , Z

{1,2,3}
3

�
. (10)

We have completed the design of the correlated randomness
variables.
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Next, we describe the design of the messages over two
rounds. For the first round, we set

X1 = W1 + S1, X2 = W2 + S2, X3 = W3 + S3 (11)

where ‘+’ denotes element-wise addition over Fq . For the
second round, we set

U1 = {1, 2} : Y
{1,2}
1 = Z

{1,2}
1 , Y

{1,2}
2 = Z

{1,2}
2 ,

U1 = {1, 3} : Y
{1,3}
1 = Z

{1,3}
1 , Y

{1,3}
3 = Z

{1,3}
3 ,

U1 = {2, 3} : Y
{2,3}
2 = Z

{2,3}
2 , Y

{2,3}
3 = Z

{2,3}
3 ,

U1 = {1, 2, 3} : Y
{1,2,3}
1 = Z

{1,2,3}
1 , Y

{1,2,3}
2 = Z

{1,2,3}
2 ,

Y
{1,2,3}
3 = Z

{1,2,3}
3 . (12)

Finally, we prove that the scheme is correct and secure, and
the rate tuple achieves the extreme point of the optimal rate
region.

Correctness: When U1 = {1, 2}, i.e., User 3 drops over
the first round, we have U2 = U1 as U = 2, i.e., at least
2 users survive in the end, then no user drops over the second
round. From the second round messages Y

{1,2}
1 , Y

{1,2}
2 , the

server can recover S1 + S2 with no error, as the precoding
matrices chosen in (9) are MDS. Combining with the sum
of the received two first round messages, X1 + X2 = W1 +
W2 + S1 + S2, the desired sum W1 + W2 can be decoded
with no error. The correctness proof for other cases where
|U1| = 2 follows similarly.

When U1 = {1, 2, 3}, i.e., no user drops over the first
round, the server must recover W1 + W2 + W3 when
any K − U = 1 user drops over the second round. From
any two second round messages Y

{1,2,3}
k1

, Y
{1,2,3}
k2

, k1, k2 ∈
{1, 2, 3}, k1 �= k2, the server can recover S1 + S2 + S3,
due to the assignment using an MDS3×2 matrix (see (9)).
Then from the first round messages, the server can have
X1 + X2 + X3 = W1 + W2 + W3 + S1 + S2 + S3. Equipped
with S1 + S2 + S3, the desired sum W1 + W2 + W3 can be
decoded with no error.

Security: The intuition of the security of the achievable
scheme is that the first round messages are protected by inde-
pendent randomness variables and the second round messages
just give merely sufficient randomness information (and no
more) to unlock the desired sum. We verify that the security
constraint (6) is satisfied.

When U1 = {1, 2}, we have

I
�
W1, W2, W3; X1, X2, X3, Y

{1,2}
1 , Y

{1,2}
2

���W1+W2

�
= H

�
X1, X2, X3, Y

{1,2}
1 , Y

{1,2}
2

���W1 + W2

�
− H

�
X1, X2, X3, Y

{1,2}
1 , Y

{1,2}
2

���W1, W2, W3

�
(13)

= H(W1 + S1, W2 + S2, W3 + S3, S1 + S2|W1 + W2)
− H(S1, S2, S3|W1, W2, W3) (14)

(1)
= H(W1 + S1, W2 + S2, W3 + S3|W1 + W2)

− H(S1, S2, S3) (15)

≤ 6 − 6 = 0 (16)

where in (14) we plug in the design of the randomness and
message variables, and in (15) the first term follows from the
fact that S1+S2 can be obtained from W1+S1, W2+S2, W1+

W2. In the last step, for the first term we use the fact that
W1 +S1, W2 +S2, W3 +S3 contains at most 6 symbols from
Fq and uniform distribution maximizes entropy. As mutual
information is non-negative, it must be exactly zero when it
is smaller than or equal to zero. The security proof for other
cases where |U1| = 2 follows similarly.

When U1 = {1, 2, 3}, we have

I
�
W1, W2, W3; X1, X2, X3, Y

{1,2,3}
1 , Y

{1,2,3}
2 , . . .

. . . Y
{1,2,3}
3

���W1 + W2 + W3

�
= H(W1+S1, W2+S2, W3+S3, S1+S2 + S3| . . .

. . . W1+W2+W3)−H(S1, S2, S3|W1, W2, W3) (17)
(1)
= H(W1 + S1, W2 + S2, W3 + S3|W1 + W2 + W3)

− H(S1, S2, S3) (18)

≤ 6 − 6 = 0 (19)

where in (17), we use the fact that Y
{1,2,3}
1 , Y

{1,2,3}
2 , Y

{1,2,3}
3

is invertible to S1 + S2 + S3.
Rate: As the first round message contains LX = 2 symbols

each and the second round message contains LY = 1 symbol
each, the rate achieved is R1 = LX/L = 1 and R2 = LY /L =
1/2, which matches Theorem 1.

B. Example 2: K = 3, U = 2, T = 1

Continuing from the above example, we increase T from
T = 0 to T = 1, i.e., the server could collude with any single
user. The new element needed here is to inject additional noise
in sharing the sum of randomness variables used in the first
round messages. Note that while this coding idea is simple to
describe, the security proof becomes more involved.

Suppose L = U − T = 1, i.e., Wk ∈ Fq and q ≥ 5. The
achievable scheme is described as follows.

Randomness Assignment: Consider 7 i.i.d. uniform sym-
bols over Fq, denoted as S1, S2, S3, N1, N2, N3, N4 and
yield the following generic linear combinations of the sum
of some subsets of {S1, S2, S3} and some additional noise
variable Ni.�

Z
{1,2}
1

Z
{1,2}
2


� C2×2

�
S1 + S2

N1

�
,�

Z
{1,3}
1

Z
{1,3}
3


� C2×2

�
S1 + S3

N2

�
,�

Z
{2,3}
2

Z
{2,3}
3


� C2×2

�
S2 + S3

N3

�
,⎡

⎢⎣ Z
{1,2,3}
1

Z
{1,2,3}
2

Z
{1,2,3}
3

⎤
⎥⎦ � C3×2

�
S1 + S2 + S3

N4

�
(20)

where Ca×b denotes a Cauchy matrix of dimension a×b, i.e.,
the element in the i-th row and j-column is set as

cij =
1

αi−βj
, αi, βj , i∈ [a], j∈ [b] are distinct over Fq . (21)

Note that q ≥ 5, so distinct elements as required above exist
over Fq. Intuitively, Cauchy matrices are used to ensure that

Authorized licensed use limited to: University of North Texas. Downloaded on October 24,2022 at 15:27:07 UTC from IEEE Xplore.  Restrictions apply. 



7476 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 11, NOVEMBER 2022

the independent noise variables Ni are fully mixed with the
sum of Sk variables to avoid any unwanted leakage (see the
proof below). Then we set

Zk =
�
Sk,
�
ZU1

k

�
U1:k∈U1⊂{1,2,3},|U1|≥2

�
, ∀k ∈ {1, 2, 3}. (22)

Message Generation: For the first round, we set

X1 = W1 + S1, X2 = W2 + S2, X3 = W3 + S3. (23)

For the second round, we set

∀U1 ⊂ {1, 2, 3}, |U1| ≥ 2 : Y U1
k = ZU1

k , ∀k ∈ U1. (24)

Proof of Correctness: For any U1 such that |U1| ≥ 2, due
to the randomness and message design (see (20) and (24)),
the server can recover

�
k∈U1

Sk from any set of second
round messages where |U2| ≥ 2. Then from

�
k∈U1

Xk =�
k∈U1

Wk +
�

k∈U1
Sk, the server can decode the desired

sum aggregation
�

k∈U1
Wk with no error.

Proof of Security: We show that the injected noise variables
Ni help to guarantee the security constraint (6) under collu-
sion.

Suppose U1 = {1, 2} and the colluding user set is T = {1},
then we have

I
�
W1, W2, W3; X1, X2, X3, Y

{1,2}
1 , Y

{1,2}
2

��� . . .
. . . W1 + W2, W1, Z1

�
= H

�
X1, X2, X3, Y

{1,2}
1 , Y

{1,2}
2

���W1 + W2, W1, Z1

�
− H

�
X1, X2, X3, Y

{1,2}
1 , Y

{1,2}
2

���W1, W2, W3, Z1

�
(25)

= H(W1 + S1, W2 + S2, W3 + S3, S1 + S2, N1| . . .
. . . W1 + W2, W1, Z1)

− H(S1, S2, S3, N1|W1, W2, W3, Z1) (26)
(1)
= H(S1, W2 + S2, W3 + S3, N1|W1 + W2, W1, Z1)

− H(S1, S2, S3, N1|Z1) (27)

= H(W2 + S2, W3 + S3|W1 + W2, W1, Z1)
+ H(N1|W2 + S2, W3 + S3, W1 + W2, W1, Z1)� �� �

=0

− H(S2, S3|Z1) − H(N1|Z1, S2, S3)� �� �
=0

(28)

≤ 2 − 2 = 0 (29)

where (28) is due to the fact that S1 is contained in Z1

(see (22)) and N1 can be obtained from Z
{1,2}
1 (contained

in Z1), when S1 + S2 is known (obtained from Z1, S2,
refer to (20), (22)). In the last step, the first term follows
from the property that uniform random variables are entropy
maximizers, and the second term is due to the independence of
(S2, S3) and Z1, whose proof will be presented in Lemma 1
when we give the general proof. Note that in this case (i.e.,
U1 = {1, 2}, T = {1}), the server must be able to learn W2

(from the desired sum W1 +W2 and the colluding input W1),
but this does not violate the security constraint.

The security proof for other cases of U1 and T is similar to
that above, which is omitted here and deferred to the general
proof presented in the next section.

Rate Calculation: As LX = LY = 1 symbol, we have
R1 = R2 = 1, as desired for this case.

C. General Proof for Arbitrary K, U, T

The achievability proof for arbitrary K, U, T is an immedi-
ate generalization of that of the above two examples. We first
consider the case where the field size q is no smaller than
K + U , and then show that the proof can be adapted with a
minor change to cover all other field sizes. As R∗ = ∅ when
U ≤ T , we only need to consider settings where U > T .

1) Large Fields: q ≥ K + U : Suppose L = U − T , i.e.,
Wk ∈ F

L×1
q and q ≥ K + U .

Randomness Assignment: Consider K i.i.d. uniform
L × 1 vectors over Fq, denoted as Sk, ∀k ∈ [K]. Consider�K

u=U

�
K
u

�
i.i.d. uniform T × 1 vectors over Fq , denoted

as NU1 , ∀U1 ⊂ [K], |U1| ≥ U . (Sk)k and (NU1)U1 are
independent. Then yield generic linear combinations of the
sum of some Sk variables and some NU1 variable as follows.
For any U1 such that U1 ⊂ [K], |U1| ≥ U , we set6��

ZU1
k

�
k∈U1

�T

= C|U1|×(L+T )

� �
k∈U1

Sk

NU1

�

= C|U1|×U

� �
k∈U1

Sk

NU1

�
(30)

where Ca×b denotes a Cauchy matrix of dimension a × b,
i.e., the element in the i-th row and j-column is cij = 1

αi−βj
,

where αi, βj , i ∈ [a], j ∈ [b] are distinct over Fq. Note that
|U1|+U ≤ K +U ≤ q, so the required distinct elements exist
over Fq. Then we set

Zk =
�

Sk,
�
ZU1

k

�
U1:k∈U1⊂[K],|U1|≥U

�
, ∀k ∈ [K]. (31)

To prepare for the security proof, we present some useful
properties on the entropy of the randomness variables in the
following lemma.

Lemma 1: For the random variables defined above, for any
U1 ⊂ [K], |U1| ≥ U , any T ⊂ [K], |T | ≤ T , and any T � ⊂
[K], T � ∩ T = ∅, we have

• (Zk)k∈T is uniform and is independent of (Sk)k∈T ′ .

H
�
(Zk)k∈T

�
=H

�
(Zk)k∈T

�� (Sk)k∈T ′
�

= |T |
�
L+

K−1�
u=U−1

�
K − 1

u

��
, (32)

H
�
(Sk)k∈T ′

�� (Zk)k∈T
�

= |T �|L. (33)

• Given either
�

k∈U1
Sk or (Sk)k∈[K], (Zk)k∈T contains

|T ∩U1| linearly independent combinations of the T i.i.d.

6The design of the ZU1
k variables guarantees that any collection of at most

T variables in ZU1
k reveal nothing about the secret

�
k∈U1

Sk and any

collection of at least U variables in ZU1
k can recover the secret. This design

is essentially a threshold ramp secret sharing scheme [35]–[37], which is a
generalization of classic threshold secret sharing [38]–[40].
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symbols in NU1 .

H

�
NU1

����� �
k∈U1

Sk, (Zk)k∈T

�

= H

�
NU1

����� (Sk)k∈[K] , (Zk)k∈T

�
= T − |T ∩ U1|. (34)

The detailed proof of Lemma 1 is deferred to Section IV-D.
Message Generation: We set

Xk = Wk + Sk, ∀k ∈ [K],
∀U1 ⊂ [K], |U1| ≥ U : Y U1

k = ZU1
k , ∀k ∈ U1. (35)

Proof of Correctness: For any U1 such that |U1| ≥ U ,
as any square sub-matrix of a Cauchy matrix (with distinct
αi, βj) has full rank [41], the server can recover

�
k∈U1

Sk

from any U second round messages. Combining with the
first round messages, the server can have

�
k∈U1

Xk =�
k∈U1

Wk +
�

k∈U1
Sk and then decode the desired sum

aggregation
�

k∈U1
Wk with no error.

Proof of Security: Consider any U1 ⊂ [K], |U1| ≥ U
and any T ⊂ [K], |T | ≤ T . We verify that the security
constraint (6) is satisfied. Denote the difference of two sets
A,B as A\B, i.e., the set of elements that belong to A but
not B.

I

�
(Wk)k∈[K] ; (Xk)k∈[K] ,

�
Y U1

k

�
k∈U1

����� . . .
. . .
�
k∈U1

Wk, (Wk, Zk)k∈T

�

=H

�
(Xk)k∈[K] ,

�
Y U1

k

�
k∈U1

����� �
k∈U1

Wk, (Wk, Zk)k∈T

�

− H

�
(Xk)k∈[K] ,

�
Y U1

k

�
k∈U1

����� (Wk)k∈[K] , (Zk)k∈T

�
(36)

=H

�
(Wk + Sk)k∈[K] ,

�
k∈U1

Sk, NU1

����� . . .
. . .
�
k∈U1

Wk, (Wk, Zk)k∈T

�

− H

�
(Sk)k∈[K] ,

�
k∈U1

Sk, NU1

����� (Wk)k∈[K] , (Zk)k∈T

�

(37)

≤H

�
(Wk + Sk)k∈[K]\T

����� �
k∈U1

Wk, (Wk, Zk)k∈T

�

+ H

�
NU1

����� �
k∈U1

Sk, (Zk)k∈T

�

− H

�
(Sk)k∈[K]\T

����� (Zk)k∈T

�

− H

�
NU1

����� (Sk)k∈[K] , (Zk)k∈T

�
(38)

≤(K − |T |)L + (T − |T ∩ U1|) − (K − |T |)L
− (T − |T ∩ U1|) = 0 (39)

where in (37) we plug in the design of the message vari-
ables (35) and use the fact that (Y U1

k )k∈U1 is invertible to
(
�

k∈U1
Sk, NU1) (see (30), (35)), and in (38) we use the

chain rule and the independence of the inputs Wk and the
randomness variables Zk. In the last step, the first term follows
from the fact that uniform variables maximize entropy, and
other terms follow from Lemma 1.

Rate Calculation: As LX = L, LY = 1, we have
R1 = 1, R2 = 1/L = 1/(U−T ), as desired. The achievability
proof is thus completed.

Remark 1: We can verify that both the correctness proof
and the security proof do not use the independence and
uniformity of the input vectors W1, · · · , WK . As such, the
rate tuple (R1, R2) = (1, 1

U−T ) is achievable for arbitrarily
distributed inputs W1, · · · , WK .

2) Any Field Size: We consider an arbitrary field Fq, where
q = pn for a prime p ≥ 2 and an integer n ≥ 1. The proof
for the above q ≥ K + U case only relies on the property
that the field size is sufficiently large so that there exist a
required number of distinct elements. Here for arbitrary field
size, we ‘amplify’ the field size by grouping a number of field
elements (say B elements) from Fpn and view such a group of
elements as one element from the extension field FpBn . That
is, we set L = BL so that

Wk = (Wk(l))l∈[BL] = (W k(l))l∈[L], ∀k ∈ [K] (40)

where W k(l) �
�
Wk((l − 1)B + 1); Wk((l − 1)B +

2); · · · ; Wk(lB)
�

∈ F
B×1
pn , ∀l ∈ [L]. Then the desired

element-wise vector sum can be performed equivalently as
element-wise vector sum over the extension field,��

k∈U1

Wk

�
sum over Fpn

⇐⇒
��

k∈U1

W k

�
sum over FpBn

. (41)

Thus, by grouping elements (i.e., increasing the input length
by a factor of B), we have created an equivalent problem over
a larger field (i.e., the field size is increased by a power of B).
We can now apply the same coding scheme above, which will
work as long as the extended field size qB satisfies that qB ≥
K + U (as required by the scheme above). Such an extension
is possible because in Shannon theoretic formulation, the input
length L is allowed to approach infinity. Specifically, over any
field Fq, L can be set to B(U −T ) = �logq(K +U)(U −T ),
where U−T is the required input length for the scheme above.
Therefore, the same rate tuple (R1, R2) = (1, 1/(U −T )) can
be achieved over any finite field.

D. Proof of Lemma 1

First, consider (32). Note that (Zk)k∈T contains

|T |
�
L +

�K−1
u=U−1

�
K−1

u

��
symbols from Fq . As uniform
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variables maximize entropy and conditioning cannot increase
entropy, it suffices to prove

H
�
(Zk)k∈T

�� (Sk)k∈T ′
�
≥|T |

�
L+

K−1�
u=U−1

�
K − 1

u

��
(42)

and this proof is presented next.

H
�
(Zk)k∈T

�� (Sk)k∈T ′
�

(31)
= H

��
Sk,
�
ZU1

k

�
U1:k∈U1⊂[K],|U1|≥U

�
k∈T

���� (Sk)k∈T ′

�
(43)

=H
�
(Sk)k∈T

�� (Sk)k∈T ′
�

+H

���
ZU1

k

�
U1:k∈U1⊂[K],|U1|≥U

�
k∈T

���� (Sk)k∈T ∪T ′

�
(44)

≥|T |L

+H

���
ZU1

k

�
k∈T

�
U1:T ∩U1 	=∅,U1⊂[K],|U1|≥U

���� (Sk)k∈[K]

�
(45)

=|T |L +
�

U1:T ∩U1 	=∅,U1⊂[K],|U1|≥U

H
�
Csub

|T ∩U1|×T × NU1

�
(46)

=|T |L +
�

U1:T ∩U1 	=∅,U1⊂[K],|U1|≥U

|T ∩ U1| (47)

=|T |L +
�
t∈T

�
U1:t∈U1,U1⊂[K],|U1|≥U

1

=|T |L + |T |
K−1�

u=U−1

�
K − 1

u

�
(48)

where in (45), the first term follows from the fact that the
Sk variables are independent, and the second term switches
the order of k and U1 in the counting. In (46), the second
term is due to the properties that 1) (Sk)k and (NU1)U1 are
independent, and 2) conditioned on all Sk variables, (ZU1

k )k∈T
is invertible to a number of linear combinations of the symbols
in NU1 , with coefficients given by a sub-matrix of the Cauchy
matrix C|U1|×U , denoted as Csub. In (47), the second term
follows from the fact that the sub-matrix of a Cauchy matrix
has full rank [41] and NU1 consists of i.i.d. uniform symbols.
In the last step, we count through each element of the set T .

Second, consider (33), which is an immediate consequence
of (32).

H
�
(Sk)k∈T ′

�� (Zk)k∈T
�

= H
�
(Sk)k∈T ′

�
− I
�
(Sk)k∈T ′ ; (Zk)k∈T

�
(49)

(32)
= |T �|L. (50)

Third, consider (34). It suffices to prove

T − |T ∩ U1| ≥ H

�
NU1

����� �
k∈U1

Sk, (Zk)k∈T

�

≥ H

�
NU1

����� (Sk)k∈[K] , (Zk)k∈T

�
≥ T − |T ∩ U1|. (51)

The second ‘≥’ follows from the fact that conditioning
cannot increase entropy and we are left to prove the two
remaining ‘≥’. To prove the first ‘≥’ of (51), note that from
(
�

k∈U1
Sk, (Zk)k∈T ), we obtain |T ∩U1| linearly independent

combinations of the symbols in NU1 (see (30)). Then we have

H

�
NU1

����� �
k∈U1

Sk, (Zk)k∈T

�

= H

�
NU1

������
k∈U1

Sk, (Zk)k∈T ,Csub
|T ∩U1|×T ×NU1

�
(52)

≤ H

�
NU1

�����Csub
|T ∩U1|×T ×NU1

�
=T − |T ∩ U1|. (53)

To prove the third ‘≥’ of (51), we have

H

�
NU1

����� (Sk)k∈[K] , (Zk)k∈T

�

= H

�
NU1

����� (Sk)k∈[K] , (Zk)k∈T ,Csub
|T ∩U1|×T × NU1

�
(54)

≥ H

�
NU1

����� (Sk)k∈[K] , (Zk)k∈T ,Csub
|T ∩U1|×T × NU1 , . . .

. . .
�
NU1

�
U1 	=U1,U1⊂[K],|U1|≥U

�
(55)

= H

�
NU1

�����Csub
|T ∩U1|×T × NU1

�
= T − |T ∩ U1| (56)

where the last line follows from the fact that 1) conditioned
on all (Sk)k and all (NU1)U1

other than NU1 , (Zk)k∈T is left

with only symbols from NU1 , and 2) (Sk)k and (NU1)U1
are

independent.

V. PROOF OF THEOREM 1: CONVERSE

Let us start with a simple consequence of the independence
of inputs (Wk)k∈[K] and (Zk)k∈[K], and the uniformity of
(Wk)k∈[K], which is stated in the following lemma to facilitate
later use.

Lemma 2: For any V2 < V1 < K , the following equality
holds.

I

⎛
⎝ �

k∈[V1]

Wk;
�

k∈[V1+1]

Wk, (Wk, Zk)k∈[V2]

⎞
⎠ = 0. (57)

Proof of Lemma 2:

I

⎛
⎝ �

k∈[V1]

Wk;
�

k∈[V1+1]

Wk, (Wk, Zk)k∈[V2]

⎞
⎠

(1)
= I

⎛
⎝ �

k∈[V1]

Wk;
�

k∈[V1+1]

Wk, (Wk)k∈[V2]

⎞
⎠ (58)

= H

⎛
⎝ �

k∈[V1]

Wk

⎞
⎠

−H

⎛
⎝ �

k∈[V1]

Wk

����� �
k∈[V1+1]

Wk, (Wk)k∈[V2]

⎞
⎠ (59)
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= L−H

⎛
⎝WV1+1

����� �
k∈[V1+1]

Wk, (Wk)k∈[V2]

⎞
⎠ (60)

= L −
�
(V2 + 2)L − (V2 + 1)L

�
= 0 (61)

where in (60) and the last step, we use the uniformity of
(Wk)k∈[K].

Next, we present the converse proof for U ≤ T and U > T
cases (i.e., first and second round message rates), where the
key is to judiciously choose U1,U2, T to produce the desired
bounds from the correctness and security constraints (5), (6).

A. U ≤ T : Proof of R∗ = ∅

We show that when U ≤ T , the system constraints are
self-contradictory, so they cannot be satisfied by any secure
aggregation scheme, i.e., R∗ = ∅. To see why we have a
contradiction, consider U1 = [U + 2] and T = [U ]. Note that
U ≤ T ≤ K −2, so this choice of U1 and T is feasible. From
the security constraint (6), we have

0

=I

⎛
⎝ (Wk)k∈[K] ; (Xk)k∈[K] ,

�
Y

[U+2]
k

�
k∈[U+2]

����� . . .
. . .

�
k∈[U+2]

Wk, (Wk, Zk)k∈[U ]

⎞
⎠ (62)

≥I

⎛
⎝ �

k∈[U+1]

Wk; (Xk)k∈[U+1]

����� �
k∈[U+2]

Wk, . . .

. . . (Wk, Zk)k∈[U ]

⎞
⎠ (63)

(4)
=I

⎛
⎝ �

k∈[U+1]

Wk; (Xk)k∈[U+1] ,
�
Y

[U+1]
k

�
k∈[U ]

����� . . .
. . .

�
k∈[U+2]

Wk, (Wk, Zk)k∈[U ]

⎞
⎠ (64)

=I

⎛
⎝ �

k∈[U+1]

Wk; (Xk)k∈[U+1] ,
�
Y

[U+1]
k

�
k∈[U ]

, . . .

. . .
�

k∈[U+2]

Wk, (Wk, Zk)k∈[U ]

⎞
⎠

− I

⎛
⎝ �

k∈[U+1]

Wk;
�

k∈[U+2]

Wk, (Wk, Zk)k∈[U ]

⎞
⎠

� �� �
=0

(65)

≥I

⎛
⎝ �

k∈[U+1]

Wk; (Xk)k∈[U+1] ,
�
Y

[U+1]
k

�
k∈[U ]

⎞
⎠ (66)

=H

⎛
⎝ �

k∈[U+1]

Wk

⎞
⎠

− H

⎛
⎝ �

k∈[U+1]

Wk

����� (Xk)k∈[U+1] ,
�
Y

[U+1]
k

�
k∈[U ]

⎞
⎠ (67)

(5)
=L − 0 = L (68)

⇒0 ≥ L. (69)

In (63), we use the fact that
�

k∈[U+1] Wk can be obtained
from (Wk)k∈[K] and dropping terms cannot increase mutual

information. In (64), we use the fact that Y
[U+1]
k is a function

of Wk, Zk (see (4)); note that here the choice of the superscript
of Y

[U+1]
k is crucial (i.e., the first round responding user set).

The second term of (65) is zero because of Lemma 2, where
we set V1 = U + 1, V2 = U in (57). In (67), the first term is
L because the inputs are independent and uniform so that the
sum is also uniform; the second term is zero because of the
correctness constraint (5), when U1 = [U + 1] and U2 = [U ].
In the final step, where 0 ≥ L, we arrive at a contradiction,
i.e., the constraints used in the above derivation cannot hold
simultaneously. The proof of R∗ = ∅ is thus complete.

Remark 2: The intuition of the above proof is as follows.
When U1 = [U + 2], T = [U ], the security constraint requires
that nothing beyond WU+1 + WU+2 shall be learned, given
all the messages and the information from colluding users.
However, such messages and colluding information can fully
recover all responding messages when U1 = [U + 1],U2 =
[U ], so from the correctness constraint,

�
k∈[U+1] Wk can be

decoded and then WU+1 can be obtained (given the colluding
information), which violates that only WU+1 +WU+2 shall be
learned. Note that we may set U1,U2, T to different possible
sets as we allow multiple choices of user dropouts and user
collusions. The above proof formalizes this intuition.

B. U > T : Proof of R1 ≥ 1
We prove the converse bound for the first round message

rate. Consider any u ∈ [K], and set U1 = [K],U2 = [K]\{u}.
Then from the correctness constraint (5), we have

0

= H

⎛
⎝ �

k∈[K]

Wk

����� (Xk)k∈[K] ,
�
Y

[K]
k

�
k∈[K]\{u}

⎞
⎠ (70)

≥ H

⎛
⎝ �

k∈[K]

Wk

����� (Xk)k∈[K] ,
�
Y

[K]
k

�
k∈[K]\{u}

, . . .

. . . (Wk, Zk)k∈[K]\{u}

⎞
⎠ (71)

(3)(4)
= H

�
Wu

��Xu, (Wk, Zk)k∈[K]\{u}

�
(72)

where (72) follows from the fact that
(Xk)k∈[K]\{u} , (Y [K]

k )k∈[K]\{u} are functions of
(Wk, Zk)k∈[K]\{u} (see (3), (4)). Next,

L
(2)
= H(Wu)

(1)
= H

�
Wu

�� (Wk, Zk)k∈[K]\{u}

�
(73)

(72)
= I

�
Wu; Xu

�� (Wk, Zk)k∈[K]\{u}

�
(74)

≤ H
�
Xu

�� (Wk, Zk)k∈[K]\{u}

�
(75)
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≤ H (Xu) ≤ LX (76)

⇒ R1
(7)
=

LX

L
≥ 1. (77)

Remark 3: Intuitively, the reason that the first round mes-
sage length LX shall be no smaller than the input size L
is as follows. Note that any user, say User u, may survive
over the first round, but may drop over the second round.
Also, User u’s input is only available at User u. As a result,
the first round message from User u (which has length LX )
must at least contain all information contained in Input u, Wu

(whose entropy is L), so that the server may decode a sum
function that includes Wu. This explanation translates to the
proof presented above.

C. U > T : Proof of R2 ≥ 1
U−T

We prove the converse bound for the second round message
rate. Consider U1 = [U + 1],U2 = [U ], T = [T ]. Then from
the security constraint (6), we have

0

=I

⎛
⎝ (Wk)k∈[K] ; (Xk)k∈[K] ,

�
Y

[U+1]
k

�
k∈[U+1]

����� . . .
. . .

�
k∈[U+1]

Wk, (Wk, Zk)k∈[T ]

⎞
⎠ (78)

≥I

⎛
⎝�

k∈[U ]

Wk; (Xk)k∈[U ]

����� �
k∈[U+1]

Wk, (Wk, Zk)k∈[T ]

⎞
⎠

(79)

(4)
=I

⎛
⎝ �

k∈[U ]

Wk; (Xk)k∈[U ] ,
�
Y

[U ]
k

�
k∈[T ]

����� . . .
. . .

�
k∈[U+1]

Wk, (Wk, Zk)k∈[T ]

⎞
⎠ (80)

=I

⎛
⎝ �

k∈[U ]

Wk; (Xk)k∈[U ] ,
�
Y

[U ]
k

�
k∈[T ]

, . . .

. . .
�

k∈[U+1]

Wk, (Wk, Zk)k∈[T ]

⎞
⎠

− I

⎛
⎝�

k∈[U ]

Wk;
�

k∈[U+1]

Wk, (Wk, Zk)k∈[T ]

⎞
⎠

� �� �
(57)
= 0

(81)

≥I

⎛
⎝�

k∈[U ]

Wk; (Xk)k∈[U ] ,
�
Y

[U ]
k

�
k∈[T ]

⎞
⎠ . (82)

Next, consider U1 = U2 = [U ]. From the correctness
constraint (5), we have

0 = H

⎛
⎝�

k∈[U ]

Wk

����� (Xk)k∈[U ] ,
�
Y

[U ]
k

�
k∈[U ]

⎞
⎠
(83)

⇒ L = I

⎛
⎝�

k∈[U ]

Wk; (Xk)k∈[U ] ,
�
Y

[U ]
k

�
k∈[U ]

⎞
⎠(84)

(82)
= I

⎛
⎝ �

k∈[U ]

Wk;
�
Y

[U ]
k

�
k∈[U ]\[T ]

����� . . .
. . . (Xk)k∈[U ] ,

�
Y

[U ]
k

�
k∈[T ]

⎞
⎠ (85)

≤ H

��
Y

[U ]
k

�
k∈[U ]\[T ]

�
≤

�
k∈[U ]\[T ]

H
�
Y

[U ]
k

�
≤ (U − T )LY (86)

⇒ R2
(7)
=

LY

L
≥ 1

U − T
. (87)

Remark 4: The intuition of the above proof is as follows.
Due to the security constraint, all first round messages and
any T second round messages do not contribute any useful
information in decoding the desired sum (see (82)). Then all
useful information can only come from the remaining (U −T )
second round messages, such that each of them must contain
L/(U − T ) symbols of information at least on average. Thus
the proof, which makes this claim rigorous, follows as above.

Remark 5: By checking every step of the converse proof
above, we can verify that the converse bounds generalize from
the finite field to any group (e.g., including the modulo ring
of integers as a special case), where the inputs are uniform
over the respective group and ‘+’ is replaced by the group
operation; additionally, in case of a non-abelian group, the
order of ‘+’ in

�
k∈U Wk over the set of elements (Wk)k∈U

is assumed consistently to be increasing in k.

VI. DISCUSSION

In this section we discuss some interesting observations
on aspects beyond the optimal rate characterization of secure
aggregation.

A. Randomness Cost
Information theoretic security (i.e., statistical independence)

is ensured through randomized schemes so that randomness
consumption is a meaningful metric and we naturally wish
to use as little randomness as possible. The randomness
symbols need to be stored at the users to perform the encoding
operations, so randomness consumption also translates to
storage overhead. While the problem of characterizing the
minimum randomness cost of secure aggregation remains open
in general, we have obtained some preliminary results on the
non-colluding setting, i.e., T = 0, which are stated in the
following theorem.

Theorem 2: For the information theoretic secure aggrega-
tion problem, with K users, at least 1 ≤ U ≤ K−1 responding
users, and no collusion (T = 0), we have

• [Total Randomness] infL H
�
(Zk)k∈[K]

�
/L = K for

any U ;
• [Individual Randomness] when U = 1, infL H(Zk)/L =

K, ∀k ∈ [K].
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The achievability of the total and individual randomness
rate stated in Theorem 2 is proved by the achievable scheme
for Theorem 1 (see Section IV), where if T = 0, only
(Sk)k∈[K] is used (i.e., NU1 is an empty vector) and each
independent Sk has entropy L so that H((Zk)k∈[K]) = KL;
when U = 1, each Zk, ∀k ∈ [K] can recover (Sk)k∈[K]

so that H(Zk) = KL. The converse proof is deferred to
Section VI-E and Section VI-F, and an intuitive explanation
is as follows. Due to the security constraint, the K first round
messages must be fully protected by independent randomness
variables. In addition, from the optimal rate characterization in
Theorem 1, the length of each first round message is at least L
so that overall, we need KL randomness symbols at least (just
to secure the first round messages). When U = 1, as we may
only see one second round message, each user must hold all
KL randomness symbols at hand to ensure correct decoding
under all possible choices of first round responding user sets.

When U > 1, the minimum individual randomness cost is
an open problem even if T = 0, but we know that the achiev-
able scheme in Theorem 1 can be further optimized. To see
this, let us revisit Example 1, where K = 3, U = 2, T = 0 and
(H(Z1)/L, H(Z2)/L, H(Z3)/L) = (2.5, 2.5, 2.5) is achieved
(see (10)). We show that by carefully designing the MDS
matrices in (9) (and all other parts of the scheme are not
changed), we can achieve (H(Z1)/L, H(Z2)/L, H(Z3)/L) =
(2, 2.5, 2). Specifically, we set

MDS2×2 =
�

1 0
0 1

�
, MDS3×2 =

⎡
⎣ 1 0

1 1
0 1

⎤
⎦ in (9)

⇒
�

Z
{1,2}
1

Z
{1,2}
2


=
�

S1(1) + S2(1)
S1(2) + S2(2)

�
,�

Z
{1,3}
1

Z
{1,3}
3


=
�

S1(1) + S3(1)
S1(2) + S3(2)

�
,�

Z
{2.3}
2

Z
{2,3}
3


=
�

S2(1) + S3(1)
S2(2) + S3(2)

�
,⎡

⎢⎣ Z
{1,2,3}
1

Z
{1,2,3}
2

Z
{1,2,3}
3

⎤
⎥⎦=

⎡
⎣ S1(1) + S2(1) + S3(1)�2

l=1 S1(l) + S2(l) + S3(l)
S1(2) + S2(2) + S3(2)

⎤
⎦ (88)

where each Sk(i) is i.i.d. and uniform over Fq. Through the
above design, we have created certain correlation among ZU1

k

to reduce H(Zk), which we now calculate. From (10) and (88),
we have

H(Z1) = H
�
S1, Z

{1,2}
1 , Z

{1,3}
1 , Z

{1,2,3}
1

�
= H(S1, S2(1), S3(1)) = 4,

H(Z2) = H
�
S2, Z

{1,2}
2 , Z

{2,3}
2 , Z

{1,2,3}
2

�
= H(S2, S1(2), S3(1), S1(1) + S3(2)) = 5,

H(Z3) = H
�
S3, Z

{1,3}
3 , Z

{2,3}
3 , Z

{1,2,3}
3

�
= H(S3, S1(2), S2(2)) = 4. (89)

where Sk = (Sk(1); Sk(2)). As L = 2, we have achieved
(H(Z1)/L, H(Z2)/L, H(Z3)/L) = (2, 2.5, 2). Note that the
above scheme only specifies a judicious choice of the MDS
matrices while all other assignment remains the same, so that

the correctness and security of the scheme are not influenced.
While the individual randomness rate has been reduced for
the above setting, it is not known how much further saving
is possible, i.e., optimality is open. In general, understanding
the fundamental limits of randomness cost and the potential
tradeoff between communication cost and randomness cost for
arbitrary K, U, T is an interesting research direction for future
study.

B. Non-Identically Distributed Inputs
We assume that the input vectors are uniform thus homoge-

neous in the system model, while in federated learning, it is
common that each user’s data will be heterogeneous so that the
input distributions will not be identical. Thus the secure sum
computation problem with non-identically distributed inputs
deserves further study. Note that our achievable scheme applies
to arbitrarily distributed inputs (see Remark 1) while the
converse proof critically relies on the uniformity of inputs.
So uniform inputs are the worst case distribution (and a
natural assumption if the distribution knowledge is not known
or hard to acquire) and if we view uniform distributions as
the baseline, the question is naturally how to incorporate the
non-identical input distribution knowledge to produce a better
(even optimal) scheme. Intriguingly, even if there is no user
dropouts and we consider one-round communication protocols
(this formulation reduces to one that has been extensively
studied, see e.g., [42], [43]), the secure sum computation
problem depends on the structure of the input distribution in
a subtle manner. For example, consider a two user problem,
where W1 ∈ {5, 8, 10}, W2 ∈ {0, 2, 5} and the server wishes
to securely compute W1 + W2 over F11. For simplicity, the
input length is assumed to be L = 1. It turns out that the
optimal communication strategy is for each user to send one
symbol from F7, because the function (W1 + W2)F11 has an
invertible mapping as follows.

(W1 + W2)F11 0 2 5
5 5 7 10
8 8 10 2
10 10 1 4

Invertible⇐⇒
(W̃1 + W̃2)F7 0 1 3

0 0 1 3
2 2 3 5
3 3 4 6

. (90)

Therefore, we may set the messages as X1 = (W̃1 +
S)F7 , X2 = (W̃2 − S)F7 , where S is a noise variable that is
uniform over F7 and independent of the inputs. In transforming
the inputs [44], the specific input structure is used in a
non-trivial manner and interestingly, for this case, the scheme
above is optimal for any joint distribution of the inputs as long
as the probability is not zero over the support of (W1, W2)
because it matches a converse result from Theorem 3 of [45].
However, for arbitrary input distributions, the optimal commu-
nication cost for secure sum computation, to the best of our
knowledge, is not known (even for two users).

C. Fq Versus Zn

The input elements are assumed to be from the finite field Fq

in this work, while inputs from the ring of integers modulo n,
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Zn is also of interest. Note that when n is not a prime number,
Zn defines a different algebraic object from Fq . When secure
aggregation is considered in federated learning, the input
elements are typically integers quantized from real numbers
and the sum operation is performed over Zn [4], [5]. While
the converse bounds of this work generalize immediately to
Zn (see Remark 5), the achievable scheme relies on finite
field operations, in particular, the generic property of Cauchy
matrices. To cope with Zn, we may slightly modify the current
scheme (with vanishing rate loss) as follows. The first round
messages (see (35)) will be generated over Zn (including
the randomness variable Sk and the sum operation), while
the second round messages (see (35)) will be generated over
Fq (including the randomness variables NU1 and the matrix
multiplication operation). This is possible because the second
round messages are essentially (threshold ramp) secret shares
of the sum of first round randomness

�
k∈U1

Sk (referred
to as the secret) and we can map the secret, which is an
integer from Zn due to the set-up of first round messages,
to elements of the finite field Fq as long as q > n (i.e.,
we can pick q as the smallest prime power that is greater than
n). The rate loss comes from the fact that q > n; however,
through block codes, this penalty can be made arbitrarily
small over long blocks, in terms of the message rate. Along
similar lines, we can also stick to Zn over the second round,
where now we have to guarantee that the generic property
of the precoding matrices (i.e., the Cauchy matrices in (30),
which need to be replaced by other choices) as required by
the achievability proof, is preserved. Essentially, we require
various sub-matrices of the precoding matrices to have full
rank and this issue has been studied in threshold ramp secret
sharing literature, specifically over Z2m (e.g., quantize each
input element to 2m bits and sum under modulo 2m) [36], [37].
Generic matrices (such as MDS matrices) over the integers
have also been studied in recent work [46].

D. Uniform Versus Pseudorandom Noise Variables
We have focused exclusively on information theoretic secu-

rity in this work, guaranteed by randomness variables that are
functions of uniformly random noise variables. If we replace
the uniform noise variables (also called random seeds) by
pseudorandom variables that can be much shorter and are
computationally indistinguishable from uniform random vari-
ables, then following standard cryptographic techniques [47],
[48], the achievable scheme of this work can be shown to pro-
vide computational security with corresponding performance
guarantees, albeit only for honest-but-curious adversaries (typ-
ically viewed as the weakest type of computational security
guarantee in cryptography). Strengthening the power of the
adversaries (e.g., who may actively deviate from the defined
protocols) in our information theoretic security framework and
connecting the solution to computational security is another
interesting research direction for future study.

E. Proof of Theorem 2: Total Randomness Converse

We show that H
�
(Zk)k∈[K]

�
≥ KL. The proof is divided

into four steps.
Step 1: We show that I

��
k∈[K] Wk; (Xk)k∈[K]

�
= 0.

Consider the security constraint (6) when U1 = [K − 1]

and T = ∅.
0

(6)
= I

⎛
⎝ (Wk)k∈[K] ; (Xk)k∈[K] ,

�
Y

[K−1]
k

�
k∈[K−1]

����� . . .
. . .

�
k∈[K−1]

Wk

⎞
⎠ (91)

≥ I

⎛
⎝ �

k∈[K]

Wk; (Xk)k∈[K]

����� �
k∈[K−1]

Wk

⎞
⎠ (92)

= I

⎛
⎝ �

k∈[K]

Wk; (Xk)k∈[K] ,
�

k∈[K−1]

Wk

⎞
⎠

− I

⎛
⎝ �

k∈[K]

Wk;
�

k∈[K−1]

Wk

⎞
⎠

� �� �
=0

(93)

≥ I

⎛
⎝ �

k∈[K]

Wk; (Xk)k∈[K]

⎞
⎠ . (94)

Step 2: We show that I
�
(Wk)k∈[K] ; (Xk)k∈[K]

�
= 0.

Consider the security constraint (6) when U1 = [K] and
T = ∅.

0
(6)
= I

⎛
⎝(Wk)k∈[K] ; (Xk)k∈[K] ,

�
Y

[K]
k

�
k∈[K]

����� �
k∈[K]

Wk

⎞
⎠

(95)

≥ I

⎛
⎝(Wk)k∈[K] ; (Xk)k∈[K]

����� �
k∈[K]

Wk

⎞
⎠ (96)

= I

⎛
⎝(Wk)k∈[K] ,

�
k∈[K]

Wk; (Xk)k∈[K]

⎞
⎠

− I

⎛
⎝ �

k∈[K]

Wk; (Xk)k∈[K]

⎞
⎠

� �� �
(94)
= 0

(97)

≥ I
�
(Wk)k∈[K] ; (Xk)k∈[K]

�
. (98)

Step 3: We show that H
�
(Xk)k∈[K]

�
≥ KL. To this end,

we will use the message rate converse from the optimal rate
characterization. Specifically, consider (75) and we have

L
(75)

≤ H
�
Xu

�� (Wk, Zk)k∈[K]\{u}

�
(99)

(3)
= H

�
Xu

�� (Xk, Wk, Zk)k∈[K]\{u}

�
(100)

≤ H
�
Xu

�� (Xk)k∈[K]\{u}

�
(101)

⇒ H
�
(Xk)k∈[K]

�
=

K�
u=1

H
�
Xu

�� (Xk)k∈[u−1]

�
(102)

≥
K�

u=1

H
�
Xu

�� (Xk)k∈[K]\{u}

�
(103)

(101)

≥ KL. (104)
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Step 4: We are now ready to show that
H
�
(Zk)k∈[K]

�
≥ KL.

H
�
(Zk)k∈[K]

�
[−1.5pt] ≥ H

�
(Zk)k∈[K]

�� (Wk)k∈[K]

�
(105)

[−1.5pt]
(3)
= H

�
(Zk, Xk)k∈[K]

�� (Wk)k∈[K]

�
(106)

[−1.5pt] ≥ H
�
(Xk)k∈[K]

�� (Wk)k∈[K]

�
(107)

[−1.5pt]
(98)
= H

�
(Xk)k∈[K]

�
(108)

[−1.5pt]
(104)

≥ KL. (109)

F. Proof of Theorem 2: Individual Randomness Converse

We show that when U = 1, H(Zk) ≥ KL, ∀k ∈ [K].
To proceed, let us prove H(Z1) ≥ KL and the proof of
H(Zk) ≥ KL, k ∈ [K]\{1} follows from symmetry. The
proof is divided into three steps.

Step 1: We show that ∀k ∈ [K]\{1},

I
�
Y

{1,k}
1 ; Wk

�� (Wu)u∈[K]\{k} , (Xu)u∈[k−1]

�
= 0.

L

= I
�
W1 + Wk; (Xu)u∈[K] ,

�
Y

{1,k}
1

��
� �� �

(5)
= L

+ I
�
(Wu)u∈[K] ; (Xu)u∈[K] , Y

{1,k}
1

���W1 + Wk

�
� �� �

(6)
=0

(110)

=I
�
(Wu)u∈[K] ; (Xu)u∈[K] , Y

{1,k}
1

�
(111)

=I
�
Y

{1,k}
1 , (Xu)u∈[k−1] ; (Wu)u∈[K]

�
+ I
�

(Xu)u∈[K]\[k−1] ; (Wu)u∈[K]

���Y {1,k}
1 , . . .

. . . (Xu)u∈[k−1]

�
(112)

(5)

≥I
�
Y

{1,k}
1 ; (Wu)u∈[K]

��� (Xu)u∈[k−1]

�
+ I
�

(Xu)u∈[K]\[k−1] , W1 + Wk; (Wu)u∈[K]

��� . . .
. . . Y

{1,k}
1 , (Xu)u∈[k−1]

�
(113)

≥I
�
Y

{1,k}
1 ; (Wu)u∈[K]

��� (Xu)u∈[k−1]

�
+ I
�
W1 + Wk; (Wu)u∈[K]

���Y {1,k}
1 , (Xu)u∈[k−1]

�
(114)

=I
�
Y

{1,k}
1 ; (Wu)u∈[K]

��� (Xu)u∈[k−1]

�
+ H

�
W1 + Wk

���Y {1,k}
1 , (Xu)u∈[k−1]

�
(115)

≥I
�
Y

{1,k}
1 ; (Wu)u∈[K]

��� (Xu)u∈[k−1]

�
+ H

�
W1 + Wk

���Y {1,k}
1 , (Wu, Zu, Xu)u∈[k−1]

�
(116)

(3)(4)
= I

�
Y

{1,k}
1 ; (Wu)u∈[K]

��� (Xu)u∈[k−1]

�
+ H

�
Wk

��� (Wu, Zu)u∈[k−1]

�
(117)

(1)(2)

≥ I
�
Y

{1,k}
1 ; Wk

��� (Wu)u∈[K]\{k} , (Xu)u∈[k−1]

�
+ L

(118)

where in (110), the first term is L because of the correctness
constraint (5) when U1 = [K],U2 = {1}, i.e., W1 + Wk

can be decoded from (Xu)u∈[K], Y
{1,k}
1 (the same argument

is also used to obtain the second term of (113)) and the
second term is zero because of the security constraint (6) when
U1 = [K],U2 = {1}, i.e., the server can learn only W1 + Wk.
In (117), the second term is due to the fact that messages
Xu, Y U1

u are functions of Wu, Zu. In (118), the second term
follows from the independence of (Wu)u∈[K] and (Zu)u∈[K],
and the uniformity of (Wu)u∈[K]. After canceling L on both
hand sides of (118), we obtain the desired equation.

Step 2: We show that ∀k ∈ [K]\{1},

I
�
Z1; Xk

�� (Wu)u∈[K] , (Xu)u∈[k−1]

�
≥ L.

I
�
Z1; Xk

�� (Wu)u∈[K] , (Xu)u∈[k−1]

�
(4)
=I
�
Y

{1,k}
1 , Z1; Xk

�� (Wu)u∈[K] , (Xu)u∈[k−1]

�
(119)

≥I
�
Y

{1,k}
1 ; Xk

�� (Wu)u∈[K] , (Xu)u∈[k−1]

�
(120)

(118)
= I

�
Y

{1,k}
1 ; Xk, Wk

�� (Wu)u∈[K]\{k} , (Xu)u∈[k−1]

�
(121)

≥I
�
Y

{1,k}
1 ; Wk

�� (Wu)u∈[K]\{k} , (Xu)u∈[k]

�
(122)

=H
�
Wk

�� (Wu)u∈[K]\{k} , (Xu)u∈[k]

�
− H

�
Wk

�� (Wu)u∈[K]\{k} , (Xu)u∈[k] , Y
{1,k}
1

�
(123)

(98)
= L − H

�
W1 + Wk

�� (Wu)u∈[K]\{k} , (Xu)u∈[k] , Y
{1,k}
1

�
(124)

(5)
=L − 0 = L (125)

where (119) follows from the fact that Y
{1,k}
1 is a function

of W1, Z1 (see (4)), (124) follows from the independence
of (Xk)k∈[K] and (Wk)k∈[K] (see (98)) and the uniformity
of (Wk)k∈[K] (see (1), (2)), and to obtain (125) we use the
correctness constraint (5) when U1 = {1, k},U2 = {1}, i.e.,
W1+Wk can be recovered with no error from X1, Xk, Y

{1,k}
1 .

Step 3: We are now ready to show that H(Z1) ≥ K .
H(Z1)

≥ I
�
Z1; (Xk)k∈[K]

�� (Wk)k∈[K]

�
(126)

= I
�
Z1; X1

�� (Wk)k∈[K]

�
+

K�
k=2

I
�
Z1; Xk

��(Wu)u∈[K] , (Xu)u∈[k−1]

�
(127)

(3)(125)

≥ H
�
X1

�� (Wk)k∈[K]

�
+ (K − 1)L (128)

(98)
= H(X1) + (K − 1)L

(76)

≥ KL. (129)

VII. CONCLUSION

Motivated by secure aggregation in federated learning,
we consider a secure sum computation problem with user
dropouts and characterize the optimal communication effi-
ciency under information theoretic security. This work rep-
resents a step towards using information and coding theory
tools to understand diverse relevant challenges brought by new
machine learning paradigms.
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