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The Capacity of Anonymous Communications
Hua Sun , Member, IEEE

Abstract— We consider the communication scenario where K
transmitters are each connected to a common receiver with an
orthogonal noiseless link. One of the transmitters has a message
for the receiver, who is prohibited from learning anything in the
information theoretic sense about which transmitter sends the
message (transmitter anonymity is guaranteed). The capacity of
anonymous communications is the maximum number of bits of
desired information that can be anonymously communicated per
bit of total communication. For this anonymous communication
problem over a parallel channel with K transmitters and one
receiver, we show that the capacity is 1/K , i.e., to communicate
1 bit anonymously, each transmitter must send a 1 bit signal.
Furthermore, it is required that each transmitter has at least
1 bit correlated randomness (that is independent of the messages
and is not available to the receiver) per message bit and the size
of correlated randomness at all K transmitters is at least K − 1
bits per message bit.

Index Terms— Capacity, anonymous communications.

I. INTRODUCTION

TRADITIONAL studies in information theoretic security
and cryptography focus on efficient coding techniques

for protecting the information contents. There is much recent
interest in shifting the objective to hide user behaviors. For
example, private information retrieval (PIR) aims to pursue
communication efficient methods for hiding the identity of
the desired message that the user wants to retrieve from a set
of distributed replicated databases. The fundamental capacity
limits of PIR and several of its variants are characterized
recently in [1]–[3].

In this work, we consider the anonymous communication
problem, where the goal is to hide the identity of the trans-
mitters, receivers and the association between the two in a
network. This problem of anonymous communications has
been studied extensively in cryptography and computer science
communities [4]–[6], where typically the objective is to pro-
vide scalable solutions over large networks while information
theoretic optimality guarantees are not considered or treated
in the approximate order sense. Specifically, a central goal in
cryptography and computer science is to construct a modular
anonymous communication protocol over the Internet. Starting
from the seminal work by Chaum [7], the idea of using
a set of auxiliary relays (called ‘mix’ server) for random
forwarding and routing has been developed further as the
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Fig. 1. Network topology: transmitters are connected to a single receiver
with parallel interference-free noiseless links.

onion routing technique [8] and finally to the widely used
software - Tor [9]. The anonymous guarantee provided by this
line of research is limited to computationally bounded adver-
saries [7]–[12]. Information theoretic anonymous protocols
(achievability results) have been proposed in [13]–[15] over
broadcast based networks, although optimality is not known
(converse results). For further details on related works in
cryptography and computer science, we refer to the excellent
tutorials in [5], [6], and references therein.

In this work, we focus on transmitter anonymity and
consider an elemental model where K transmitters want
to communicate to a common receiver anonymously with
interference-free noiseless parallel channels.1 This commu-
nication scenario appears naturally in the context of gos-
siping (where the gossip source does not want to be
revealed), course or job evaluation (where the evaluation
person is anonymized), and auction and voting (where the
bidder or voter does not want to be identified). Our goal is
to identify the exact information theoretic limits on the rate
and common randomness for anonymous communications.
For example, consider the case where we have K = 3
transmitters. As each transmitter is connected to the receiver
with a parallel channel, the received signal Y is the collection
of all transmitted signals, X1, X2, X3 (see Figure 1).

One of the transmitters wishes to send a desired message to
the receiver without being identified, i.e., the receiver decodes
the message correctly, but has no knowledge about which
transmitter sends the message. This anonymity constraint
requires that no matter which transmitter wants to send the
message, the received signal must be identically distributed
and the decoding mapping can not depend on the desired trans-
mitter index. To accomplish the task of keeping the transmitter
identity anonymous, we assume that the transmitters share
some secret correlated random variables that are not available
to the receiver and are independent of the messages. In this

1Separate and perfect communication links are the least favorable channel
conditions for anonymity because this assumption eliminates the possibility
of hiding over direct interactions between the signals and noise.

0018-9448 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8777-7987


3872 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 6, JUNE 2019

Fig. 2. The anonymous coding scheme with K = 3 transmitters. (a). θ = 1.
(b). θ = 2. (c). θ = 3. Note that no matter which message is sent, the receiver
sees 3 uniform random bits and the decoding rule is always an addition.

case, we assume that Transmitter 1 holds a, Transmitter 2
holds b and Transmitter 3 holds a + b, where a, b are
2 i.i.d. uniform random bits (that form the correlated random
variables). Then a simple scalar linear coding scheme that
guarantees transmitter anonymity is presented next. Suppose
the desired transmitter index is θ ∈ {1, 2, 3}. The transmitted
signals are

X1 = a + �(θ = 1)W1 (1)

X2 = b + �(θ = 2)W2 (2)

X3 = a + b + �(θ = 3)W3 (3)

where �(x) is the indicator function that takes value 1 if the
event x is true and 0 otherwise. Each message is assumed to
be 1 independent uniform bit as well.

Correctness is easy to see as for all cases, the random-
ness cancels with each other after the addition operation.
Anonymity holds because regardless of the value of θ ,
the received signal consists of 3 uniform random bits and the
decoding mapping is always an addition. As such, the receiver
learns nothing about which transmitter is the source of the
message. We see that in order to communicate 1 bit anony-
mously, each transmitter needs to send 1 bit out. It is not
hard to see that this is information theoretically optimal as
even if there is no anonymity constraint, each transmitter will
send out the desired message bit. What is non-trivial is the
requirement on the correlated randomness. In this context,
we show that for all linear schemes, each transmitter must hold
a correlated random variable whose size is at least the size of
the message and the total amount of randomness available at
all transmitters must be at least as large as the size of K − 1
messages. Further, when the scheme is capacity achieving,
both the individual and total randomness sizes are optimal
information theoretically (i.e., for all non-linear schemes as
well). A scheme of similar nature appears in a different context
in [13] and [15], where coded randomness is not allowed
and optimality on the communications and randomness is not
considered.

Notation: For integers Z1, Z2, Z1 ≤ Z2, we use the compact
notation [Z1 : Z2] = {Z1, Z1 + 1, · · · , Z2}. The notation
X ∼ Y is used to indicate that random variables X and Y
are identically distributed.

II. PROBLEM STATEMENT

Consider a network with K transmitters and 1 receiver. Each
transmitter is connected to the receiver with an orthogonal

noiseless link. Each link can carry one symbol from a finite
field Fp per channel use for a prime p.

Transmitter k, k ∈ [1 : K ] has a message Wk . The messages
W1, · · · , WK are independent and are each comprised of L
i.i.d. uniform symbols from Fp. In p-ary units,

H (W1) = · · · = H (WK ) = L, (4)

H (W1, · · · , WK ) = H (W1) + · · · + H (WK ). (5)

The transmitters wish to communicate with the receiver
anonymously. The transmitters privately generate θ uniformly
over [1 : K ] (without loss of generality) and wish to com-
municate Wθ to the receiver while keeping θ a secret to
the receiver. Depending on θ , there are K strategies that
the transmitters employ to privately communicate the desired
message.2 For example, if θ = k, then in order to communicate
Wk , Transmitter i sends a signal X [k]

i over N channel uses.
To fulfill the task of communicating anonymously, we assume
that Transmitter i holds a correlated random variable Zi . The
correlated random variables are generated offline, i.e., before
the realizations of the messages are known, so that the
correlated random variables are independent of the messages.

H (Z1, · · · , Z K , W1, · · · , WK )

= H (Z1, · · · , Z K ) + H (W1, · · · , WK ) (6)

The correlated random variables are not available to the
receiver (these random variables are the only information that
the receiver does not know). The transmitted signal, X [k]

i ,
is a function of the information available to the transmitter
(i.e., the message and the correlated random variable),

H (X [k]
i |Wi , Zi ) = 0 (7)

The received signal at the receiver is a collection of the K
transmitted signals.

Y [k] = [X [k]
1 , · · · , X [k]

K ]T (8)

From Y [k], the receiver decodes the desired message Wk

according to a decoding mapping g. Note that the receiver
is not allowed to learn anything about the index of the
desired transmitter, so the decoding rule does not depend on k.
The decoding mapping g is fixed and known at every node
(including the transmitters).3

Wk = g(Y [k]) (9)

To ensure transmitter anonymity, the K strategies must be
indistinguishable (identically distributed) from the perspective

2It turns out that for our achievable scheme, the transmitters do not need to
know the exact value of the desired transmitter index θ . It suffices for each
transmitter to know that whether he is the desired or not.

3The encoding and decoding functions are globally known (akin to code-
books). g is the mapping that is agreed a priori and will produce the correct
estimate of the desired message. In general g is allowed to be random as
long as it is independent of the desired message index. It is easy to see that
randomized g does not help as we could pick any choice of g (and then fix it)
such that the same constraint (10) must be satisfied. The receiver is allowed
to try arbitrary other operations to infer the desired message index. However,
because the received signals are identically distributed, so the outcome of any
operation by the receiver does not depend on the desired message index (thus
such inference will reveal no information and does not violate anonymity).
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of the receiver, i.e., the following anonymity constraint must
be satisfied ∀k ∈ [1 : K ],
[Anonymity] (Y [1], g) ∼ (Y [k], g)

i.e., (X [1]
1 , · · · , X [1]

K , g) ∼ (X [k]
1 , · · · , X [k]

K , g) (10)

The anonymous communication rate characterizes how
many symbols of desired information are communicated per
symbol of total communication, and is defined as

R � L

K N
(11)

Note that by symmetry,4 the number of channel uses for
each transmitter does not depend on the transmitter indices.
A rate R is said to be achievable if there exists an anonymous
communication scheme of rate greater than or equal to R, for
which zero error decoding is guaranteed. The supremum of
achievable rates is called the capacity C .

The individual randomness size ρ measures the amount of
correlated randomness at each transmitter relative to the mes-
sage size (by symmetry, without loss of generality, we assume
that each transmitter holds the same amount of correlated ran-
domness, i.e., H (Z1) = · · · = H (Z K )). The total randomness
size η measures the total amount of correlated randomness at
all transmitters relative to the message size.

ρ = H (Z1)

L
(12)

η = H (Z1, · · · , Z K )

L
(13)

III. CAPACITY OF ANONYMOUS COMMUNICATIONS

Theorem 1 states our main result.
Theorem 1: The capacity of anonymous communications

over a parallel channel with K transmitters and 1 receiver
is C = 1/K . To achieve capacity, the minimum requirement
on randomness size is ρ = 1 individually and η = K − 1 in
total.

Remark 1: Theorem 1 settles the capacity of anonymous
communications, while the requirement on the randomness is
fully understood only at the capacity point. It is an interesting
open problem to characterize the tradeoff region between
the anonymous communication rate and the randomness size
(i.e., if the communicate rate is lower, can we lower the nor-
malized randomness size?). If we have further restrictions on
the schemes used (e.g., linear schemes as proved in Section VI
and some other special cases of non-linear schemes discussed
in Remark 8), then the randomness size in Theorem 1 is indeed
information theoretically optimal for any positive rate.

The achievability proof appears in Section IV, where
we provide a scalar linear anonymous coding scheme. The
converse proof on the rate appears in Section V. The
converse proof on the randomness appears in Section VI
for linear schemes and Section VII for all possible schemes
(i.e., the information theoretic converse).

4Given any (asymmetric) achievable scheme that might employ a different
number of channel uses for each transmitter, a symmetric scheme with the
same rate (defined as the message size over the total number of channel uses
by all transmitters) is obtained by repeating the original scheme K times, and
in the i-th repetition shifting the transmitter indices cyclicly by i .

When there is no anonymity constraint, the capacity is
trivially 1 (only the desired transmitter sends its message)
and no common randomness is needed. Therefore, in order
to obtain anonymity among a set of K transmitters, the price
for anonymity in communication cost is K times of that
with no anonymity constraint and we further need K − 1
bits of common randomness overall and 1 bit per transmitter,
to communicate 1 bit anonymously.

IV. PROOF OF THEOREM 1: ACHIEVABILIY

The achievable scheme with K transmitters is an immediate
generalization of that when K = 3, presented in the introduc-
tion section. We show that to communicate 1 bit anonymously,
each transmitter uses its channel once, so that the rate achieved
is 1/K .

We present the scheme over the binary field (any field will
work in general). Denote a1, · · · , aK−1 as K −1 i.i.d. uniform
bits, that are independent of the messages. The correlated
random variables are assigned as follows.

Zi = ai , i ∈ [1 : K − 1]
Z K = a1 + · · · + aK−1 (14)

The transmitted signals are

Xi = ai + �(θ = i)Wi

= Zi + �(θ = i)Wi , i ∈ [1 : K − 1]
X K = a1 + · · · + aK−1 + �(θ = K )WK

= Z K + �(θ = K )WK (15)

from which we can easily identify X [k]
i ,∀i, k ∈ [1 : K ].

The decoding mapping is the addition operation.

g(Y ) = X1 + X2 + · · · + X K (16)

i.e., g(Y [k]) = X [k]
1 + X [k]

2 + · · · + X [k]
K = Wk (17)

Correctness is easy to verify as the K correlated random
variables lie in a K − 1 dimensional space (in fact, any
K −1 dimensional space will work) and the decoding mapping
is along the null space of the correlated random variables.
Anonymity is guaranteed because for all possible values of θ ,
the received signal is comprised of K uniform i.i.d. bits and
the decoding mapping does not depend on θ . That is, when
θ = k, ∀k ∈ [1 : K ]:

H (Y [k]) = H (X [k]
1 , · · · , X [k]

K ) (18)

= H (a1, a2, · · · , aK−1, Wk) (19)

= K (20)

Remark 2 (Coded Randomness): In our coding scheme,
the common randomness variables are correlated in coded
form at the transmitters. Combining with the converse,
we know that coded randomness5 is necessary to minimize
the randomness size (i.e., if we do not allow randomness to
be mixed, then we must use more randomness).

Remark 3 (Collusion): Our achievable scheme is resilient
to user collusions (colluded users will share both the messages

5By uncoded randomness, we refer to raw independent bits (e.g., a1, a2),
while coded randomness allows raw bits to be mixed (e.g., a1 + a2).
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and correlated random variables with the receiver. Equiva-
lently, the receiver has the prior knowledge to preclude a set of
non-desired transmitters) in the following sense. Suppose each
transmitter only knows he is desired or not, then any collusion
of K − 2 non-desired transmitters with the receiver can not
identify the desired transmitter index (i.e., the transmitters that
are not in the colluding set are equally likely to be the desired).

Remark 4: (Security): Our achievable scheme is perfectly
secure in that the receiver obtains absolutely no information
about all other messages beyond the desired one.

V. PROOF OF THEOREM 1: CONVERSE ON RATE

We show that to transmit L symbols anonymously, each
transmitter must use the channel at least N ≥ L times. Then
the rate bound R = L

N K ≤ 1/K follows.
We first show that H (X [i]

i ) ≥ L, i.e., when Transmitter
i is the desired transmitter, he must send a signal that
contains at least as much information as that contained in
his message, from the correctness constraint. Define Wī =
(W1, · · · , Wi−1, Wi+1, · · · , WK ).

L
(4)= H (Wi) (21)
(9)= I (Wi ; Y [i]) (22)
(8)≤ I (Wi ; X [i]

1 , · · · , X [i]
K , Z1, · · · , Z K , Wī ) (23)

(6)(5)= I (Wi ; X [i]
1 , · · · , X [i]

K |Z1, · · · , Z K , Wī ) (24)
(7)= I (Wi ; X [i]

i |Z1, · · · , Z K , Wī ) (25)

≤ H (X [i]
i ) (26)

Next, we show that H (X [k]
i ) ≥ L, k �= i , i.e., when Transmit-

ter i is not the desired transmitter, he must send a statistically
equivalent signal so that the entropy is also not less than the
message size, from the anonymity constraint.

H (X [k]
i )

(10)= H (X [i]
i ) (27)

(26)≥ L, k �= i (28)

Combining with the fact that H (X [k]
i ) ≤ N,∀k, we arrive

at the desired rate bound.

VI. PROOF OF THEOREM 1: CONVERSE ON

RANDOMNESS FOR LINEAR SCHEMES

We present the proof on randomness separately for lin-
ear schemes and all possible schemes (non-linear schemes
included), because our result for linear schemes holds for any
rate while that for non-linear schemes works only for capacity
achieving schemes (see Section VII). Specifically, we show
that unconditionally, the individual randomness size ρ ≥ 1 and
sum randomness size η ≥ K − 1 for all linear schemes (with
arbitrary positive rate). Otherwise, anonymous communication
is not feasible, i.e., the capacity is 0.

A proof outline is as follows. We first use the anonymity
constraint (i.e., regardless of the desired message index,
the decoding mapping must be the same linear combination
for linear schemes) to show that for non-desired transmit-
ters, the transmitted signals can not contain their messages

(undesired). Then combining with the property that any set
of transmitted signals must contain as much information as
L times the cardinality of the set (this follows from the
uncertainty of the desired message index. For a statement, see
Lemma 1), we arrive at the desired randomness size bounds.

We first present the proof when K = 3.

A. Proof for Scalar Linear Case When K = 3

To illustrate the main idea in a simpler setting, we first
consider the K = 3 setting and assume the scheme is scalar
linear, i.e., each message and each correlated random variable
is only 1 symbol. We show that each correlated random symbol
must be uniformly random, H (Zi) ≥ L, i ∈ {1, 2, 3} and
any two random symbols are independent, H (Zi, Z j ) ≥ 2L,
i �= j, i, j ∈ {1, 2, 3}.

For a linear scheme, the transmitted signal is a linear
combination of the message symbol and the correlated random
variable, and the decoding mapping is also a linear combi-
nation of the received signal symbols (so the only operation
allowed is taking linear combinations). Note that we define a
linear scheme to be one where both encoding and decoding
mappings must be linear (this is a standard definition for linear
schemes, see e.g., [16, Sec. III]). Specifically, the transmitted
signals are

X [k]
i = V [k]

i Wi + U [k]
i Zi , i, k ∈ {1, 2, 3} (29)

where V [k]
i , U [k]

i are deterministic scalars over Fp (and are
globally known). The decoding coefficients are denoted as
G1, G2, G3 ∈ Fp (note that the constants G1, G2, G3 do not
depend on the desired transmitter index k) and the decoding
works as follows.

Wk = G1 X [k]
1 + G2 X [k]

2 + G3 X [k]
3 (30)

= G1V [k]
1 W1 + G2V [k]

2 W2 + G3V [k]
3 W3

+ G1U [k]
1 Z1 + G2U [k]

2 Z2 + G3U [k]
3 Z3 (31)

As such, for any k ∈ {1, 2, 3}, the undesired messages can not
appear. It follows from the equality (31) (note that (31) holds
for all realizations of the messages) that

G1V [1]
1 �= 0, G2V [1]

2 = 0, G3V [1]
3 = 0 (32)

G1V [2]
1 = 0, G2V [2]

2 �= 0, G3V [2]
3 = 0 (33)

G1V [3]
1 = 0, G2V [3]

2 = 0, G3V [3]
3 �= 0 (34)

⇒ G1 �= 0, G2 �= 0, G3 �= 0, V [1]
1 �= 0, V [2]

2 �= 0,

V [3]
3 �= 0, V [1]

2 = V [1]
3 = 0, V [2]

1 = V [2]
3 = 0,

V [3]
1 = V [3]

3 = 0 (35)

Consider now X [2]
1 = U [2]

1 Z1. From (28), we have

L
(28)≤ H (X [2]

1 ) (36)
(29)(35)= H (U [2]

1 Z1) (37)

= H (Z1) (38)
(12)= ρL (39)
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where (38) follows from the observation that U [2]
1 is not

zero, i.e.,

U [2]
1 �= 0, (40)

as otherwise H (X [2]
1 ) = 0, contradicting (28). Therefore,

we have proved that the individual randomness size ρ ≥ 1.
Symmetrically, from (38) and (40), we have

L ≤ H (Z2), L ≤ H (Z3), (41)

U [k]
i �= 0, k �= i (42)

Next, we consider (X [1]
1 , X [1]

2 ) = (V [1]
1 W1 + U [1]

1 Z1, U [1]
2 Z2).

H (X [1]
1 , X [1]

2 )

(29)(35)= H (U [1]
2 Z2) + H (V [1]

1 W1 + U [1]
1 Z1|U [1]

2 Z2) (43)
(42)≥ H (Z2) + H (V [1]

1 W1 + U [1]
1 Z1|Z2, Z1) (44)

(41)≥ L + H (V [1]
1 W1|Z2, Z1) (45)

(6)= L + H (V [1]
1 W1) (46)

(35)(4)= 2L (47)

Then we consider H (X [3]
1 , X [3]

2 )
(29)(35)= H (U [3]

1 Z1, U [3]
2 Z2),

as follows.

ηL
(13)= H (Z1, Z2, Z3) (48)

≥ H (Z1, Z2) (49)
(29)(35)(42)= H (X [3]

1 , X [3]
2 ) (50)

(10)= H (X [1]
1 , X [1]

2 ) (51)
(47)≥ 2L (52)

Therefore we have proved that the sum randomness size
η ≥ 2 = K − 1.

Remark 5: From (31), we know that the correlated random
variables must satisfy some linear equation, i.e., they must lie
in a lower dimensional space (rank deficient) for successful
decoding.

B. General Proof for Vector Linear Case With Arbitrary K

We generalize the above proof to the vector linear case with
arbitrary number of transmitters, K . We show that H (Z1) ≥ L
and H (Z1, · · · , Z K−1) ≥ (K − 1)L.

The vector linear scheme is represented as follows.

X [k]
i = V[k]

i Wi + U[k]
i Zi , i, k ∈ [1 : K ] (53)

where V[k]
i , U[k]

i are N × L constant encoding matrices, over
Fp (and are globally known). Note that there is no loss
of generality in assuming that Zi contains L symbols over
Fp , as we do not impose any statistical properties on the L
symbols (e.g., they are not necessarily independent). For any
i, k ∈ [1 : K ],

Wk =
K∑

i=1

Gi X [k]
i (54)

=
K∑

i=1

Gi V
[k]
i Wi +

K∑

i=1

Gi U
[k]
i Zi (55)

The decoding mapping is specified by the constant filtering
matrices Gi , each of which has dimension L × N over Fp.
Then we have

rank(GkV[k]
k ) = L, k ∈ [1 : K ] (56)

GkV[i]
k = 0, k �= i, i, k ∈ [1 : K ] (57)

Following the proof presented in the previous section, we pro-

ceed to consider G1 X [2]
1

(53)(57)= G1U[2]
1 Z1.

L
(4)= H (W1) (58)
(56)= H (G1V[1]

1 W1) (59)
(6)= H (G1V[1]

1 W1|Z1) (60)
(53)= H (G1X [1]

1 |Z1) (61)

≤ H (G1X [1]
1 ) (62)

(10)= H (G1X [2]
1 ) (63)

(53)(57)= H (G1U[2]
1 Z1) (64)

≤ H (Z1) (65)
(12)= ρL (66)

where (59) follows from the fact that G1V[1]
1 is invertible such

that entropy is preserved. Therefore, we have proved that the
individual randomness size ρ ≥ 1. As a byproduct, from (64),
we obtain that

rank(G1U[2]
1 ) = L (67)

as otherwise we have the contradiction that
H (G1U[2]

1 Z1) < L . Symmetrically, from (67), we have

rank(GkU[i]
k ) = L, k �= i (68)

Next, we consider the total randomness size. We first prove a
lemma.

Lemma 1: For all i ∈ [1 : K − 1], we have

H (G1X [i+1]
1 , G2 X [i+1]

2 , · · · , Gi X [i+1]
i ) ≥ i L (69)

Proof: The proof is based on induction. Note that the basis
case where i = 1 is proved in (63). Suppose now (69) holds
when i = j, j ∈ [1 : K − 2], i.e.,

H (G1X [ j+1]
1 , G2 X [ j+1]

2 , · · · , G j X [ j+1]
j ) ≥ j L (70)

Now consider the case where i = j + 1.

H (G1X [ j+2]
1 , G2 X [ j+2]

2 , · · · , G j+1 X [ j+2]
j+1 )

(10)= H (G1X [ j+1]
1 , G2 X [ j+1]

2 , · · · , G j+1 X [ j+1]
j+1 ) (71)

= H (G1X [ j+1]
1 , G2 X [ j+1]

2 , · · · , G j X [ j+1]
j )

+ H (G j+1X [ j+1]
j+1 |G1 X [ j+1]

1 , · · · , G j X [ j+1]
j ) (72)

(70)(53)(57)≥ j L + H (G j+1X [ j+1]
j+1 |Z1, · · · , Z j , Z j+1) (73)

(53)(57)= j L + H (G j+1V[ j+1]
j+1 W j+1|Z1, · · · , Z j+1) (74)

(6)(56)= j L + H (W j+1) (75)
(4)= ( j + 1)L (76)
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where in (71), we have used the anonymity constraint to
change the desired message index from j + 2 to j + 1 so that
we may proceed with the induction assumption (70). Since
both the basis and the inductive steps have been performed,
by mathematical induction, we have proved that (69) holds for
all i ∈ [1 : K − 1]. The proof for Lemma 1 is complete.

Finally, consider (69) and set i = K − 1. We have

(K − 1)L
(69)≤ H (X [K ]

1 , · · · , X [K ]
K−1) (77)

(53)(57)(68)≤ H (Z1, · · · , Z K−1) (78)
(13)≤ ηL (79)

where (78) is due to the observation that non-desired sig-
nals (from Transmitters 1 to K − 1 when Transmitter K
is the desired) are deterministic functions of the correlated
random variables (derived from the properties of the encoding
and decoding matrices, see (53)(57)(68)). Therefore we have
proved that the sum randomness size η ≥ K − 1, for any rate
R = L

N K .

VII. PROOF OF THEOREM 1: INFORMATION THEORETIC

CONVERSE ON RANDOMNESS FOR CAPACITY

ACHIEVING SCHEMES

We show that when the scheme is capacity achieving,
i.e., the rate achieved is 1/K , i.e., H (X [k]

i ) = N = L,∀i, k ∈
[1 : K ], then the randomness sizes ρ = 1 and η = K − 1 are
both information theoretically optimal.

A proof outline is as follows. We first show that when
the scheme is capacity achieving, the transmitted signals must
be uniform (see Lemma 2). Next, combining anonymity and
correctness, we prove that for any received signal tuple that
differs in one element, the decoded message values must be
different as well. This distinctness observation leads to the
property that the transmitted signals from non-desired trans-
mitters are deterministic functions of the correlated random
variables (see Lemma 3). Finally, this deterministic property
for non-desired transmit signals gives us the desired bounds
on the size of correlated randomness.

We start with the K = 3 setting to illustrate the proof.

A. Proof for Binary Scalar Case When K = 3

Before presenting the general proof for arbitrary K , we first
consider the K = 3 case and assume that each message is one
bit, to illustrate the idea. Then in this case, L = 1 and the
field is F2. In this case, we need to show that H (Zi) ≥ 1 and
H (Z1, Z2, Z3) ≥ 2.

First, for capacity achieving schemes, i.e.,

H (X [k]
i ) = 1, ∀i, k ∈ {1, 2, 3} (80)

the received signal is uniformly random. The proof is deferred
to Lemma 2 for the general case. That is, for any k,

X [k]
1 , X [k]

2 , X [k]
3 is uniformly distributed. (81)

Next, consider X [2]
1 , X [2]

2 , X [2]
3 , W2. Note that

H (W2|X [2]
1 , X [2]

3 )
(5)(6)(7)= H (W2)

(4)= L (82)

H (X [2]
2 |X [2]

1 , X [2]
3 )

(81)= L (83)

H (W2|X [2]
1 , X [2]

2 , X [2]
3 )

(9)= 0 (84)

where (82) follows from the observation that W2 is only avail-
able at Transmitter 2, so it is independent of the transmitted
signals from Transmitter 1 and Transmitter 3 (i.e., X [2]

1 , X [2]
3 ).

(82) and (83) indicate that conditioned on X [2]
1 , X [2]

3 , W2 and
X [2]

2 are 2 uniform random variables. Further, (84) states that
the uniform random variable W2 is a deterministic function of
the uniform random variable X [2]

2 (conditioned on X [2]
1 , X [2]

3 ).
Then we have the observation that for any realization of
X [2]

1 , X [2]
3 , W2 has a one-to-one mapping to X [2]

2 , i.e.,

H (X [2]
2 |W2, X [2]

1 , X [2]
3 ) = 0 (85)

Repeating the argument for W1 and W3, we have

H (X [1]
1 |W1, X [1]

2 , X [1]
3 ) = 0 (86)

H (X [3]
3 |W3, X [3]

1 , X [3]
2 ) = 0 (87)

From the anonymity constraint (10) and the correctness
constraint (9), we know that

(X [1]
1 , X [1]

2 , X [1]
3 , g, W1) ∼ (X [k]

1 , X [k]
2 , X [k]

3 , g, Wk) (88)

We now consider the individual randomness size.
Combining (85) and (88), we have the second element in the
tuple of both sides of (88) is deterministic after conditioned
on the first, third and last element, i.e.,

H (X [1]
2 |W1, X [1]

1 , X [1]
3 ) = 0 (89)

Then

I (X [1]
2 ; W2)

≤ I (X [1]
2 , W1, X [1]

1 , X [1]
3 ; W2) (90)

= I (W1, X [1]
1 , X [1]

3 ; W2)

+ I (X [1]
2 ; W2|W1, X [1]

1 , X [1]
3 ) (91)

(89)≤ I (W1, X [1]
1 , Z1, X [1]

3 , W3, Z3; W2) + 0 (92)
(5)(6)(7)= 0 (93)

and

1
(80)= H (X [1]

2 ) (94)
(7)= I (X [1]

2 ; W2, Z2) (95)
(93)= I (X [1]

2 ; Z2|W2) (96)

≤ H (Z2) (97)
(12)= ρ (98)

Therefore the individual randomness size satisfies that ρ ≥ 1.
We proceed next to consider the sum randomness size.

Combining (85), (86), (87) and (88), we have obtained the
structure of the decoding mapping, i.e., for any 3-tuple of
the received signal, if 2 elements are fixed, the remaining
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element has a one-to-one mapping with the desired message.
For example, when Y [k] = (0, 0, 0), suppose that Wk =
g(Y [k]) = g(0, 0, 0) = w,w ∈ {0, 1}, then g(0, 0, 1) =
g(0, 1, 0) = g(1, 0, 0) = 1 − w. Proceeding along this line,
the decoding mapping is uniquely identified as follows.

Y [k] Wk = g(Y [k])
(0, 0, 0) w
(0, 0, 1) 1 − w
(0, 1, 0) 1 − w
(0, 1, 1) w
(1, 0, 0) 1 − w
(1, 0, 1) w
(1, 1, 0) w
(1, 1, 1) 1 − w

(99)

We are now ready to show that

H (X [1]
2 , X [1]

3 |Z1, Z2, Z3) = 0. (100)

Consider an arbitrary realization of (W1, Z1, Z2, Z3) =
(w1, z1, z2, z3), drawn according to the correct joint distribu-
tion (W1 is independent of Z1, Z2, Z3). Then X [1]

1 is a constant
(denoted as x1) as X [1]

1 is a function of W1 and Z1. We now
show that X [1]

2 , X [1]
3 are now constants as well. Note that the

only variables that are random now are W2, W3. Suppose X [1]
2

is still random, depending on the value of W2. Then consider
two realizations of X [1]

2 , denoted as x2, x 	
2, x2 �= x 	

2 and the
received signal realizations

y1 = (x1, x2, X [1]
3 ) (101)

y2 = (x1, x 	
2, X [1]

3 ) (102)

Note that y1 and y2 differ in only one element (i.e., x2
and x 	

2) so that from the decoding mapping table, we have
g(y1) �= g(y2). However, from the correctness constraint,
we know that g(y1) = g(y2) = w1. Therefore, we arrive at
the contradiction and X [1]

2 , X [1]
3 are deterministic functions of

the correlated random variables. Then we have

η
(13)= H (Z1, Z2, Z3) (103)
(100)= H (X [1]

2 , X [1]
3 , Z1, Z2, Z3) (104)

≥ H (X [1]
2 , X [1]

3 ) (105)
(81)= 2 (106)

Therefore the sum randomness size η ≥ 2 and the proof is
complete.

B. Proof for Arbitrary K

We follow the steps of the proof for K = 3 binary case and
show H (Zi) ≥ L, H (Z1, Z2, · · · , Z K ) ≥ (K − 1)L.

First, we present a lemma, which says that the received
signals are uniformly random, when the scheme is capacity
achieving.

Lemma 2:

H (X [k]
i ) = N = L, ∀i, k ∈ [1 : K ] (107)

⇒ H (X [k]
1 , · · · , X [k]

K ) = K L, ∀k ∈ [1 : K ] (108)

Proof: Note that (107) implies that H (X [k]
1 , · · · , X [k]

K ) ≤
K L. It suffices to prove only the other direction. Define X [i]

ī
=

(X [i]
1 , · · · .X [i]

i−1, X [i]
i+1, · · · , X [i]

K ).

H (X [k]
1 , · · · , X [k]

K )

=
K∑

i=1

H (X [k]
i |X [k]

1 , · · · , X [k]
i−1) (109)

(10)=
K∑

i=1

H (X [i]
i |X [i]

1 , · · · , X [i]
i−1) (110)

≥
K∑

i=1

H (X [i]
i |X [i]

ī
) (111)

≥
K∑

i=1

I (Wi ; X [i]
i |X [i]

ī
) (112)

(9)=
K∑

i=1

H (Wi |X [i]
ī

) (113)

≥
K∑

i=1

H (Wi |X [i]
ī

, Wī , Z1, · · · , Z K ) (114)

(7)(6)(4)= K L (115)

where the last step follows from the fact that the transmitted
signal is a deterministic function of the message and the
correlated randomness so that the transmitted signal can be
eliminated, and then we invoke the independence of the
messages and correlated randomness.

Next, note that

H (Wi |X [i]
ī

)
(113)= L, (116)

H (X [i]
i |X [i]

ī
)

(108)= L, (117)

H (Wi |X [i]
ī

, X [i]
i )

(9)= 0 (118)

Note that Wi is independent of X [i]
ī

. Then we have the

observation that for any realization of X [i]
ī

, Wi has a one-

to-one mapping to X [i]
i , i.e.,

H (X [i]
i |Wi , X [i]

ī
) = 0 (119)

From the anonymity constraint (10) and the correctness con-
straint (9), we know that for any i ∈ [1 : K ],

(X [i]
i , X [i]

ī
, g, Wi ) ∼ (X [1]

i , X [1]
ī

, g, W1) (120)

Combining (119) and (120), we have

H (X [1]
i |W1, X [1]

ī
) = 0 (121)

Then for i �= 1,

I (X [1]
i ; Wi )

≤ I (X [1]
i , W1, X [1]

ī
; Wi ) (122)

= I (W1, X [1]
ī

; Wi ) + I (X [1]
i ; Wi |W1, X [1]

ī
) (123)

(121)≤ I (W1, X [1]
ī

, Zī , Wī ; Wi ) + 0 (124)
(6)(7)= 0 (125)

where Zī = (Z1, · · · , Zi−1, Zi+1, · · · , Z K ).
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For the individual randomness size, we have

L
(107)= H (X [1]

i ) (126)
(7)= I (X [1]

i ; Wi , Zi ) (127)
(125)= I (X [1]

i ; Zi |Wi ) (128)

≤ H (Zi) (129)
(12)= ρL (130)

Therefore ρ ≥ 1.
For the sum randomness size, as (119) holds for all

i ∈ [1 : K ] and from (120), we know that if any K − 1
elements of the received signal are determined, the remaining
element has a one-to-one mapping with the desired message,
which means that

For 2 received signal tuples that differ in 1 element,

i.e., y1 = (x1, · · · , xk, · · · , xK ),

y2 = (x1, · · · , x 	
k, · · · , xK ),

we have g(y1) �= g(y2). (131)

Then we claim that X [1]
2 , · · · , X [1]

K are functions of Z1, · · · ,
Z K , stated in the following lemma.

Lemma 3:

H (X [1]
2 , · · · , X [1]

K |Z1, · · · , Z K ) = 0 (132)

Proof: Consider an arbitrary realization of W1,
Z1, · · · , Z K , denoted as (W1, Z1, · · · , Z K ) = (w1,
z1, · · · , zK ). As W1, Z1 are fixed, then X [1]

1 is a constant,
denoted as x1. We show that X [1]

2 , · · · , X [1]
K are constants

now. To set up the proof by contradiction, suppose there
exists one X [1]

k that can take multiple values. Denote two
such values as xk, x 	

k, xk �= x 	
k . The other X [1]

i , i �= k are
assumed to be constants and denoted as xi . Note that for fixed
z2. · · · , zk , X [1]

2 , · · · , X [1]
K are conditionally independent

as now the randomness only comes from the messages
W2, · · · , WK and the messages are independent. We now
have two different received signal tuples

y1 = (x1, · · · , xk, · · · , xK ) (133)

y2 = (x1, · · · , x 	
k, · · · , xK ) (134)

From (131), we know that g(y1) �= g(y2). However, this
contradicts with the fact that g(y1) = g(y2) = w1. There-
fore we have arrived at the contradiction and X [1]

2 , · · · , X [1]
K

are functions of Z1, · · · , Z K , W1. Further X [1]
2 , · · · , X [1]

K are
independent of W1 so that we only need to condition on
Z1, · · · , Z K in (69) (i.e., the conditioning on W1 is omitted).
Therefore we have proved the lemma.

From Lemma 3, we have

ηL
(13)= H (Z1, · · · , Z K ) (135)
(132)= H (X [1]

2 , · · · , X [1]
K , Z1, · · · , Z K ) (136)

≥ H (X [1]
2 , · · · , X [1]

K ) (137)
(107)= (K − 1)L (138)

Therefore the desired sum randomness size bound follows and
the proof is complete.

Remark 6: The above proof relies on the assumption that
the scheme is capacity achieving. Otherwise, Lemma 2 and
Lemma 3 may not hold (i.e., the transmitted signals may not be
uniformly random and the non-desired transmitted signals may
not be deterministic functions of the correlated randomness,
because we may inject useless correlated randomness when
the rate is not maximized).

Remark 7: The individual randomness size bound holds
without the constraint that the achieved rate is equal to the
capacity, i.e., we have ρ ≥ 1 for any positive rate (the total
randomness size bound, however, hinges on the assumption
of capacity achieving schemes). A sketch of proof idea is as
follows (the above proof is more informative in that the combi-
natoric structure of the decoding mapping is revealed). We first
note that the transmitted signal from Transmitter i , i �= 1 is
independent of W1, i.e., I (X [1]

i ; W1) = 0. Next, from the
anonymity constraint, the same relation on the mutual infor-
mation must hold when Wi is desired, i.e., I (X [i]

i ; Wi ) = 0,
meaning that the transmitted signal from Transmitter i does
not contain any information about Wi . To guarantee this,
the randomness needed must be at least as large as the message
size.

Remark 8: A more general condition where the bound on
the total randomness size holds unconditionally for arbitrary
positive rates is when we require the transmitted signal to
be deterministic functions of the correlated random variable
when he is not desired, i.e., H (X [k]

i |Zi) = 0, i �= k (in other
words, the messages do not play a role when they are not
desired. As the messages are independent among themselves
and of the correlated random variables, it will be interesting if
they help to reduce total randomness size). Lemma 3 proves
that this deterministic condition holds for capacity achieving
schemes. After we assume this deterministic condition to be
satisfied, the proof is the same as that presented above after
Lemma 3.

VIII. CONCLUSION

We consider the problem of anonymous communications
from an information theory perspective. We have characterized
the capacity of anonymous communications over a parallel
channel with K transmitters and 1 receiver, to be C = 1/K .
Further, the minimum randomness sizes required are ρ = 1
per transmitter and η = K − 1 for all transmitters.

This work represents a step towards using information
theoretic tools to understand the fundamental limits of anony-
mous network communications. Characterizing the capacity of
anonymous communication networks under general network
topology (beyond one hop), general message setting (beyond
one desired message and independent messages) and general
transmitter and/or receiver anonymity constraints (beyond only
transmitter anonymity) is a promising research avenue. For
example, a recent work has considered the generalization
to anonymous information delivery over replication based
distributed storage systems [17].
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