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Abstract— This paper investigates the privacy problem in
coded caching. Recently, it was shown that the seminal MAN
coded caching scheme leaks the demand information of each user
to the other users in the system. Many works have considered
coded caching with demand privacy, while every non-trivial
existing coded caching scheme with private demands was built
on the fact that the cache information of each user is private
to the others. However, most of these schemes leak the users’
cache information. As a consequence, in most realistic settings
(e.g., video streaming) where the system is used over time
with multiple sequential transmission rounds, these schemes
leak demand privacy beyond the first round. This observation
motivates our new formulation of coded caching with simul-
taneously private demands and caches in this paper. For this
new model, we first show that an existing coded caching scheme
with private demands, referred to as the virtual users scheme,
can also preserve the privacy of the users’ caches. However,
this scheme suffers from its extremely high subpacketization.
The main contribution of this paper is a new construction that
generates private coded caching schemes by leveraging two-server
private information retrieval (PIR) schemes. We show that if
in the PIR scheme the demand is uniform over all files and
the queries are independent, the resulting caching scheme is
private on both the demands and the caches; otherwise, the
resulting scheme is private only on the demands. This first result
constructs coded caching schemes from a particular class of PIR
schemes, which is a new “structural” result in its own merit.
We then construct new two-server PIR schemes with uniform
demand and independent queries, such that the resulting caching
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scheme has a subpacketization level that is significantly reduced
compared to the virtual users scheme. Interestingly we propose
a new construction of two-server PIR schemes with uniform
demand and independent queries by exploiting coded caching
schemes. By applying the seminal Maddah-Ali and Niesen coded
caching scheme in our construction, the resulting two-server
PIR scheme is proved to be order-optimal under the constraint
of uniform demand and independent queries. This is a second
new “structural” result that somehow closes the loop in the
relationship between coded caching and PIR. As a by-product
of our new construction, we obtain a new demand private that
improves the load of the state-of-the-art demand private caching
schemes known so far. Finally, to explore a broader tradeoff
between cache privacy and transmission load, we relax the
cache privacy constraint and introduce the definition of cache
information leakage. Then, again as a by-product of our new
construction, we propose new schemes with perfect demand
privacy and imperfect cache privacy that achieve an order-gain
in load with respect to the scheme with perfect privacy on both
demands and caches. This also establishes a first non-trivial
achievability result in the tradeoff between load and cache
privacy, for demand-private caching schemes.

Index Terms— Coded caching, private demands and caches,
private information retrieval.

I. INTRODUCTION

CODED caching was first introduced in [2]. In a caching
system, the goal is to leverage the local memory avail-

able at the end-users to reduce the load in the network by
exploiting the content already availbale in the cache instead
of downloading it from the server. Before the advent of [2],
this leverage was limited to the local caching gain, which
depends on the local cache size. The coded caching scheme
proposed by Maddah-Ali and Niesen, referred to as the MAN
scheme in [2], showed that the cache memory available to
each user can be used in an aggregated manner even if there
is no cooperation between the users. This gain is called the
global caching gain. Thus, in addition to benefiting from a
local cache size, the system can benefit from the aggregate
cache size which scales with the number of users and provides
a greater further reduction in network load.

In the MAN coded caching setting [2], a server which
has a library of N files and is connected to K users via
a shared medium. Each user has a cache of size M files.
A coded caching scheme consists of two phases: placement
and delivery. In the placement phase, each user fills its cache
without knowledge of the users’ later demands. If each user
stores some bits of files directly into the cache, the placement
phase is called uncoded. In the delivery phase, each user
demands one file. According to the users’ demands and caches,
the server broadcasts multicast messages to the users such that
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each user can retrieve its demanded file. The transmission
load is defined as the number of bits broadcasted in the
delivery phase normalized by the file size. The objective is
to minimize the worst case load among all possible demands.
The MAN coded caching scheme is based on a combinatorial
design in the placement which splits each file into multiple
subfiles and assigns each subfile to a subset of users, such
that each multicast message is useful to 1 + KM/N users.
The achieved load by the MAN coded caching scheme is
K(1−M/N)
1+KM/N , where 1 − M/N represents the local caching

gain and 1
1+KM/N represents the global caching gain. When

N ≥ K, the MAN scheme was proved to be order-optimal
within a factor of 2 [3] and optimal under the constraint of
uncoded cache placement [4]. When N < K, an improved
coded caching scheme was proposed by Yu, Maddah-Ali,
and Avestimhr (YMA) in [3], which relies on the fact that
some MAN multicast messages can be reconstructed by the
other ones and are thus redundant. The YMA scheme was
then proved to be order-optimal within a factor of 2 [3], and
optimal under the constraint of uncoded cache placement [3],
for arbitrary system parameters. Following the seminal work
of MAN, coded caching has been studied in various exten-
sions, including decentralized setting [5], online coded caching
[6], Device-to-Device (D2D) networks [7], random and non-
uniform demands [8], [9], hierarchical coded caching [10], etc.

The MAN centralized scheme has a subpacketization level
at most exponential in the number of users K, which is
one of its practical limitations. Also for their decentralized
algorithm in [5], the multiplicative caching gain appears in the
asymptotic regime of file size scaling to infinity. The authors
in [11] addressed this issue and showed that this multiplicative
gain is non-existent in the finite file size regime under random
placement and clique cover delivery schemes. To reduce
subpacketization, the authors in [12] introduce a decentralized
scheme that achieves a low worst-case load in the finite file
size regime and maintains an optimal memory-load tradeoff
when file size scales to infinity. A combinatorial structure,
referred to as placement delivery array (PDA), was proposed
in [13] to design coded caching schemes with uncoded cache
placement and clique-covering delivery, where the MAN
scheme can also be seen as a coded caching scheme under
PDA construction. Following [13], various PDA constructions
have been proposed in [14], [15], [16], [17], and [18]. Other
combinatorial structures, such as hypergraphs [19], Ruzsa-
Szeméredi graphs [20], the strong edge coloring of bipartite
graphs [21], linear block codes [22], have also been used to
construct coded caching schemes with reduced subpacketiza-
tion compared to the MAN scheme. Under PDA construction,
the subpacketization of the MAN scheme is minimal to achieve
the load K(1−M/N)

1+KM/N [23].

A. Demand Private Coded Caching Schemes

Despite the optimality guarantee, another problem of the
MAN scheme is the leakage of users’ demand information.
In order to decode the MAN multicast messages, each user
should be aware of the other users’ demands, which violates
the demand privacy. An information-theoretic formulation

of coded caching with private demands has been proposed
in [24], where each user has a cache that is private to the
other users, and the privacy constraint requires that each user
cannot obtain any information about other users’ demands
from the broadcast messages in the delivery phase. Based
on the virtual user strategy in [25], an information-theoretic
private scheme has been proposed in [24]. By introducing
KN − K virtual users and letting each file be demanded
by K effective users (i.e., real or virtual users), the problem
can be solved by using the NK-user MAN or YMA scheme.
The resulting scheme can perfectly preserve the privacy of
each user’s demand against the other users, because each
user cannot distinguish the real users from the effective users.
The achieved load of this virtual user-based scheme has been
proved to be order-optimal within a constant, except for the
case N ≥ K and M < N/K. However, its subpacketization is
at most exponential in NK, which is far from being practical.
To reduce the subpacketization, the authors in [24] proposed
another private caching scheme based on Minimum Distance
Separable (MDS) codes for the case M ≥ N/2, which
achieves an order-optimal load with subpacketization at most
exponential in K. A different (but equivalent) scheme based
on virtual users has been proposed in [26], where for each
real user we introduce N−1 virtual users, such that the union
set of files requested by these N effective users is the entire
library.

Following the coded caching problem with private demands,
some improved schemes have been proposed in order to
reduce the load or subpacketization. In [27], the authors
proposed a demand-private scheme for the special case of
a caching system with N = 2,K = 2 and M = 1, while
the subpacketization level equal to 3 was proved to be the
minimum. A strategy introducing the use of private keys has
been proposed by Yan and Tuninetti in [28], whose main idea
is to transform file retrieval to scalar linear function retrieval
(i.e., each user requests a scalar linear function of files [29]).
Each user’s cache is divided into two parts. In the first part,
each user caches the same subfiles as in the MAN scheme.
The second part serves as each user’s private key, composed of
some linear combinations of the subfiles which are not cached
in the first part. In the delivery phase, each user pretends
to request a scalar linear function of the files, from which
and the private key the user can recover its demanded file.
Then, by using the cache-aided scalar linear function retrieval
scheme in [29], the resulting private caching scheme requires
a subpacketization which is the same as the MAN scheme.
The resulting scheme was proved to be order-optimal within a
factor of 6.3707 when the metadata (i.e., the composition) of
the broadcast messages is given.1 Other works on demand pri-
vate caching include [30], which proves that the optimal loads
with and without demand privacy are within a multiplicative
factor, and also characterizes the exact memory-load tradeoff
for the case N = K = 2. Furthermore, in [31], the authors
provided the exact memory-load tradeoff for demand private

1In the privacy constraint of [28], the mutual information is under the
condition of the realization of the library; this is equivalent to the case where
the metadata of the broadcast messages is provided in the header of the
delivered packet, which is common in practice for the ease of decoding.
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coded caching when N ≥ K = 2. Finally in [32], demand
private coded caching was studied with a focus on reducing the
subpacketization level. For the cases N = K = 2, the authors
proposed a scheme with the lowest possible subpacketization.

B. Brief Review of Private Information Retrieval (PIR)

Demand privacy was originally considered in the PIR prob-
lem [33], where a user is connected to S servers through
S individual private links, respectively. The library contains
N equal-length messages, and the user wants to retrieve one
message from the servers without letting the servers know any
information about the demand. For this purpose, the user sends
a query to each server, and the server replies with an answer
containing some coded packets to the user. The communication
cost, defined as the amount of information exchanged between
the user and the servers, is equal to the sum of the total upload
cost (i.e., the sum of the individual upload costs defined as the
length of the query from the user to the servers) and the total
download cost (i.e., the sum of the individual download costs
defined as the length of the answer from the servers to the
user normalized by the message size).

For the single-server PIR problem, the only solution that
preserves the information-theoretic demand privacy is to
download the entire library. Numerous works have considered
minimizing of the communication cost for the system with
multiple servers. A two-server PIR scheme with communica-
tion cost of O(N1/3) was proposed in [33] based on covering
codes [34], which was then extended to the S-server system
with communication cost O

(
N1/(2S−1)

)
[35]. Also in [36],

the author introduced a time-efficient two-server PIR with
the same communication complexity of O(N1/3) as in [33].
In [37], the authors considered the problem of t-private PIR,
where the goal is to keep the identity of the demanded file
private, even with the collusion of up to t servers. Some other
important works on PIR include [38], [39], [40], [41], where
the authors study the bounds on communication cost. The
work in [42] is a polynomial-based approach and achieves the
O(N1/3) communication cost and the work in [43], introduces
the currently best known communication cost of No(1) for
two-server PIR schemes and is based on the polynomial
approach of [42] and matching vector codes (MVC) [44], [45].

Due to the difficulty of characterizing the optimal com-
munication cost, another direction on the PIR problem is
to characterize the optimal total download cost. In [46] Sun
and Jafar characterized the optimal total download cost, 1 +
1/S + 1/S2 + · · · + 1/SN−1, by proposing an interference
alignment-type achievable scheme and a matching converse.
In [47], the authors introduce an asymmetric PIR scheme
that achieves the optimal total download cost. Furthermore,
under the constraint of achieving the optimal total down-
load cost, this scheme has the minimum total upload cost
S(N − 1) log2 S and the minimum subpacketization on the
message S − 1. In addition, some extended PIR models were
considered with the objective to minimize the total download
cost, including multi-message PIR (where the user wants to
privately retrieve M messages from the servers) [48], symmet-
ric PIR (where there is an additional security constraint that

the user cannot receive any information about the undesired
messages) [49], PIR with side information (where the user
has some prior side information in the form of a subset
of messages not including the desired one) [50], PIR from
MDS-coded data in distributed storage systems [51], cache-
aided PIR (where the user has a cache storage that can be used
to store any function of the messages) [52], multi-message
PIR with private side information (where the identity of the
desired messages and the side information should be kept
private from the servers) [53], PIR with colluding databases
(where a number of databases may share the received queries
among each other) [54], and PIR with coded databases [55].

C. Contributions

In the coded caching problem with private demands [24],
an important condition for designing non-trivial private
caching schemes is that each user’s cache information is
private to the others; otherwise, to preserve the demand privacy
we need to let each user decode the entire library. However,
in most existing private caching schemes (except the virtual
users scheme in [26]), the users’ caches are leaked after the
transmission in the delivery phase; thus, after one transmission
round in which each user has decoded one file, these schemes
cannot be used to preserve the demand privacy when each user
wants to retrieve another file in a new transmission round. This
motivates the formulation of the coded caching problem with
private demands and caches in this paper: in addition to the
privacy constraint on the users’ demands, we also want to
preserve the privacy of the users’ caches. Besides formulating
of this new problem, our contributions are as follows.
• We first show that the virtual users scheme in [26] is

private in terms of demands and caches. The achieved
load of this scheme is order-optimal within a constant
factor except for the case where N > K and M <
N/K. However, the subpacketization of this scheme is
2H(M/N)NK and is at most exponential in NK, where
H(·) represents the binary entropy function.

• In order to reduce the subpacketization of the virtual
users scheme, we propose a new construction struc-
ture on private coded caching schemes by leveraging
two-server PIR schemes. In particular, we show that
the schemes resulting from our construction are demand
private. By applying the PIR scheme in [47], we can
construct a demand-private coded caching scheme with
an improved memory-load tradeoff than that of [28].
We then show that if the underlying PIR scheme has the
uniform demand and independent query (UDIQ) property
(see Definition 1 in Section II-C), the resulting caching
scheme is both demand- and cache-private. These first
results introduce a new “structural” result that constructs
the coded caching schemes from a particular class of PIR
schemes.

• As a consequence of the above result, we then shift our
focus to the construction of two-server PIR schemes with
the UDIQ property. Interestingly, we find a new con-
struction structure for two-server PIR schemes under the
UDIQ condition by leveraging coded caching schemes.
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By applying the Maddah-Ali and Niesen scheme to
our construction, the achieved load by the resulting
two-server PIR scheme is proved to be order-optimal
under the UDIQ constraint. This is a second new
“structural” result that somehow closes the loop in the
relationship between coded caching and PIR.

• In order to explore a broader tradeoff between subpack-
etization order, transmission load, and cache privacy,
we relax the UDIQ constraint, and as a result, obtain
demand private coded caching schemes with a controlled
amount of leakage on the cache information, which opens
the path in this new exploration. In particular, using
the PIR scheme in [43], we obtain a demand private
coded caching scheme with better cache information
leakage than [28]. Recall that using the PIR scheme
in [47], we obtain a demand private coded caching
scheme achieving lower load than [28] with the same
subpacketization. These results clearly demonstrate the
flexibility of our construction.

D. Paper Organization

The rest of this paper is organized as follows. The system
model is presented in Section II. Section III presents our main
results on coded caching with private demands and caches.
Section IV presents the results for the extended model where
some leakage on the caches is allowed. We conclude the paper
in Section V.

E. Notation Convention

Calligraphic symbols denote sets, bold symbols denote
vectors, and sans-serif symbols denote system parameters.
We denote the set {a, a + 1, . . . , b} by [a : b] and [b] refers
to [1 : b]. We use | · | to denote the cardinality of a set or the
length of a vector. Also, BA denotes the set {Bi,∀i ∈ A}.
The base of logarithm in this paper is 2.

II. SYSTEM MODEL

A. Problem Formulation of Coded Caching With Private
Demands and Caches

The considered coded caching system consists of a server
with access to a library of N independent files denoted by
W1,W2, . . . ,WN . This server is connected to K cache-aided
users via a shared link. The entropy of the each user’s cache
content is limited by MF . We assume that each file has F
bits. The system operates in two phases.

Placement Phase: Each user fills its cache without knowl-
edge of later demands. The cached content of user k ∈ [K]
is

Zk = ϕk(W1, . . . ,WN ,Mk), (1)

where Mk represents the metadata of the bits in Zk. Mk is
a random variable over Ck, representing all types of cache
placements of user k. The realization of Mk is known only
by the server and user k. The memory size constraint states

that the cache size should be MF , i.e.,

H(Zk) ≤MF, ∀k ∈ [K].2 (2)

Following the assumption made in [24], we assume that F
is sufficiently large such that the size of Mk is negligible with
respect to the file size, and Mk is also provided in Zk.

Delivery Phase: During the delivery phase, user k ∈ [K]
requests one file Wdk

, where dk is uniformly i.i.d. over [N ].
The demanded vector is denoted by d = (d1, d2, . . . , dK).
Given the demand vector d, the server broadcasts to all users

Xd = ψ(d,W1, . . . ,WN ,M1, . . . ,MK). (3)

Note that we have

H(W[N ],M[K],d) = NF +H(M[K]) +
∑
k∈[K]

H(dk). (4)

We also assume that the metadata of the broadcast message is
contained within the message and is negligible compared to
the file size.

Decoding: User k ∈ [K] decodes its desired file Wdk
from(

dk, Zk, Xd

)
, i.e.,

H
(
Wdk

|dk, Zk, Xd

)
= 0. (5)

Privacy: We want to preserve the privacy of each user’s
demand against other users, i.e.,

I(d;Xd|dk, Zk) = 0, ∀k ∈ [K]. (6)

In addition to (6), we want to preserve the privacy of the
metadata of each user’s cache content against other users, i.e.,

I
(
(M1, . . . ,MK);Xd|dk, Zk

)
= 0, ∀k ∈ [K]. (7)

Objective: The load R is achievable if there exist cache
placement functions {ϕk(·) : k ∈ [K]}, encoding function
ψ(·), and decoding functions {θk(·) : k ∈ [K]} such that

Wdk
= θk(dk, Zk, Xd),∀k ∈ [K], (8)

where H(Xd)/F ≤ R. (9)

Our objective is to find the minimum achievable load R⋆

for given system parameters M,N,K,3 i.e.,

R⋆ = min
ϕk,ψ,θk:k∈[K]

R. (10)

2The number of bits per information file symbol to represent cache Zk =
zk is (1/F ) ∗ ⌈log2(1/ Pr(Zk = zk))⌉. Thus the average number of bits
to represent the cache is (1/F )

∑
zk
⌈log2(1/ Pr(Zk = zk))⌉ ∗ Pr(Zk =

zk) ≃ H(Zk)/F, where the error (rounding integer) is O(1/F ). Hence, for
large F we can neglect such rounding, and impose a constraint on the cache
entropy, H(Zk) ≤ MF . This does not mean that every realization of Zk

can be represented by MF bits, however, on average over the ensemble of
the realizations; this holds for each user k.

3Note that the broadcast messages for different demands have the same
size, by the constraint of private demands.
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B. Review of the Existing Schemes for Coded Caching With
Private Demands

Note that if we remove the private constraint on the caches
in (7), the considered problem reduces to the coded caching
problem with private demands in [24]. In the following,
we briefly review two efficient existing private demand coded
caching schemes, which are based on the virtual-user strategy
and the privacy key strategy, respectively. In the virtual-user
strategy proposed in [30], a (N,K,M)-private scheme is
constructed using a (N,NK,M)-non-private scheme. In the
placement phase, user k’s cache encoding function, cachek,
in the private scheme is given by cachek = cachenp(k−1)N+Sk

for Sk chosen uniformly random from [N ] where cachenpi is
the cache encoding function of the non-private scheme for
user i. The memory-load tradeoff in this scheme is given
by the piecewise linear function connecting the memory-load

points
(

t
K ,

(NK
t+1)−(NK−N

t+1 )
(NK

t )

)
, ∀t ∈ [0 : NK]. Regarding

cache privacy, since the choice of Sk is unknown to users
other than k, the cache contents of the users are private. In the
delivery phase, the assignment of files demanded by the virtual
users is such that all N file indices are requested by users
[(k − 1)N + 1 : kN ] for each k ∈ [K]. Regarding privacy,
the mapping of caches to demands are revealed during server
transmission, but the cache-demand pair for real user k ∈ [K]
is not distinguishable among users [(k − 1)N + 1 : kN ], and
thus, both caches and demands are private.

The privacy key scheme proposed in [28] does not provide
full privacy for users’ caches, but keeps the demands private.
The placement phase is similar to the MAN scheme and the
subfiles cached for each user in the MAN scheme are also
cached here, but in addition, a linear function of subfiles for
each uncached subfile index is stored in the cache for each
user. The coefficients of this linear combination are chosen
randomly by each user and kept private from others. In the
delivery phase, based on these coefficients, the user requests a
linear function of subfiles so that the retrieval of the demanded
subfiles are possible. If the coefficient vector pk is used in the
placement phase for user k, then in the delivery phase the
requested coefficient vector would be pk+dk, where dk has a
1 in position dk (the demanded file index of user k) and 0 else-
where. The memory-load tradeoff for this scheme is given
by the piecewise linear function connecting the memory-load

points
(

1 + t(N−1)
K ,

( K
t+1)−(K−min{N−1,K}

t+1 )
(K

t )

)
, ∀t ∈ [0 : K].

Regarding privacy, since pk is a uniformly chosen random
vector on {0, 1}N , pk+dk would also be uniformly distributed
on {0, 1}N regardless the choice of dk and as a result, the
demands are kept private.

C. Review of Private Information Retrieval

Since our main result is built on a newly discovered connec-
tion between private caching schemes and PIR, in this section
we review the PIR problem setting.

Assume that there are S servers each containing of a library
of N files with B bits, denoted by W1,W2, . . . ,WN . A user is
connected to these S servers through S individual and private
links (i.e., the servers do not collude), and wishes to retrieve

one file from the library while keeping the privacy of the
demand against the servers. Assuming that the desired file is
Wd, for each s ∈ [S], the user sends the query Q[d]

s ∈ Qs to
server s. Based on the received query, server s sends back to
the user the answer A[d]

s as a function of the query and the
files W1,W2, . . . ,WN , i.e.,

A[d]
s = γs(Q[d]

s ,W1,W2, . . . ,WN ), (11)

where γs represents the encoding function of server s. Based
on the set of answers and queries, there should exist a decoding
function by which the user can recover the desired file, i.e.

H
(
Wd|A[d]

1 , . . . , A
[d]
S , Q

[d]
1 , . . . , Q

[d]
S

)
= 0. (12)

Additionally, the privacy constraint states that the query sent
to each server, should not reveal any information about the
desired file index; i.e., for each s ∈ [S],

I(d;Q[d]
s |W1, . . . ,WN ) = 0. (13)

From (13) we can conclude that H(A[1]
s ) = · · · =

H(A[N ]
s ) := H(As) holds for every s ∈ [S]. The total

download cost of the PIR scheme is defined as the total size
of information received from the servers over the message
size, denoted by RD =

∑
s∈[S]H(As)

B . The objective of the
PIR problem is to characterize the minimum total download
cost RD.4

The optimal total download cost has been solved for general
system parameters in [46]. This result is recalled here in the
following:

Theorem 1 (Capacity of PIR [46]): For the PIR problem
with N messages and S databases, the optimal total download
cost is

1 + 1/S + 1/S2 + · · ·+ 1/SN−1. (14)

Interestingly, the optimal total download cost can be
achieved not only in the asymptotic regime of arbitrarily large
file size. In fact, it is sufficient that the file size is equal to
any integer multiple of SN bits. In [47] the authors proposed
a PIR scheme that achieves the optimal (least) file size and
total upload cost among the class of decomposable codes that
achieve the optimal total download cost. According to [47],
the term “decomposable” restricts each coded symbol to be a
summation of the component functions on the individual mes-
sages. For the exact definition, see [47, Definitions 2 and 3].
Their result is given in the following theorem.

Theorem 2 [47]: Among all download cost optimal uni-
formly decomposable PIR codes, the PIR code proposed
in [47] has the smallest message size, which is S − 1.
Among all download cost optimal decomposable PIR codes,
this scheme has the lowest total upload cost, which is
S(N − 1) log2N .

Finally, we introduce the uniform demand and independent
queries (UDIQ) condition on PIR schemes which will be

4Note that in most information-theoretic works on PIR, the objective
is to maximize the download rate, which is defined as B∑

s∈[S] H(As)
.

In other words, the download rate is the reciprocal of the total download
cost considered in this paper.
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needed in our construction of coded caching schemes with
private demands and caches.

Definition 1 (UDIQ Condition): For a two-server PIR
scheme, if the demand is uniformly distributed over [N ] and

I(Q[n]
1 ;Q[n]

2 |W1, . . . ,WN ) = 0, ∀n ∈ [N ], (15)

then the PIR scheme satisfies the UDIQ condition.

III. MAIN RESULTS

In this section, we will present our main results on the coded
caching problem with private demands and caches. We first
show that the virtual users scheme reviewed in Section II-B
can also preserve the privacy of the users’ caches.

Theorem 3: For the coded caching problem with private
demands and caches, R⋆ is upper bounded by the lower convex
envelop of the following memory-load tradeoff points,(

t

K
,

(
NK
t+1

)
−
(
NK−N
t+1

)(
NK
t

) )
, ∀t ∈ [0 : NK]. (16)

Proof: The demand privacy constraint in (6) has already
been proved to hold in [26]. To complete the proof, we need
to show that the cache privacy constraint also holds. The
virtual users scheme for parameters (N,K,M) is built on the
non-private MAN scheme for parameters (N,NK,M) when
the demands of virtual users are carefully selected. In this
scheme, user k behaves as user

(
(k − 1)N + Sk

)
in the

(N,NK,M) non-private scheme, where Sk ∼ Unif{[N ]}.
So the metadata of the cache content of user k is determined by
Sk, or equivalently Mk = Sk. In this scheme, the users (k −
1)N+1, (k−1)N+2, . . . , kN cover all N possible demands.
Following the demand construction of the (N,NK,M) non-
private scheme in [26], define Ck as follows,

Ck := (Sk − dk) mod N, k ∈ [K] (17)

Then, let qk be the right cyclic shift of the vector (1, . . . , N)
by Ck positions. Thus the demand vector of the (N,NK,M)-
non-private scheme is dnp = (q1,q2, . . . ,qK). So we can see
that the demand vector in the non-private scheme is a function
of C := (C1, C2, . . . , CK). The transmission of the server for
one part should contain the vector C in order for the users
to be able to decode their messages [26]. The other part of
the transmission consists of a non-private (N,NK,M) coded
caching scheme based on the scheme in [3] which is a function
of the library and dnp, and since dnp is a function of C,
we denote this part of transmission as Xnp(W[K],C). So in
the end we can write Xd = (C, Xnp(W[K],C)). Now we can
write the cache privacy constraint in (7) as follows,

I
(
(M1, . . . ,MK);Xd|dk, Zk

)
= I
(
S1, . . . , SK ;C, Xnp(W1, . . . ,WK ,C)|dk, Zk

)
(18a)

= I(S1, . . . , SK ;C|dk, Zk) (18b)
+ I(S1, . . . , SK ;Xnp(W1, . . . ,WK ,C)|dk, Zk,C) (18c)

Based on (17) and the fact that the demands are uniformly
distributed, the distribution of C does not change depending on
knowing or not knowing the value of the vector (S1, . . . , SK).
Thus the term in (18b) is zero and since C is already in

the condition in (18c), Xnp(W1, . . . ,WK ,C) would not have
any connection to (S1, . . . , SK) and this term is also zero.
Therefore, both the privacy constraints (6) and (7) are satisfied
and decodability in (5) is already proved to hold in [26]. This
completes the proof. □

Note that it was proved in [24] that the multiplicative gap
between the achieved load by the virtual users scheme and the
converse bound of the non-private coded caching problem is
at most 8, except in the case of N < K and M < N/K. This
order-optimality result also holds for the considered coded
caching problem with private demands and caches.

A. New Construction on Coded Caching With Private
Demands

The subpacketization of the virtual users scheme in
Theorem 3 is 2H(M/N)NK and is at most exponential in NK,
while the subpacketization of the MAN scheme is 2H(M/N)K

and is at most exponential in K. Next, we aim to reduce the
subpacketization of the virtual users scheme while keeping
demand and cache information private simultaneously. The key
contribution of this paper is to propose a new construction
strategy for private coded caching, which establishes a new
relationship between two-server PIR schemes and private
coded caching. We first consider demand privacy, and propose
a structure in the following theorem to construct demand
private coded caching schemes from PIR schemes. The proof
is given in Appendix A.

Theorem 4 (From PIR to Coded Caching): Given any
two-server PIR scheme with N files and download cost pair
(RD1 , RD2) where RDi

corresponds to server i, there exists
an (N,K) coded caching scheme (N files and K users) with
private demands whose achieved memory-load tradeoff is the
lower convex envelope of (0, N),(

Nt

K
+
(
1− t

K

)
(µ1RD1 + µ2RD2) ,

(µ1RD2 + µ2RD1)
K − t

t+ 1

)
,∀t ∈ [0 : K − 1], (19)

and (N, 0), where µ1, µ2 ∈ [0, 1], µ1 +µ2 = 1. Assuming that
the needed subpacketization of the given PIR scheme is F ′,
then the needed subpacketization for each point in (19) with
t ∈ [0 : K − 1] is

(
K
t

)
F ′.

Since based on Theorem 4 we are allowed to use any
two-server PIR scheme, we can choose the one in [47] which
has the optimal total download cost R⋆D := 1 + 1/2 +
(1/2)2+· · ·+(1/2)N−1 and subpacketization level of F ′ = 1.
Therefore, using the scheme in [47] in Theorem 4 (for µ1 =
µ2 = 1/2), we will have the following result.

Corollary 1: For the (N,K) coded caching problem with
private demands in [24], there exists a scheme whose achieved
memory-load tradeoff is the lower convex envelope of (0, N),

(M,R) =(
Nt

K
+
(
1− t

K

)R⋆D
2
,
R⋆D
2
K − t

t+ 1

)
,∀t ∈ [0 : K − 1], (20)
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and (N, 0). The needed subpacketization for each point in (20)
with t ∈ [0 : K − 1] is

(
K
t

)
.

Remark 1 (Comparison to the Demand Private Caching
Scheme in [28]):

In Theorem 4 for the time-sharing parameters µ1 = µ2 =
1/2 (or the case where RD1 = RD2 ), the points in (19) become

(M,R) =
(
Nt

K
+
(
1− t

K

)RD
2
,
RD
2
K − t

t+ 1

)
, ∀t ∈ [0 : K],

(21)

where RD = RD1 +RD2 represents the total download cost.
The memory-load tradeoff for the demand private scheme
of [28] for the case K ≤ N + t, follows (M,R) =(
Nt
K +

(
1− t

K

)
, K−tt+1

)
, which is order-optimal within a con-

stant gap. So when K ≤ N + t, the achieved memory-load
tradeoff in (21) is strictly better than [28] if the chosen PIR
scheme has the total download cost RD = RD1 + RD2 < 2.
In this case, the resulting scheme is also order-optimal within
a constant gap. When K ≤ N + t, the demand private coded
caching scheme in [28] is a special case of our construction
in Theorem 4; by applying the two-server PIR scheme in [56]
into Theorem 4, the resulting coded caching scheme with
private demands becomes the privacy key scheme in [28].
Since the total download cost of the two-server PIR scheme
in [47] is strictly less than 2, when K ≤ N + t, the proposed
caching scheme in Corollary 1 has a strictly better performance
on the memory-load tradeoff than the scheme in [28], while the
needed subpacketizations of these two schemes are the same.
Note that when K > N + t, the proposed demand-private
scheme is also order-optimal within a constant gap, by using
a similar proof as [28, Appendix D].5

Remark 2 (Comparison to the Virtual Users Scheme):
A comparison on the loads of the virtual users scheme in
Theorem 3 and our construction with the optimal PIR
scheme in Corollary 1 is depicted in Figure 1. Note that the
subpacketization of the virtual users scheme is 2H(M/N)NK

and is at most exponential in NK, while that of Corollary 1
is 2H(M/N)K and is at most exponential in K.

Remark 3: The connection between PIR and demand pri-
vate coded caching in our structure in Theorem 4, emerges
from the fact that the individual queries sent to the servers
solely do not reveal any information about the demanded file
index. Therefore, the query to one server can be used to fill out
the cache memory and the query to the other server to build
up the server transmission, without revealing any information
about the demanded indices by the users. This logic holds
for any PIR scheme, including multi-message PIR schemes.
In particular, if we assume dk, k ∈ [K] denotes the set of
demands by user k, and d = (d1, d2, . . . .dK), then the proof
of Theorem 4 in Appendix A works without any modifications.
In this case by using these schemes, each user can request

5More precisely, by the same proof for the case M ≤ 1, we can show the
load equal to N is order-optimal within a factor of 4; when M > 1, we can
show that the gap between the proposed scheme and the MAN scheme is
within a constant gap. In addition, the memory-sharing between (0, N) and
the MAN scheme is order-optimal within a factor of 4 [57]. So we can prove
that our scheme is also order-optimal within a constant gap.

Fig. 1. Comparison of the loads for parameters N = 20, K = 5, and
different values of M for the virtual users scheme in Theorem 3 and our
construction in Corollary 1.

multiple files in the coded caching scheme while preserving
the privacy of these demands.

We can also extend the proposed construction in Theorem 4
to obtain a more flexible tradeoff between memory, load, and
subpacketization, by using any coded caching scheme under
PDA construction [13] instead of the MAN caching scheme
(recall that the MAN scheme can also be seen as a caching
scheme under PDA construction). This extension is feasible
because the coded caching schemes under PDA construction
are based on uncoded cache placement (which is symmetric
across files) and clique-covering delivery.6 Directly from the
proof of Theorem 4, we can have the following corollary.

Corollary 2: Given any two-server PIR scheme with N
files and download cost pair (RD1 , RD2), and given any
non-private coded caching scheme under PDA construction
with memory-load tradeoff (M1, R1), there exists an (N,K)
coded caching scheme with private demands which can
achieve the memory-load tradeoff point

(M,R) =
(
M1 + (1−M1/N) (µ1RD1 + µ2RD2) ,

(µ1RD2 + µ2RD1)R1

)
, (22)

where µ1, µ2 ∈ [0, 1], µ1 +µ2 = 1. Assume the subpacketiza-
tions of the given PIR scheme and of the non-private coded
caching scheme are F ′ and F ′′, respectively; then the needed
subpacketization of the resulting coded caching scheme with
private demands is F ′F ′′.

By applying coded caching schemes under PDA con-
struction into Corollary 2, we can further reduce the
subpacketization of the scheme in Theorem 4.

6The clique-covering delivery means that in the delivery phase, multiple
multicast messages are broadcast to the users. Each multicast message is a
sum of subfiles and is useful to a subset of users, where each user requests
one subfile and caches all the other subfiles.
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B. New Construction on Coded Caching With Private
Demands and Caches

Next, we consider the construction of coded caching
schemes with both demand privacy and cache privacy. This
is given in the following result, proved in Appendix B.

Theorem 5: Given any two-server N -message PIR scheme
satisfying the UDIQ condition in Definition 1 with download
cost pair (RD1 , RD2) where RDi corresponds to server i and
time sharing parameters µ1, µ2 where µ1, µ2 ∈ [0, 1], µ1 +
µ2 = 1, there exists an (N,K) coded caching scheme with
private demands and caches whose achieved memory-load
tradeoff (M,R) is the lower convex envelope of (0, N),
(N, 0), and the points in (19). Assume the needed subpack-
etization of the given PIR scheme is F ′, then the needed
subpacketization for each point in (19) with t ∈ [0 : K − 1] is(
K
t

)
F ′.

The novelty of the construction in Theorem 4 is the genera-
tion of private keys by a two-server PIR scheme. In the privacy
key scheme [28], in addition to caching subfiles as in the MAN
caching scheme, for each set V ⊆ [K] where k /∈ V and
|V| = t, each user k also caches a random linear combination
of W1,V , . . . ,WN,V (assumed to be p1W1,V + · · ·+pNWN,V )
in its caches as a private key, such that the effective demand
of user k in the delivery phase becomes

p1W1,V + · · ·+ pdk−1Wdk−1,V + (pdk
+ 1)Wdk,V

+ pdk+1Wdk+1,V + · · ·+ pNWN,V .

In this way, the privacy of the user’s demand is preserved.
In our construction, instead of storing a random linear combi-
nation of W1,V , . . . ,WN,V , we apply an arbitrary two-server
PIR scheme where we treat each of W1,V , . . . ,WN,V as a file
in the PIR problem. The answer of the first server in the PIR
scheme serves as the private key stored by user k; according
to the demand of user k, the answer of the second server
in the PIR scheme serves as the effective request of user k.
Then in Theorem 5, if the PIR scheme additionally satisfies the
UDIQ condition, the resulting coded caching scheme satisfies
the cache privacy condition in addition to the demand privacy
condition.

From the same reasoning on deriving Corollary 2, we can
also extend Theorem 5 by using other coded caching schemes
under PDA construction, and obtain the following corollary.

Corollary 3: Given any two-server N -message PIR scheme
satisfying the UDIQ condition in Definition 1 with down-
load cost pair (RD1 , RD2), and given any non-private coded
caching scheme under PDA construction with memory-load
tradeoff (M1, R1), there exists an (N,K) coded caching
scheme with private demands and caches that achieves the
memory-load tradeoff the point in (22). Assume the subpacke-
tizations of the given PIR scheme and of the non-private coded
caching scheme are F ′ and F ′′, respectively; then the needed
subpacketization of the resulting coded caching scheme with
private demands is F ′F ′′.

C. New Construction on Two-Server PIR Schemes

By the proposed construction in Theorem 5 (resp. the one
in Theorem 4), in order to design coded caching schemes with

private demands and caches (resp. with private demands), our
task is to design two-server PIR schemes under (resp. without)
the UDIQ condition with total download cost and subpacketi-
zation level as low as possible. In the following we propose a
new construction structure for two-server PIR schemes under
the UDIQ condition by leveraging coded caching schemes.
Intuitively, this idea stems from the observation that, the
placement phase of coded caching does not reveal any infor-
mation about the demands; and the observation that, given the
transmission of the delivery phase, we can decode different
files from different cache configurations. Hence, we can treat
the cache configuration of a user as the transmission of one
server in the PIR scheme and treat the delivery phase as the
transmission of the other server in the PIR scheme. From the
above explanation, we have the following construction.

Theorem 6 (From Coded Caching to PIR): Assume that
there exists a coded caching scheme for N users and N
files that achieves the memory-load trafeoff (M,R) with
subpacketization F . Then there exists a two-server N -message
PIR scheme satisfying the UDIQ condition in Definition 1
with the download cost pair (RD1 , RD2) = (M,R) and
subpacketization F .

Proof: We consider the coded caching scheme for the
shared link setting with N files and K = N users. In the
cache placement phase, each user i ∈ [N ] fills its cache
with the content denoted by Zi. In the delivery phase, each
user requests a unique file. Thus, the demand vector d =
(d1, . . . , dN ) is a permutation function π(.) from [N ] to [N ].
In the delivery phase, the server sends the message Xd. Due
to the decodability of the coded caching scheme, from Xd and
Zi, we can decode Wdi , for each i ∈ [N ].

Next we use the above coded caching scheme to construct
a two-server PIR scheme under the UDIQ condition. Let us
go back to the PIR setting, where the user requests file Wθ

where θ is distributed uniformly at random on [N ]. The user
generates a random variable r uniformly on [N ] and sends r as
the query to the first server, in order to retrieve Zr. In addition,
to determine the demand vector, we first define dc as dc =
(1, 2, . . . , N). The demand vector d is determined as the cyclic
shift of dc by < r − θ >N positions to the right; i.e. d(i) =
dc(< i− < r− θ >N>N ).7 Now the user sends < r− θ >N
as the query to the second server to retrieve Xd.

Obviously, the query to the first server is independent of
the demand. In addition, since r is generated independently
and uniformly, the second server cannot get any information
about θ. So the privacy constraint in PIR in (13) is satisfied.
On the other hand, since I(r;< r − θ >N |W1, . . . ,WN ) =
I(r; θ) = 0, the UDIQ condition in (1) is also satisfied by this
scheme. □

We then apply the MAN coded scheme with memory-load
tradeoff points (M,R) = (t, N−tt+1 ) and subpacketization level(
N
t

)
, for t ∈ [0 : N ], into the construction in Theorem 6.

Theorem 7: There exists a two-server PIR scheme satis-
fying the UDIQ condition in Definition 1, whose achieved
download cost pair is the convex envelope of the points

7In this paper, we let < · >a represent the modulo operation with integer
quotient a > 0 and we let < · >a∈ {1, . . . , a} (i.e., we let < b >a= a if
a divides b).
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(RD1 , RD2) = (t, N−tt+1 ) with subpacketization level
(
N
t

)
, for

all t ∈ [N ]. By letting t = O
(√

N
)

, the resulting two-server
PIR scheme achieves the download costs RD1 and RD2

of order O
(√

N
)

with subpacketization level O
(√

N

√
N
)

(considering highest order in the exponent).
Remark 4: In this paper we exploit the connection between

PIR and coded caching, where we use one to build the other,
as illustrated in Fig. 2. More precisely, in Theorem 5 (resp.
Theorem 4) we propose a construction structure on demand
and cache private (resp. demand private) caching schemes
using two-server PIR schemes satisfying (resp. not satisfying)
the UDIQ condition. Later in Theorem 6 we propose a
construction structure on two-server PIR schemes that satisfy
the UDIQ condition using coded caching.

Next, we derive a lower bound on the download costs of
a two-server PIR scheme that satisfies the UDIQ condition
in Definition 1 by using a cut-set argument. We assume that
the sets of queries to Server 1 and Server 2 are Q1 and Q2,
respectively. Consider the set of pairs of queries that based on
the design of the PIR scheme can be sent in order to decode file
Wτ , after receiving their corresponding answers; we denote
this set by Uτ as follows,

Uτ
≜ {(Q1, Q2) : Q1 ∈ Q1, Q2 ∈ Q2, (Q1, Q2) decodes Wτ}.

(23)

For a particular choice of q1 ∈ Q1, we define the set of all
queries in the set Q2 that can together decode file Wτ as
follows.

Uτ |Q1=q1 ≜ {Q2 : Q2 ∈ Q2, (q1, Q2) decodes Wτ}. (24)

Similarly, we define

Uτ |Q2=q2 ≜ {Q1 : Q1 ∈ Q1, (Q1, q2) decodes Wτ}. (25)

We propose the following converse bound, whose proof
could be found in Appendix D.

Theorem 8: In a two-server PIR scheme that satisfies the
UDIQ condition in Definition 1, denote the query sets to
servers 1 and 2 respectively by Q1 and Q2, where |Q1| =
N1 and |Q2| = N2; denote the download costs from servers
1 and 2 by RD1 and RD2 , respectively. If we have uniform
query distribution for both servers; Pr(Q1 = q1 ∈ Q1) =
1/N1 and Pr(Q2 = q2 ∈ Q2) = 1/N2,8 then,

1) for all q1 ∈ Q1 and all q2 ∈ Q2, we have

n2 ≜
∣∣Uτ |Q1=q1

∣∣ , n1 ≜
∣∣Uτ |Q2=q2

∣∣ , ∀τ ∈ [N ]; (26)

2) we have
N1

n1
≤ N,

N2

n2
≤ N ; (27)

3) we have

min
α1∈[N1],α2∈[N2],

α1α2=
⌈

N1
n1

⌉
=
⌈

N2
n2

⌉α1RD1 + α2RD2 ≥ N (28)

8The two-server PIR schemes in Theorem 9, satisfy the uniform query
distribution condition stated in Theorem 8. To the best of our knowledge,
existing information-theoretic PIR schemes also satisfy this condition.

4) if we assume RD1 = RD2 = R′D, we have

R′D ≥
N

2
(√⌈

N1
n1

⌉
+ 1
) =

N

2
(√⌈

N2
n2

⌉
+ 1
)

≥ N

2
(√

N + 1
) . (29)

Note that for any two-server PIR scheme, by using time-
sharing we can always obtain another two-server PIR scheme
with the same download costs from the two servers, where the
total download cost is the same as the previous two-server PIR
scheme. Hence, it can be seen from (29) that any two-server
PIR scheme that satisfies the UDIQ condition in Definition 1
should have a total download cost

RD ≥
N(√⌈
N1
n1

⌉
+ 1
) =

N(√⌈
N2
n2

⌉
+ 1
) ≥ N(√

N + 1
)

= O
(√

N
)
. (30)

Comparing the converse bound in (30) and the proposed
two-server PIR scheme in Theorem 7, we can obtain the
following order-optimality result.

Corollary 4: The total download cost of the two-server PIR
scheme in Theorem 7, which is equal to O

(√
N
)

, is order-
optimal under the UDIQ constraint and uniform query.

For some special cases, more precisely for N ∈ {2, 3, 4},
in Appendix C we propose new two-server PIR schemes that
satisfy the UDIQ condition, whose subpacketizations are lower
and whose download costs are lower or equal compared to the
two-server PIR scheme in Theorem 7.

Theorem 9: For the two-server PIR schemes that satisfy the
UDIQ condition in Definition 1, 1) when N = 2, the download
cost pair (RD1 , RD2) = (0.5, 1) (i.e., RD = 3/2) is achievable
and the required subpacketization is F ′ = 1;

2) when N = 3, the download cost pair (RD1 , RD2) =
(1, 1) (i.e., RD = 2) is achievable and the required subpack-
etization is F ′ = 1;

3) when N = 4, the download cost pair (RD1 , RD2) =
(1, 1) (i.e, RD = 2) is achievable and the required subpacke-
tization is F ′ = 1.

Based on Theorems 9 and 8, we readily get the following
result.

Corollary 5: The PIR schemes in Theorem 9 for the cases
N = 2 and N = 4, meet the lower bound (28) in Theorem 8
with equality.

Proof: For the case N = 2, as we mention
in Appendix C, we use the PIR scheme proposed in
[47, Section III-A]. Note that this scheme has uniform distribu-
tion over queries. In this scheme N1 = N2 = 2, n1 = n2 = 1,
and RD1 = 0.5, RD2 = 1. For the minimization in the left
hand side of (28), we have α1α2 = α′ = 2. The minimum
happens when α1 = 2, α2 = 1. Then,

2RD1 +RD2 = 2 = N. (31)

So this case holds (28) with equality.
For the case N = 4 introduced in Appendix C-B, we have

N1 = N2 = 4, n1 = n2 = 1, and RD1 = 1, RD2 = 1. Again,
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Fig. 2. Diagram of the proposed connections between PIR and coded caching.

remember that this scheme has a uniform distribution over
queries. For the minimization on the left hand side of (28),
we have α1α2 = α′ = 4. The minimum happens when α1 =
2, α2 = 2. Then,

2RD1 + 2RD2 = 4 = N. (32)

So this case also holds (28) with equality. □
By applying the proposed two-server PIR schemes in

Theorems 7 and 9 to our construction in Theorem 5, we can
directly obtain the following coded caching schemes with
private demands and caches. Note that for the first three parts,
we use the schemes of Theorem 9, and for the last part, we use
the scheme in Theorem 7.

Corollary 6: For the coded caching problem with pri-
vate demands and caches, we have the following achievable
schemes:

1) when N = 2, the following memory-load points are
achievable,

(M,R) =
(

2t
K

+(1− t

K
)(µ1/2+µ2), (µ1 + µ2/2)

K − t

t+ 1

)
,

∀t ∈ [0 : K − 1], (33)

for µ1 + µ2 = 1 and µ1, µ2 > 0, while the required
subpacketization is

(
K
t

)
;

2) when N = 3, the following memory-load points are
achievable,

(M,R) =
(

3t
K

+ (1− t

K
),
K − t

t+ 1

)
,∀t ∈ [0 : K − 1],

(34)

while the required subpacketization is
(
K
t

)
;

3) when N = 4, the following memory-load points are
achievable,

(M,R) =
(

4t
K

+ (1− t

K
),
K − t

t+ 1

)
,∀t ∈ [0 : K − 1],

(35)

while the required subpacketization is
(
K
t

)
;

4) when general N , the following memory-load points are
achievable,

(M,R) =
(
t

K
N + (1− t

K
)O(

√
N), O(

√
N)

K − t

t+ 1
)
)
,

∀t ∈ [0 : K − 1], (36)

while the required subpacketization is O
((

K
t

)√
N

√
N
)

.

TABLE I
TWO-SERVER PIR SCHEME IN [47] FOR N = K = 2

For the general N , the proposed caching scheme with
private demands and caches in (36) has a subpacketization

level of O
((

K
t

)√
N

√
N
)

. Note that the subpacketization of

the virtual users scheme in Theorem 3 is
(
NK
t

)
. Based on

the asymptotic approximation of the binomial coefficients,
the subpacketization of the virtual users scheme would be
F1 =

(
NK
MK

)
≃ 2NKH( M

N ), where H(.) is the binary entropy
function. The subpacketization of our general scheme is of the
order of F2 ≃ 2KH( M

N )2
1
2

√
N log2(N). Then

F2

F1
=

2KH( M
N )+ 1

2

√
N log2(N)

2NKH( M
N )

. (37)

If we assume M
N is not vanishing with N , F2

F1
goes to 0 when

N and K increase.
Remark 5: Based on Remark 1, the proposed demand and

cache private coded caching schemes in Corollary 6 for N ∈
{2, 3, 4}, are optimal within a constant multiplicative factor.

At the end of this subsection, we illustrate the main idea of
the construction in Theorem 4 with an example.

Example 1 (K = N = 2,M = 5
4 ): In this example, we use

the PIR scheme in [47, Section III-A], where the total down-
load cost is RD = 3/2 and the subpacketization level is
F ′ = 1. Their scheme is presented in Table I.

Assume the two files are A and B. Each file is split into two
equal-length and non-overlapping subfiles as A = (A1, A2)
and B = (B1, B2).

Placement: For the first part of the cache, user 1 caches
Z1 = (A1, B1) and user 2 caches Z2 = (A2, B2). As can
be seen in the PIR scheme, Q1 = Q2 = 2. User i chooses
Ti ∈ {0, 1} each with probability 1/2. Suppose T1 = 0 and
T2 = 1. Based on our proposed approach in Theorem 5, the
second user additionally caches γ1(Q1,2 = T2 = 1, A1, B1) =
A1 + B1, while the first user caches nothing additional since
γ1(Q1,1 = T1 = 0, A2, B2) = 0. So in total, the caches by
the two users are

Z1 = (A1, B1), (38)
Z2 = (A2, B2, A1 +B1). (39)
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TABLE II
DELIVERY PHASE OF DEMAND AND CACHE PRIVATE CODED

CACHING SCHEME FOR K = N = 2 AND M = 5
4

Delivery: Assume that user 1 demands file A and
user 2 demands file B. Since γ2(Q2,1 = T1 = 0, A2, B2) =
A2 and γ2(Q2,2 = T2 = 1, A1, B1) = A1, the transmission of
the server is A2 +A1. User 1 cancels out A1 and recovers A2.
User 2 recovers B1 by using the transmission A2 + A1 and
the cached content A2, A1 + B1. So both users receive their
desired subfiles. For other cases of (T1, T2), the transmission
of the server follows Table II. As can be seen, when A2+A1 is
sent by the server, there can be four different cases happening.
• (T1, T2) = (0, 0) and demand vector d = (A,A);
• (T1, T2) = (0, 1) and demand vector d = (A,B);
• (T1, T2) = (1, 0) and demand vector d = (B,A);
• (T1, T2) = (1, 1) and demand vector d = (B,B).

For user 1 who is aware of the values T1 = 0, d1 = A, there
can exist two possible options of
• (T1, T2) = (0, 0) and demand vector d = (A,A),
• (T1, T2) = (0, 1) and demand vector d = (A,B),

which reveals no information about the value of neither d2 nor
T2 since

Pr(d2 = A|T1 = 0, d1 = A,Xd = A2 +A1)

=
Pr(d2 = A, T1 = 0, d1 = A,Xd = A2 +A1)

Pr(T1 = 0, d1 = A,Xd = A2 +A1)

=
Pr(d2 = A, T1 = 0, d1 = A)

Pr(T1 = 0, d1 = A)

× Pr(Xd = A2 +A1|d2 = A, T1 = 0, d1 = A)
Pr(Xd = A2 +A1|T1 = 0, d1 = A)

=
(1/2)3(1/2)
(1/2)2(1/2)

=
1
2
, (40)

and

Pr(T2 = 0|T1 = 0, d1 = A,Xd = A2 +A1)

=
Pr(T2 = 0, T1 = 0, d1 = A,Xd = A2 +A1)

Pr(T1 = 0, d1 = A,Xd = A2 +A1)

=
Pr(T2 = 0, T1 = 0, d1 = A)

Pr(T1 = 0, d1 = A)

× Pr(Xd = A2 +A1|T2 = 0, T1 = 0, d1 = A)
Pr(Xd = A2 +A1|T1 = 0, d1 = A)

=
(1/2)3(1/2)
(1/2)2(1/2)

=
1
2
, (41)

which equals the prior probability for d2 and T2. Thus, both
the demand and the cache of user 2 is kept private. Similarly
this holds for user 1.

Note that both the load 1/2 and the cache size 5/4 are
expected values over the random choice of the queries to
the first server in the placement phase and the corresponding
queries to the second server in the delivery phase. Note that

user 2 in this example has a cache size of 3/2, but if it had
chosen T2 = 0 like the first user, it would have had a cache
of size 1. So on average we have a cache size of 5/4.

As a comparison, the privacy key scheme in [28] for the
same system parameters of K = N = 2,M = 5/4 has a
load of R = 5/4, while our scheme achieves the load R =
1/2 while additionally preserving cache privacy, which the
privacy key scheme does not.

IV. CODED CACHING WITH PRIVATE DEMANDS AND
IMPERFECTLY PRIVATE CACHES

Since constructing two-server PIR schemes under the UDIQ
property is difficult, and in any case the download cost RD
increases at least as O(

√
N) (see Theorem 8), to be able to

propose better PIR schemes in terms of download cost, which
leads to better memory-load tradeoffs for the corresponding
caching scheme (see Theorem 4), in this section we relax the
perfect cache privacy and allow some leakage on the cache
information, while preserving perfect demand privacy.

We first review the leakage metric in the leaky PIR litera-
ture, and then introduce our leakage metric. Next, we apply the
two-server PIR scheme in [43] to our construction structure
in Theorem 4, and compute the cache leakage of the resulting
demand private coded caching scheme. Finally, we compare
the resulting schemes with the existing demand private coded
caching schemes, in terms of load and cache leakage.

A. Cache Information Leakage

Privacy leakage has already been introduced in several
works on PIR following various definitions (see [58], [59],
[60], [61], [62], [63], [64]). In this section we introduce a
privacy leakage definition on the cache information that is
relevant to our setting. The decoding and demand privacy
constraints remain the same as in (5) and (6), while the
cache privacy constraint in (7) no longer exists. As the cache
privacy constraint in (7) suggests, the perfect scenario for
the cache memory is that the ambiguity of its information
does not change conditioned on the knowledge of the server
transmission. In a non-perfect scenario, we want to keep
the distribution on cache information before and after server
transmission close to each other as much as possible.

In information-theoretic secrecy [65], the information leak-
age rate associated with the (2nR, n) secrecy code is defined
as

1
n
I(M,Zn), (42)

where M represents the sender’s message and Zn represents
the message received by the eavesdropper for the block length
n. In our definition for cache privacy, the server’s transmission
Xd acts as the message received by the eavesdropper, and user
k’s cache metadata Mk acts as the message we want to keep
private. We replace the block length n with the entropy of
the cache metadata as the block length for the message. This
motivates our consideration of the following cache leakage
metric for user k:

ϵk =
I(Mk;Xd)
H(Mk)

= 1− H(Mk|Xd)
H(Mk)

, ∀k ∈ [K] (43)
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where H(·) is the entropy function. In the fully private case
when there is no leakage, this metric is 0. As the uncertainty
amount on cache information decreases after server transmis-
sion, the leakage increases and goes to 1 when the cache
information is fully leaked.

B. Cache-Leakages of [26] and [28]

We then consider the coded caching schemes with private
demands in [26] and [28], and compute their cache leakage.
In the case of single file requests in [28], the randomness on
the cache for user k is Mk = pk := (pk,1, . . . , pk,N ), chosen
uniformly at random from Fkq , such that the summation of the
elements of pk equals q − 1;

∑
n∈[N ] pk,n = q − 1. Because

of this constraint, the total number of choices for pk is qN−1.
So we have

H(Mk) = (N − 1) log(q). (44)

If we denote the demand vector for user k by dk which for
single file demands has a 1 at the position of requested file
index and 0 elsewhere, the server sends qk = pk + dk for all
k ∈ [K] as metadata alongside the main message. Having qk,
since there are only N options for dk (uniformly chosen), our
options for pk would also be limited to N . Thus

H(Mk|Xd) = log(N). (45)

According to (43) we have

ϵk = 1− 1
log(q)

log(N)
(N − 1)

, (46)

which goes to 1 as N increases. Our goal is to introduce a
coded caching scheme with non-zero leakage on cache using
a two-server PIR scheme that does not satisfy the UDIQ con-
dition in Definition 1, instead of the perfectly private scheme
of Theorem 7, with the benefit of achieving better download
costs and subpacketization for the PIR scheme, which will
directly affect the memory-load tradeoff and subpacketization
of the resulting coded caching scheme based on our structure
in Theorem 5.

For the virtual users scheme of [26], the cache of user k
is selected among N choices uniformly at random. After the
transmission, the probabilty distribution over cache informa-
tion does not change as proved in Theorem 3. So in this case,
the leakage would be ϵk = 0 for all users, which is perfect, but
as mentioned before, this scheme has a huge subpacketization
level.

C. Review on [42] and [43]

We then review the protocol proposed in [43] with the
lowest communication cost (equal to No(1)) among all exist-
ing two-server PIR protocols, which will be applied in our
proposed construction structure in Theorem 4. This scheme
is a combination of an existing two-server PIR scheme which
uses polynomial interpolation [42] and Matching Vector Codes
(MV codes) [44], [45]. We will briefly go through [42] and
then introduce matching vector families and then describe the
protocol in [43].

The scheme in [42] is based on building polynomials of
degree 3. First, choose k such that N ≤

(
k
3

)
. Pick a finite

field Fq where q > 3. Define an encoding ϕ that maps indices
in [N ] to binary k-dimensional space.

ϕ : [N ] → {0, 1}k ⊂ Fkq , (47)

such that the resulting k-dimensional codewords are of Ham-
ming weight 3. If we denote the k-dimensional space by
x = (x1, . . . , xk), the polynomial F (x) ∈ Fq[x1, . . . , xk]
where Fq[x1, . . . , xk] denotes the field of polynomials with
the variables x1, . . . , xk over Fq , is defined as follows,

F (x) =
N∑
i=1

Wi

 ∏
j:ϕ(i)j=1

xj

 , (48)

where the files Wi are considered to be one bit. This polyno-
mial satisfies F (ϕ(i)) = Wi,∀i ∈ [N ].

Suppose the user demands the file Wτ . The scheme works
as follows:
• the user picks a z ∈ Fkq uniformly at random;
• the user sends ϕ(τ) + tiz to server i where t1 ̸= t2 ∈

Fq\{0};
• server i sends to the user the values F (ϕ(τ) + tiz) and
∇F (ϕ(τ) + tiz).

With the answers received from both servers, the user can
retrieve F (ϕ(τ)) = Wτ ; the reader can refer to [42] for
the detailed proof of decodability. The privacy of demand is
protected since ϕ(τ) + tiz is uniformly distributed in Fkq for
any value of τ .

We then review the two-server PIR scheme in [43], starting
with the following definition.

Definition 2 (Matching Vector Family): Let S ⊂ Zm\{0}
and let F = (U ,V) where U = (u1, . . . ,uN ), V =
(v1, . . . ,vN ), and ui,vi ∈ Zwm,∀i ∈ [N ]. Then F is called
an S-matching vector family of size N and dimension w if
∀i, j,

⟨ui,vj⟩

{
= 0 if i = j

∈ S if i ̸= j,
(49)

where ⟨ui,vj⟩ indicates the inner product between the two
vectors. It has been shown that based on [66, Theorem 1.2],
for S = {1, 3, 4}, we can build matching vector codes with
parameters N and w (and when m is composite) such that

w = exp
(
O
(√

logN log logN
))

. (50)

For a commutative ring R, the ring of polynomials in
variables x1, . . . , xw with coefficients in R is denoted by
R[x1, . . . , xw]. In [43], the authors introduce a definition to
extend the notion of partial derivatives to polynomials in
R[x1, . . . , xw] as follows.

Definition 3: Let R be a commutative ring and let
F (x) =

∑
czxz ∈ R[x1, . . . , xw]. We define F (1)(x) ∈

(Rw)[x1, . . . , xw] to be

F (1)(x) :=
∑

(cz · z)xz, (51)

where xz = xz11 x
z2
2 . . . xzw

w . Now we are ready to introduce
the scheme in [43].
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For the rest of this section, R = R6,6 = Z6[γ]/(γ6 − 1)
which is the ring of univariate polynomials Z6[γ] modulo the
identity γ6 = 1 as defined in [43]. It should be noted that
the set S which contains only three values is the key to this
scheme since, roughly speaking, the powers of γ appearing
in the polynomial are from this set and 0 and therefore, there
will be four unknown coefficients and we would only need two
evaluations and two derivatives to recover the intended value.
We will not go into the details of the recovery and refer the
reader to the paper.

Assume the user’s demand is Wτ . The servers save the data
in the polynomial F (x) ∈ R[x1, . . . , xw] where

F (x) = F (x1, . . . , xw) =
N∑
i=1

Wixui , (52)

where U = (u1, . . . ,uN ) is given by the matching vector
family F = (U ,V) for m = 6 and w as in (50). Then,
• the user picks a z ∈ Zw6 uniformly at random;
• the user sends z + tivτ to server i;
• server i sends back the values F (γz+tivτ ) and
F (1)(γz+tivτ ),

where the vector (γz1+tivτ,1 , γz2+tivτ,2 , . . . , γzw+tivτ,w) is
denoted by γz+tivτ . Since the values z + tivτ are distributed
uniformly on Zw6 , the privacy of demand in the PIR scheme
is preserved. Also in the scheme t1 = 0 and t2 = 1. Since
the user sends elements in Zw6 to both servers and receives an
element in R and another one in Rw from each server, the

communication cost would be O(w) = N
O
(√

log log N
log N

)
.

D. Coded Caching Schemes With Private Demands and
Imperfectly Private Caches Based on Theorem 4

We now apply the two-server PIR scheme in [43] to our
structure in Theorem 4. Assume we have a system of K users
and N files W1, . . . ,WN . The server is connected to the users
with a shared link. For any t = KM/N ∈ [K], each file is
split into

(
K
t

)
non-overlapping subfiles of the same size,

Wn = (Wn,τ : τ ⊂ [K], |τ | = t). (53)

We assume that each subfile has one bit; but we can easily
extend the scheme for the other case.

Placement phase: In the first part of the placement phase,
for each k ∈ [K], any subfile Wn,τ with k ∈ τ is stored in
the cache. Therefore,

{Wn,τ : n ∈ [N ], τ ⊂ [K], |τ | = t, k ∈ τ} ⊂ Zk. (54)

In the second part of the placement phase, for each set
τ ⊆ [K] where |τ | = t and k /∈ τ , user k caches the
result of an encoding on all subfiles {Wn,τ , n ∈ [N ]}. The
matching vector family F = (U ,V) is constructed where
U = (u1, . . . ,uN ) and V = (v1, . . . ,vN ) such that ui,vi ∈
Zw6 ,∀i ∈ [N ] as explained previously.

User k picks zk ∈ Zw6 uniformly at random. The user sends
zk to the server. For each τ such that k /∈ τ , the server sends
F (γzk ,W[N ],τ ) and F (1)(γzk ,W[N ],τ ) to the user where

F (x,W[N ],τ ) = F (x1, . . . , xk,W1,τ , . . . ,WN,τ )

=
N∑
i=1

Wi,τxui . (55)

This completes the placement phase.
Delivery phase: Assume that user k demands the file Wτk

.
In the delivery phase, user k sends zk + vτk

to the server.
For each S ⊂ [K], where |S| = t + 1, the server sends the
multicast messages

YS =(∑
s∈S

F
(
γzs+vτs ,W[N ],S\s

)
,
∑
s∈S

F (1)
(
γzs+vτs ,W[N ],S\s

))
.

(56)

Along with the messages YS , in order for the users to be able
to decode their needed messages, the server should send the
values {zk + vτk

,∀k ∈ [K]} as metadata. So the transmitted
message by the server Xd would be

Xd = {YS ,S ⊆ [K], |S| = t+ 1}
⋃
{zk + vτk

,∀k ∈ [K]}.
(57)

The decodability proof follows from the proof of Theorem 5.
Performance: An observation on the scheme reveals that

the cache metadata equals Mk = zk. Now we compute the
amount of cache information leakage based on (43). Since Mk

is uniformly distributed in Zw6 ,

H(Mk) = w log 6. (58)

In addition, we have

H(Mk|Xd) = H
(
zk|{zk′ + vτk′ ,∀k

′ ∈ [K]}
)

(59a)
= H (zk|zk + vτk

) (59b)
= logN, (59c)

where (59a) comes from the fact that the values YS depend
on {zk′ + vτk′ ,∀k

′ ∈ [K]} and the library and (59b) comes
from independence of zk values for all k ∈ [K]. Therefore

ϵk = 1− logN
w log 6

= 1−O

(
logN

N

√
log log N

log N

)
. (60)

Since the total download cost of this scheme is O(w) =

N
O
(√

log log N
log N

)
, based on our structure in Theorem 5, we can

achieve the lower convex envelope of the memory-load pair
points

(M,R) =(
Nt

K
+
(

1− t

K

)
N
O
(√

log log N
log N

)
, N

O
(√

log log N
log N

)
K − t

t+ 1

)
.

(61)

To compare, the memory-load tradeoff and cache
leakage of the privacy key scheme of [28] follows(

1 + t(N−1)
K ,

( K
t+1)−(K−min{N−1,K}

t+1 )
(K

t )

)
, ∀t ∈ [0 : K]

and ϵk = 1 − 1
log(q)

log(N)
(N−1) respectively, while for

our scheme for general N in Corollary 6, we have(
t
KN + (1− t

K )O(
√
N), O(

√
N)K−tt+1

)
,∀t ∈ [0 : K − 1]
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as memory-load pair and ϵk = 0. For the
scheme in this section these parameters are(
Nt
K +

(
1− t

K

)
N
O
(√

log log N
log N

)
, N

O
(√

log log N
log N

)
K−t
t+1

)
,∀t ∈

[0 : K − 1] and ϵk = 1 − O

(
logN

N

√
log log N

log N

)
. The scheme in

this section performs better in terms of cache leakage than
the privacy key scheme since it converges much more slowly
to 1, but has worse load. On the other hand, compared to our
perfectly private scheme, it has a better load but of course
worse leakage on cache.

At the end of this section, we provide an example to
illustrate the proposed coded caching scheme with private
demands and imperfectly private caches by leveraging the
two-server PIR scheme in [43].

Example 2 (N = K = 2 and t = 1): This is an example
just to demonstrate the placement and delivery phases of the
proposed scheme. Therefore, we will not care about the S and
w parameters of the matching vector family. In this scheme,
S = {1} and w = 2. We consider the coded caching problem
with N = K = 2 and t = KM/N = 1. Each file is
split into

(
K
t

)
= 2 non-overlapping equally-sized subfiles, i.e.

A = (A1, A2), B = (B1, B2). In the first part of the placement
phase, each user’s cache will be as follows,

Z1 = (A1, B1), (62)
Z2 = (A2, B2). (63)

For the second part of the placement, we first introduce a
matching vector family based on Definition 2. We define the
2-tuples U and V of the matching vector family as follows,

U = ((0, 1), (1, 0)) , (64)
V = ((1, 0), (0, 1)) . (65)

The polynomial F (x) in (52) for library files W1 and W2 is
as follows,

F (x) = W1x2 +W2x1 (66)

In addition, the function F (1)(x) in (51) would be,

F (1)(x) = (W2x1,W1x2) (67)

For the second part of the placement phase, user k chooses
zk ∈ Z2

6 uniformly at random. Suppose the choices are z1 =
(2, 3), z2 = (5, 1). Users send these values to the server. The
server sends back the pair

(
F (γz1), F (1)(γz1)

)
to user 1 when

W1 = A2,W2 = B2 and
(
F (γz2), F (1)(γz2)

)
to user 2 when

W1 = A1,W2 = B1. So in total the caches are as follows,

Z1 = (A1, B1, A2γ
3 +B2γ

2, (B2γ
2, A2γ

3)), (68)

Z2 = (A2, B2, A1γ +B1γ
5, (B1γ

5, A1γ)). (69)

In the delivery phase, suppose the demand for users 1
and 2 are A,B, respectively. When the server receives
the demands, it should compute for user 1 the values(
F (γz1+v1), F (1)(γz1+v1)

)
when W1 = A2,W2 = B2 and

for user 2 the values
(
F (γz2+v2), F (1)(γz2+v2)

)
when W1 =

A1,W2 = B1. Then adds each part together and sends the
multicast messages

(A2γ
3 +B2γ

3) + (A1γ
2 +B1γ

5), (70)

(
B2γ

3 +B1γ
5, A2γ

3 +A1γ
2
)
, (71)

including the metadata to the users on the shared channel.
Using this transmission and its cache content, user 1 recovers
A2γ

3 +B2γ
3 and (B2γ

3, A2γ
3) and user 2 recovers A1γ

2 +
B1γ

5 and (B1γ
5, A1γ

2) and using the decoding procedure
for the PIR scheme, each user can decode its demanded file.
The privacy of demands is fully satisfied; this is because,
from the metadata z2 + v2 = (5, 2), user 1 would not know
any information about the value v2 since z2 is uniformly
distributed on Z2

6. On the other hand, the cache is not perfectly
private. The cache leakage in this example equals ϵk =
1− logN

w log 6 = 1− log 2
2 log 6 . □

V. CONCLUSION

In this paper, we formulated the coded caching problem
with private demands and caches, where we added the privacy
constraint on users’ caches to the existing coded caching
problem with private demands. We first showed that the
existing demand-private coded caching scheme, which is based
on the introduction of virtual users, can also preserve the
privacy of caches while suffering from a super high subpack-
etization. The main contribution of this paper was to propose
a new structure for constructing demand- and cache-private
coded caching schemes by using two-server PIR schemes
with uniform demand and independent queries. Using this
structure and the newly designed PIR schemes, we were able
to propose demand and cache private coded caching schemes
with significant reduction on the subpacketization compared
to the virtual users scheme. As a by-product, our structure
is also able to design order-optimal demand private coded
caching schemes, which demonstrates its flexibility. In design-
ing the two-server PIR schemes that satisfy the aforementioned
constraint, we have introduced a novel structure to leverage
from coded caching. These two structures close the loop in
the connection between coded caching and PIR in this paper.
Furthermore, we propose a converse bound on the download
costs of this particular class of PIR schemes which reveals the
order-optimality of the designed achievable scheme. We then
extended the proposed structure to the coded caching problem
with private demands and imperfectly private caches. Future
and ongoing works include providing a lower bound on the
memory-load tradeoff of demand and cache private caching
schemes, designing two-server PIR schemes for general N
with less subvpacketization compared to the proposed one,
studying the tradeoff between the amount of leakage and
system parameters of the PIR scheme in the imperfect private
caches scenario.

APPENDIX A
PROOF OF THEOREM 4: NEW CONSTRUCTION ON CODED

CACHING SCHEMES WITH DEMAND PRIVACY

We assume that the set of queries sent to servers 1 and 2
in the PIR scheme are chosen from the sets Q1 and Q2

respectively. Note that if a PIR scheme with download costs
RD1 and RD2 corresponding to servers 1 and 2 is achievable,
then by a time-sharing argument, the download cost pair
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(R′D1
, R′D2

) = (µ1RD1 + µ2RD2 , µ1RD2 + µ2RD1) where
µ1, µ2 ∈ [0, 1], µ1 + µ2 + 1 is also achievable.

Placement: The placement phase is divided into two steps.
The first step follows exactly the same procedure as the MAN
placement phase. For each t ∈ [0 : K − 1], each file is split
into

(
K
t

)
non-overlapping subfiles of the same size,

Wn = (Wn,τ : τ ⊂ [K], |τ | = t), (72)

where each subfile contains F/
(
K
t

)
bits. In addition, for each

n ∈ [N ] and each τ ⊂ [K] where |τ | = t, we divide each
Wn,τ into F ′ non-overlapping subfiles Wn,τ,ω of the same
size,

Wn,τ = {Wn,τ,ω, ω ∈ [F ′]}, (73)

where we recall that F ′ represents the subpacketization of the
two-server PIR scheme.

Each user k ∈ [K] first caches Wn,τ where k ∈ τ ; in other
words,

{Wn,τ : n ∈ [N ], τ ⊂ [K], |τ | = t, k ∈ τ} ⊂ Zk. (74)

In the second step of the placement phase, for each index τ
where k /∈ τ , user k caches an encoding function on all subfiles
{Wn,τ , n ∈ [N ]}. The encoding is chosen as follows. First,
user k chooses a query Q1,k from Q1 uniformly at random.
Then the encoding function would be the answer of the first
server in the PIR scheme when the query is Q1,k and the
files are W1,τ , . . . ,WN,τ , i.e. γ1(Q1,k,W1,τ , . . . ,WN,τ ). The
second part of file splitting in (73) is necessary to compute
this encoding function. Thus, the second part of the cache for
user k would be

{γ1(Q1,k,W1,τ , . . . ,WN,τ ), τ ⊂ [K], |τ | = t, k /∈ τ} ⊂ Zk.

(75)

Therefore in total, for every k ∈ [K], Zk would be

Zk ={Wn,τ : n ∈ [N ], τ ⊂ [K], |τ | = t, k ∈ τ}⋃
{γ1(Q1,k,W1,τ , . . . ,WN,τ ), τ ⊂ [K], |τ | = t, k /∈ τ}.

(76)

totally containing
N(K−1

t−1 )
(K

t )
F + R′D1

(K−1
t )

(K
t )

F =(
Nt
K +R′D1

K−t
K

)
F = MF , satisfying the memory size

constraint.
Delivery: Recall that for a (N,K) MAN coded caching

scheme, for each S ⊂ [K] such that |S| = t + 1, the server
transmits

⊕s∈SWds,S\{s}, (77)

where ⊕ stands for bitwise XOR. Instead, in the delivery phase
of our scheme, for each subset S ⊆ [K] where |S| = t + 1,
the server transmits a multicast message as

YS = Σs∈Sγ2

(
Q2,s,W1,S\{s}, . . . ,WN,S\{s}

)
. (78)

where γ2(.) is the answer encoding function of server 2 of the
PIR scheme and Q2,s is chosen is such a way that the query
pair (Q1,s, Q2,s) where Q1,s was chosen in the placement
phase, corresponds to the dths message in the PIR problem.

This means that for every τ such that k /∈ τ , the answer of
server 1, γ1

(
Q1,k,W1,τ , . . . ,WN,τ

)
, saved in the cache and

the answer of server 2, γ2

(
Q2,k,W1,τ , . . . ,WN,τ

)
, extracted

from the message YS with S = τ ∪{k}, lead user k to decode
subfile Wdk,τ . Following the same procedure for all needed
subfiles, user k decodes file Wdk

. This proves the satisfaction
of the decodability condition in (5). It can be seen that in

the delivery phase the server in total transmits R′D2

( K
t+1)
(K

t )
F =

R′D2

K−t
t+1 F , coinciding with (19).

We should note that along with the multicast messages,
the server should send also the values {Q2,k, k ∈ [K]} as
metadata so that everyone can decode their required mes-
sages. We assume that the size of this metadata is negligible
compared to the size of the multicast messages. Thus, the
transmitted message Xd will be as follows,

Xd = {YS ,S ⊆ [K], |S| = t+ 1}
⋃
{Q2,k, k ∈ [K]} (79)

Now we can check the demand privacy condition in (6).

I(d;Xd|dk, Zk)
≤ I(d;Xd|dk, Zk,W[N ]) (80a)
≤ I(d; {Q2,k, k ∈ [K]}|dk, Zk,W[N ]) (80b)

=
∑

k′∈[K]\{k}

I(dk′ ;Q2,k′ |W[N ]) = 0 (80c)

where (80a) follows from (4), (80b) comes from the fact that
the set {YS ,S ⊆ [K], |S| = t+1} is a function of {Q2,k, k ∈
[K]} and W[N ], (80c) follows from the fact that the pairs
(di, Q2,i) where i ∈ [K] are independent of each other given
W[N ] by our construction and the privacy constraint in (13).

APPENDIX B
PROOF OF THEOREM 5

Based on the proof of Theorem 4, we proved that our
construction satisfies the decodability and demand privacy
conditions in (5) and (6), respectively for any two-server PIR
scheme. In this section, for PIR schemes that satisfy the UDIQ
condition in Definition 1 additionally, we only need to prove
that the privacy condition in (7) holds. For the cache privacy
constraint in (7), for each k ∈ [K] we have

I
(
(M1, . . . ,MK);Xd|dk, Zk

)
≤ I
(
(M1, . . . ,MK);Xd|dk, Zk,W[N ]

)
(81a)

≤ I
(
Q1,1, . . . , Q1,K ;Q2,1, . . . , Q2,K |dk, Zk,W[N ]

)
(81b)

=
∑

k′∈[K]\{k}

I
(
Q1,k′ ;Q2,k′ |W[N ]

)
= 0 (81c)

where again (81a) follows from (4), (81b) follows from the fact
that Mk = Q1,k, k ∈ [K] and that {YS ,S ⊆ [K], |S| = t+1}
is a function of {Q2,k, k ∈ [K]} and W[N ], and (81c) follows
from the fact that Mk = Q1,k is contained in Zk and that the
pairs (Q1,k′ , Q2,k′), k′ ∈ [K] are independent of each other
and that the query independence condition in (15) holds for
the PIR scheme. This completes the proof.
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TABLE III
PROPOSED PIR SCHEME FOR N = 3

APPENDIX C
TWO-SERVER PIR SCHEMES FOR THEOREM 9

For the case N = 2, we use the proposed PIR scheme
in [47, Section III-A]. Thus part 1 of the theorem is already
proved. We proceed for other values.

A. N = 3

Assume the library has three files W1,W2,W3. We define
a random variable T which takes value uniformly at random
from the set {0, 1, 2}. The proposed PIR scheme for different
parameter regimes T and demand index d is depicted in
Table III.

As one can see in Table III, there are 3 different answers
for queries sent to Server 1 including W1 + W2, W1 + W3,
and W2 +W3. We assign query values Q1 = 1, Q1 = 2, and
Q1 = 3 to these answers, respectively. Similarly, we assign
query values Q2 = 1, Q2 = 2, and Q2 = 3 for the answers
of the second server W1, W2, and W3 respectively. Note that
the queries in the proposed scheme are independent of file
realization, so we can remove the terms in the condition from
the constraints in (13) and (15).

The query Q1 ∈ {1, 2, 3} sent to Server 1 is clearly
independent of the demand. For the query Q2 ∈ {1, 2, 3} sent
to Server 2 we have

Pr(Q2 = 1) = Pr(T = 0, d = 2) + Pr(T = 1, d = 3)
+ Pr(T = 2, d = 1)
= 1/3.

In addition, we have

Pr(Q2 = 1|d = 1) = Pr(T = 2|d = 1) = 1/3.

Hence, we will have Pr(Q2 = 1) = Pr(Q2 = 1|d = 1).
Following similarly, we can conclude that P (Q2) = P (Q2|d)
for all values Q2 ∈ {1, 2, 3} and d ∈ {1, 2, 3}, proving (13) to
hold. Next, we should check the query independence condition
in (15). We have

Pr(Q2 = 1|Q1 = 1) = Pr(Q2 = 1|T = 0)
= 1/3
= Pr(Q2 = 1).

Again, one can similarly show that P (Q2|Q1) = P (Q2) holds
for all Q1 ∈ {1, 2, 3} and Q2 ∈ {1, 2, 3} proving (15) to
hold. The decodability condition in (12) can also be easily
checked to hold. The download cost from each server is 1,
so the achieved total download cost of this PIR scheme is
RD = 2, and the subpacketization is F ′ = 1.

For the example of a coded caching with private demands
and caches with parameters N = 3,K = 2,M = 2, using this

PIR scheme in Theorem 5 with N = 3 and t = 1, we get
the achieved load of 1

2 and subpacketization level of 2. In this
example, the achieved load by the virtual users scheme in [26]
is 2

5 and the needed subpacketization level is 15.

B. N = 4

Assume the library has four files W1,W2,W3,W4.
We define a random variable T which takes a value uniformly
at random from the set {0, 1, 2, 3}. The proposed PIR scheme
for different parameter regimes T and demand index d is
depicted in Table IV.

As one can see in Table IV, there are 4 different answers
for queries sent to Server 1 including W1 +W2 +W3 +W4,
−W1−W2+W3+W4,−W1+W2−W3+W4, and−W1+W2+
W3 −W4. We assign query values Q1 = 1, Q1 = 2, Q1 = 3,
and Q1 = 4 to these answers respectively. Similarly we assign
query values Q2 = 1, Q2 = 2, Q2 = 3, and Q2 = 4 for
the answers of the second server −W1 + W2 + W3 + W4,
W1−W2 +W3 +W4, W1 +W2−W3 +W4, and W1 +W2 +
W3−W4 respectively. The queries in the proposed scheme are
independent of file realization, so we can remove the terms in
the condition from the constraints in (13) and (15).

The query Q1 ∈ {1, 2, 3, 4} sent to Server 1 is clearly
independent of the demand. For the query Q2 ∈ {1, 2, 3, 4}
sent to Server 2 we have

Pr(Q2 = 1) = Pr(T = 0, d = 1) + Pr(T = 1, d = 2)
+ Pr(T = 2, d = 3) + Pr(T = 3, d = 4)
= 1/4.

In addition, we have

Pr(Q2 = 1|d = 1) = Pr(T = 0|d = 1) = 1/4.

Hence, we will have Pr(Q2 = 1) = Pr(Q2 = 1|d = 1).
Following similarly, we can conclude that P (Q2) = P (Q2|d)
for all values Q2 ∈ {1, 2, 3, 4} and d ∈ {1, 2, 3, 4}, prov-
ing (13) to hold. Next we should check the query independence
condition in (15). We have

Pr(Q2 = 1|Q1 = 1) = Pr(Q2 = 1|T = 0)
= 1/4
= Pr(Q2 = 1).

Again, one can similarly show that P (Q2|Q1) = P (Q2) holds
for all Q1 ∈ {1, 2, 3, 4} and Q2 ∈ {1, 2, 3, 4} proving (15) to
hold. The decodability condition in (12) can also be easily
checked to hold. The download cost from each server is 1,
so the achieved total download cost of this PIR scheme is
RD = 2, and the subpacketization is F ′ = 1.

For the example of a coded caching with private demands
and caches with parameters N = 4,K = 2,M = 5

2 , using
this PIR scheme in Theorem 5 with N = 4 and t = 1, we get
the achieved load of 1

2 and subpacketization level of 2. In this
example, the achieved load by the virtual users scheme in [26]
is 1

2 and the needed subpacketization level is 56.
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TABLE IV
PROPOSED PIR SCHEME FOR N = 4

APPENDIX D
PROOF OF THEOREM 8: LOWER BOUND ON TWO-SERVER

PIR SCHEMES SATISFYING THE UDIQ CONDITION

A. Proof of Theorem 8-1

Without loss of generality, we assume that Q1 =
{1, 2, . . . , N1} and Q2 = {1, 2, . . . , N2}. Based on the fact
that the queries should not reveal any information about the
demand as in (13), we have

Pr(d = τ |Q1 = 1) = . . . = Pr(d = τ |Q1 = N1), ∀τ ∈ [N ],
(82)

where d is the demand. Based on the definition in (24),
we further extend (82) as follows,∑

Q2∈Uτ|Q1=1

Pr(Q2|Q1 = 1)

= . . . =
∑

Q2∈Uτ|Q1=N1

Pr(Q2|Q1 = N1). (83)

Because of the independent queries condition in (15), and
because we have a uniform query distribution, the values of
the probability functions Pr(Q2|Q1) for all Q2 and Q1 are
the same, equal to 1/N2. So from (83) we have∣∣Uτ |Q1=1

∣∣
N2

= . . . =

∣∣Uτ |Q1=N1

∣∣
N2

. (84)

This proves that
∣∣Uτ |Q1=1

∣∣ = · · · =
∣∣Uτ |Q1=N1

∣∣. In addition
to

Pr(d = 1|Q1 = 1) = Pr(d = 2|Q1 = 1)
= · · · = Pr(d = N |Q1 = 1),

which follows from the privacy constraint, we have∣∣Uτ1|Q1=1

∣∣ =
∣∣Uτ2|Q1=1

∣∣ where τ1, τ2 ∈ [N ]. Simi-
larly, we also have

∣∣Uτ |Q2=1

∣∣ = · · · =
∣∣Uτ |Q2=N2

∣∣ and∣∣Uτ1|Q2=1

∣∣ =
∣∣Uτ2|Q2=1

∣∣ where τ1, τ2 ∈ [N ]. This completes
the proof of the first part.

B. Proof of Theorem 8-2

Based on the condition of independent queries, for any q2 ∈
Q2, all the queries in Q1 should be exhausted for all choices of
the demanded file index τ . In other words, for any q2 ∈ Q2 we
should have

N1 ≤
∣∣Uτ=1|Q2=q2

∣∣+ · · ·+
∣∣Uτ=N |Q2=q2

∣∣ = Nn1, (85)

which resluts N1
n1

≤ N . With the same argument, we have
N2
n2
≤ N .

C. Proof of Theorem 8-3

Based on the definition of Uτ |Q1=q1 , we have

Uτ =
{
(1, j1) : j1 ∈ Uτ |Q1=1

}⋃
. . .
⋃{

(N1, jN1) : jN1 ∈ Uτ |Q1=N1

}
(86)

Since all the sets above are disjoint and of size n2, we have

|Uτ | = N1n2, (87)

or similarly

|Uτ | = N2n1. (88)

So we have

|U1|+ |U2|+ . . .+ |UN | = NN1n2 = NN2n1. (89)

Since in total we have N1N2 different pairs of queries for
the two servers, roughly speaking, each query pair should be
able to decode NN1n2

N1N2
= N n2

N2
= N n1

N1
≜ αN files. Thus,

we would need at least N
αN = 1

α ≜ α′ pairs of queries to
cover all the files. A formal proof starts with the following
lemma.

Lemma 1: For α1 ∈ [N1] and α2 ∈ [N2] such that α1α2 =⌈
N1
n1

⌉
=
⌈
N2
n2

⌉
, there exist α1 queries chosen from Q1 and

α2 queries chosen from Q2 such that the resulting α1α2 pairs
of queries can recover all the N files.

Proof: We choose α1 queries from Q1 and α2 queries
from Q2 uniformly at random. Without loss of generality,
we assume that the chosen queries are Q1,α1 = {1, 2, . . . , α1}
and Q2,α2 = {1, 2, . . . , α2} respectively. We should mention
that because of the demand privacy constraint in (13), all the
queries in Q1 and Q2 should appear at least once in Uτ for
any τ ∈ [N ]. For the first query from the first server Q1 = 1,
the probability that Q2 = 1 is not in the set Uτ |Q1=1 equals
Pr(Q2 = 1 /∈ Uτ |Q1=1) = 1 − n2

N2
. If we know that Q2 =

1 /∈ Uτ |Q1=1, the probability that Q2 = 2 /∈ Uτ |Q1=1 would
be Pr(Q2 = 2 /∈ Uτ |Q1=1|Q2 = 1 /∈ Uτ |Q1=1) = 1 − n2

N2−1 .
Similarly continuing, we can compute the probability that none
of the α2 queries chosen from Q2 appear as a pair with
Q1 = 1 in the set Uτ .

Pr
(
{(Q1 = 1,Q2,α2)} ∩ Uτ |Q1=1 = ∅

)
=
(

1− n2

N2

)(
1− n2

N2 − 1

)
. . .

(
1− n2

N2 − (α2 − 1)

)
≤
(

1− n2

N2

)α2

. (90)

Using the same argument for all α1 queries from Q1,
we have

Pr ((Q1,α1 ,Q2,α2) ∩ Uτ = ∅) (91a)
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≤
((

1− n2

N2

)α2
)α1

=
(

1− n2

N2

)α1α2

≤
(

1− n2

N2

)N2
n2

(91b)

≤ 1− N2

n2

n2

N2
+ o

(
n2

N2

)
(91c)

= o

(
n2

N2

)
, (91d)

where (91c) follows from the Taylor expansion (1 − x)y =
1− yx+ o(x). Now we can write the probability that the set
(Q1,α1 ,Q2,α2) cannot decode at least one of the N files.

Pr ((Q1,α1 ,Q2,α2) ∩ Uτ ̸= ∅,∀τ ∈ [N ]) ≥
(

1− o

(
n2

N2

))N
> 0 (92)

Since we have chosen our sets of queries randomly, and the
probability that all the files are covered is greater than zero
in a finite probability space, we can conclude that there exists
at least one choice of α1 queries from Q1 and one choice of
α2 queries from Q2 that covers all files. □

The proof of the third part of the theorem is follows directly
from Lemma 1. As a result of Lemma 1, suppose we choose
α1 ∈ [N1] queries from Q1 and α2 ∈ [N2] queries from
Q2 such that the resulting number of pairs α1α2 =

⌈
N1
n1

⌉
=⌈

N2
n2

⌉
can recover all the files. Based on the cut-set bound we

have

α1RD1 + α2RD2 ≥ N. (93)

Taking the minimum on the left hand-side, proves this part.

D. Proof of Theorem 8-4

For the forth part of the theorem, if we assume that RD1 =
RD2 = R′D and α1α2 = ⌈α′⌉, we will have

R′D ≥
N

α1 + α2
=

N

α1 + ⌈α′⌉
α1

=
α1N

α2
1 + ⌈α′⌉

. (94)

Thus we have

R′D ≥ max
α1∈[N1]

α1N

α2
1 + ⌈α′⌉

. (95)

To derive the optimal value for α1, we assume that it is
continuous and take the derivative of the right hand side with
respect to α1 and put it equal to zero. We will have

N(α2
1 + ⌈α′⌉) = (α1N)(2α1), (96)

which results in α1 =
√
⌈α′⌉. Since α1 and α2 should be

integers, we can lower bound the right-hand side of (95) as
follows,

R′D ≥
N

2(
√
⌈α′⌉+ 1)

=
N

2
(√⌈

N1
n1

⌉
+ 1
)

=
N

2
(√⌈

N2
n2

⌉
+ 1
) . (97)
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