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Abstract— The two-user computation broadcast problem is
introduced as the setting where User 1 wants message W1

and has side-information W ′
1, User 2 wants message W2 and

has side-information W ′
2, and (W1, W ′

1, W2, W ′
2) may have

arbitrary dependencies. The rate of a computation broadcast
scheme is defined as the ratio H(W1, W2)/H(S), where S
is the information broadcast to both users to simultaneously
satisfy their demands. The supremum of achievable rates is
called the capacity of computation broadcast CCB. It is shown

that CCB ≤ H(W1, W2)/

�
H(W1|W ′

1) + H(W2|W ′
2) −

min
�
I(W1; W2, W ′

2|W ′
1), I(W2; W1, W ′

1|W ′
2)
��

. For the

linear computation broadcast problem, where W1, W ′
1, W2, W ′

2

are comprised of arbitrary linear combinations of a basis set
of independent symbols, the bound is shown to be tight. For
non-linear computation broadcast, it is shown that this bound
is not tight in general. Examples are provided to prove that
different instances of computation broadcast that have the
same entropic structure, i.e., the same entropy for all subsets
of {W1, W ′

1, W2, W ′
2}, can have different capacities. Thus,

extra-entropic structure matters even for two-user computation
broadcast. The significance of extra-entropic structure is further
explored through a class of non-linear computation broadcast
problems where the extremal values of capacity are shown to
correspond to minimally and maximally structured problems
within that class.

Index Terms— Capacity, computation broadcast.

I. INTRODUCTION

IN THE modern era of data science, machine learning and
internet of things, communication networks are increas-

ingly used for distributed computing applications, where mul-
tiple parties process and exchange information for various
computational tasks [1]–[8]. The changing paradigm brings
with it new challenges in network information theory. Distinc-
tive aspects of these computational communication networks
include strong dependencies between information flows and an
abundance of side-information. With a few notable exceptions
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such as [9]–[17], the communication network models most
commonly studied in information theory, in various elemental
forms ranging from multiple access and broadcast to relay
and interference networks, with and without side-information,
tend to focus on settings with independent messages. Yet,
the shared mission across network nodes in distributed
computing applications necessarily creates significant depen-
dencies, not only among message flows, but also in the side-
information available to each node based on its history of prior
computations. Within these dependencies lies the potential
for further innovations in communication and computing.
A fundamental understanding of this potential requires the
machinery of network information theory, but with a renewed
focus on information dependencies and side-information. As a
step in this direction, in this work we introduce the problem
of computation broadcast.

While in this work we restrict our attention to K = 2
users, in general we envision the computation broadcast (CB)
problem as comprised of K users (receivers) who desire
messages W1, W2, · · · , WK , and have prior side-information
W �

1, W
�
2, · · · , W �

K , respectively. A centralized transmitter with
full knowledge of (Wk, W �

k, k ∈ [K]) broadcasts the same
information S to all receivers in order to simultaneously
deliver their desired messages. The salient feature of compu-
tation broadcast is the dependence among (Wk, W �

k, k ∈ [K])
modeled by their joint distribution, which may be arbitrary.

The rate of computation broadcast is defined as, R =
H(W1, · · · , WK)/H(S), i.e., ratio of the total number of bits
of all desired messages to the number of bits of broadcast
information S that satisfies all demands. The supremum of
achievable rates is called the capacity of computation broad-
cast, CCB. The goal is to characterize CCB.

The computation broadcast problem may be seen as a gen-
eralization of the index coding problem [18], [19] that allows
arbitrary dependencies among desired messages and side-
informations. Prior works in this direction include [20], [21].
Reference [20] restricts the messages to be independent and
requires each side-information to be a linear combination of
message symbols, which is a special case of computation
broadcast. The problem formulation of [21] allows the mes-
sages to be arbitrarily correlated while the side-informations
are comprised of message symbols, which is another special
case of computation broadcast. Also, when we have K = 2
users and W �

1 = W2 and W �
2 = W1, the computation broadcast

problem reduces to the classic butterfly network problem with
possibly correlated sources [22], [23].

The dependence between desired messages and side-
informations imparts a unique structural aspect to the com-
putation broadcast problem that makes it highly non-trivial.
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Structure has long been recognized as both the boon and
bane of network information theory [24]–[28]. When optimally
exploited, structure can have tremendous benefits in multiter-
minal settings, a fact underscored by recurring observations
ranging from Korner and Marton’s computation work in [24] to
the recent burst of activity in interference alignment [29], [30].
On the other hand, the random coding arguments that are the
staple of classical information theory, tend to fall short when
structural concerns take center stage, and less tractable combi-
natorial alternatives are required. Structure itself is a nebulous
concept that has thus far defied a precise understanding.
Somewhat surprisingly, these deeper themes resurface even in
the basic 2 user setting explored in this work. On the downside
this potentially makes even the 2 user computation broadcast
problem intractable in general. On the upside, the 2 user
computation broadcast presents one of the simplest arenas to
face these challenges that are of tremendous theoretical and
practical significance.

Our contributions in this paper are summarized as follows.
We start with a general converse bound for the capacity of
2 user computation broadcast,

CCB ≤ H(W1, W2)/
[
H(W1 | W �

1) + H(W2 | W �
2)

− min
(
I(W1; W2, W

�
2 | W �

1), I(W2; W1, W
�
1 | W �

2)
)]

.

When the dependency is linear, i.e., when W1, W
�
1, W2, W

�
2

are comprised of arbitrary linear combinations of a basis set
of independent symbols, then this bound is shown to be tight.
However, in general the bound is not tight, and the struc-
ture of the dependence between W1, W

�
1, W2, W

�
2, becomes

important. Recall that the dependence is completely described
by the joint distribution of (W1, W

�
1, W2, W

�
2) which can be

arbitrary. Some of this structure can be captured through
entropic constraints, i.e., the joint entropies of all subsets
of (W1, W2, W

�
1, W

�
2). One might optimistically expect that

only this entropic structure would be essential to the problem,
and furthermore that Shannon information inequalities might
suffice to characterize the optimal H(S). However, as it turns
out on both counts the optimism is invalidated. Specifically,
we show two instances of computation broadcast that have
the same entropic description, yet different capacity charac-
terizations. Evidently, extra-entropic structure matters even for
2-user computation broadcast. In order to further understand
the significance of such extra-entropic structure, we explore
a class of computation broadcast problems called ‘matching’
problems where, conditioned on each realization of the inde-
pendent side-informations W �

1, W
�
2, there is a perfect matching

between the possible realizations of desired messages W1, W2.
For this class of problems we identify upper and lower bounds
on capacity. The bounds provide insights into certain types of
extremal structures that are either beneficial or detrimental to
capacity. The beneficial extremes are found to be maximally
structured and for these settings the capacity upper bound is
shown to be tight. Conversely, the detrimental extremes are
found to be minimally structured and for these settings the
capacity lower bound is shown to be tight. Remarkably, linear

dependencies are maximally structured, while random coding
solutions are asymptotically optimal for minimally structured
settings in the limit of large alphabet sizes.

Notation: For a positive integer m, we use the notation
[m] = {1, 2, · · · , m}. Bold symbols are used to represent
matrices.

II. PROBLEM STATEMENT AND PRELIMINARIES

Define random variables (w1, w
�
1, w2, w

�
2) ∈ W1 × W �

1 ×
W2 × W �

2, drawn according to an arbitrary joint distribution
Pw1,w′

1,w2,w′
2
. All 4 alphabet sets are discrete with finite

cardinality bounded by 2�max < ∞, i.e., it takes no more than
a finite number (�max) of bits to perfectly specify any wi, w

�
i,

i ∈ {1, 2}.

A. Complete (Structural) Formulation

The complete formulation of the computation broadcast
problem is presented as follows.

R∗
L � sup

PS|W1,W2,W ′
1,W ′

2

H(W1, W2)
H(S)

such that H(W1 | W �
1, S) = 0 (1)

H(W2 | W �
2, S) = 0 (2)

[(W1(l), W �
1(l), W2(l), W �

2(l))]
L
l=1

i.i.d.∼ Pw1,w′
1,w2,w′

2
(3)

As indicated in (3), W1, W2, W �
1, W �

2 denote L-length
extensions of w1, w�

1, w2, w�
2, i.e., W1, W

�
1, W2, W �

2 are
sequences of length L, such that the sequence of tuples
[(W1(l), W �

1(l), W2(l), W �
2(l))]Ll=1 is produced i.i.d. according

to Pw1,w′
1,w2,w′

2
. Because the structure of the problem is com-

pletely captured in (3), we refer to this problem formulation as
the complete, or structural formulation. L is called the block
length. H(S) is the expected amount of broadcast information.
Condition (1) is the decoding constraint of User 1, i.e., after
receiving the broadcast information S, User 1 is able to decode
his desired message W1 with the help of the side-information
W �

1, with zero probability of error. Similarly, condition (2) is
the decoding constraint of User 2. Note that H(W1, W2) is
already specified by the problem statement, so maximizing
R∗

L is the same as minimizing the broadcast cost, H(S).
The ratio H(W1, W2)/H(S) for a computation broadcast
scheme is called its achievable rate. R∗

L is the supremum of
achievable rates for a given block length L. The supremum of
R∗

L across all L ∈ N, is called the capacity of computation
broadcast,

CCB � sup
L∈N

R∗
L. (4)

B. Relaxed (Entropic) Formulation

Recall that the structure of the dependence between mes-
sage and side-information random variables is defined by
Condition (3). Some of this structure can be captured in terms
of the entropies of all subsets of {w1, w2, w

�
1, w

�
2}. Limited to
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just these entropic constraints we obtain the following relaxed
problem formulation.

R
∗
L � sup

P̄W1,W2,W ′
1,W ′

2,S

H(W1, W2)
H(S)

such that H(W1 | W �
1, S) = 0 (5)

H(W2 | W �
2, S) = 0 (6)

H(W∗) = LH(w∗),
∀W∗ ⊂ {W1, W2, W

�
1, W

�
2}

(7)

w1, w2, w
�
1, w

�
2 ∼ Pw1,w2,w′

1,w′
2

(8)

where w∗ is obtained by replacing upper case W with lower
case w in W∗. For example, if W∗ = (W1, W

�
2), then

w∗ = (w1, w
�
2). Note that (W1, W2, W

�
1, W

�
2) are arbitrary

random variables that only need to satisfy the same entropic
constraints as the L-length extensions of (w1, w2, w

�
1, w

�
2),

according to (7). In particular, it is no longer necessary
for (W1, W2, W

�
1, W

�
2) to have the same distribution as

(w1, w2, w
�
1, w

�
2), even for L = 1. Furthermore, since the

entropic region is a cone [31], we must have R
∗
L = R

∗
1, where

R
∗
1 is the value of R

∗
L for L = 1. Since L is a trivial scaling

factor, let us fix L = 1, and define

CCB � sup
L∈N

R
∗
L = R

∗
1 (9)

CCB is of interest mainly for two reasons. First, because it
serves as a bound for CCB, i.e.,

CCB ≤ CCB. (10)

This is true because all the entropic constraints (7) are implied
by Condition (3), so we must have R∗

L ≤ R
∗
L which in turn

implies that CCB ≤ CCB. The second reason is that the tightness
of the bound (10) reveals the extent to which capacity is
determined by structural constraints that are not captured by
the entropic formulation. This extra-entropic structure may be
a topic of interest by itself.

C. Equivalence of zero-error and �-error

While we consider the zero-error capacity formulation,
it turns out that for the computation broadcast problem, it is
not difficult to prove that zero-error capacity is the same
as �-error capacity, as stated in the following theorem. For
this theorem we use the specialized notation C0

CB to denote
zero-error capacity, and C�

CB to denote �-error capacity.
Theorem 1: For the computation broadcast problem, zero

error capacity, C0
CB, is equal to �-error capacity, C�

CB.
Proof: Since the �-error capacity is C�

CB, for any arbitrarily
small δ > 0, there must exist an �-error scheme that achieves
rate R� = C�

CB − δ, so that broadcasting LH(w1, w2)/R� bits
is sufficient to satisfy both users’ demands with probability
at least 1 − �, and � → 0 as L → ∞. Since the encoder
knows all messages, side-informations and decoding functions,
it also knows when either decoding function will produce
an erroneous output. In those cases, the encoder can simply
use uncoded broadcast to send both messages using no more
than 2L�max bits. One extra bit, say the first bit, is used to

indicate when uncoded transmission takes place. Thus we have
a zero-error scheme, and the rate achieved is

LH(w1, w2)
(1 − �)(LH(w1, w2)/R�) + �(2L�max) + 1

L→∞−→ R� (11)

Since the rate R� = C�
CB − δ is asymptotically achievable with

zero probability of error for any δ > 0, the zero error capacity
C0

CB, which is the supremum of rates achievable with zero-
error, cannot be less than C�

CB. At the same time, C0
CB cannot

be more than C�
CB because allowing � decoding error cannot

hurt. Therefore, we must have C0
CB = C�

CB.

D. Introductory Examples

1) Example 1: The Butterfly Network: For our first example,
consider (w1, w2, w

�
1, w

�
2) = (A, B, B, A), where A, B are

i.i.d. uniform over some finite field Fq . This is the butterfly
network that is one of the most recognizable settings for
network coding and index coding. The solution is also well
known. The capacity is 2 and is achieved by broadcasting
S = A + B (the addition is in Fq) to simultaneously satisfy
both users’ demands. The example can be generalized to
(w1, w2, w

�
1, w

�
2) where w1 is a function of w�

2 and w2 is
a function of w�

1. In this case, we need a codeword of
H(w1 | w�

1) bits to satisfy User 1, corresponding to the bin
index when w1 is binned according to Slepian-Wolf coding
(does not need the knowledge of w�

1 at the encoder). These
bits are known to User 2, because User 2 knows the binning
function as well as w�

2, and w1 is a function of w�
2. Similarly,

we need H(w2 | w�
2) bits to satisfy User 2, and these bits are

known to User 1. Therefore, we can choose S as the bitwise
XOR of the two codewords (padding with additional zeros
if needed so we have equal number of bits for both codes),
which satisfies both users’ demands. So the capacity for this
case is CCB = H(w1,w2)

max(H(w1|w′
1),H(w2|w′

2))
.

2) Example 2: A Minimal Linear Dependence Setting: Con-
sider w1, w2, w

�
1, w

�
2, all in Fq , with a ‘minimal’ dependence

among them in the sense that any three of these four random
variables are independent and uniform, while the dependence
arises due to the constraint w1 + w2 + w�

1 + w�
2 = 0. In this

case, the capacity is still 2, and it is achieved by broadcasting
S = w1 + w�

1, which simultaneously satisfies both users. This
example is inspired by a general capacity achieving scheme
for linear computation broadcast problems that is developed
in this work.

3) Example 3: A Binary AND/OR Problem: For our third
example, let us consider a non-linear computation broadcast
problem, where we have (w1, w2, w

�
1, w

�
2) = (A ∨ B, A ∧

B, A, B), and A, B are independent uniform binary random
variables. The notations ∨,∧ represent the logical OR and
AND operations, respectively. Thus, User 1 knows A and
wants A ∨ B, while User 2 knows B and wants A ∧ B.

Note that the desired message and available side-
information are not independent. Also note that in order
to satisfy User 1 alone, we need at least H(A ∨ B|A) =
0.5 bits/symbol. Similarly, in order to satisfy User 2 alone,
we need at least HA ∧ B|B) = 0.5 bits/symbol. But what
is the most efficient way to satisfy both users’ demands
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simultaneously? Surprisingly, 0.5 bits/symbol is also sufficient
to simultaneously satisfy the demands of both users. This is
accomplished as follows. Let us first consider block length
L = 1 and let SAB represent the value of the broadcast symbol
S as a function of the values of A and B. Now, when A = 0,
then B = 0 and B = 1 produce different values of A ∨ B.
In order for User 1 to be able to distinguish between the two
possibilities, we must have S00 �= S01. Similarly, when B = 1,
then A = 0 and A = 1 produce different values of A ∧ B,
so that in order to satisfy User 2’s demand, we must have
S01 �= S11. Subject to these two constraints, i.e., S00 �= S01

and S01 �= S11 let us assign values to SAB to minimize
the number of bits needed to send SAB to both users using
Slepian-Wolf coding, i.e., max(H(SAB|A), H(SAB|B)). The
solution for this toy problem gives us SAB = 1 if (A, B) =
(0, 1) and SAB = 0 otherwise. Note that

H(SAB |A) = P (A = 0)H(SAB|A = 0)
+ P (A = 1)H(SAB|A = 1)

= 0.5 bits/symbol (12)

and similarly, H(SAB|B) = 0.5 bits/symbol. Remarkably,
Slepian-Wolf coding allows us to satisfy both users’ demands
by sending only 0.5 bits/symbol. Specifically, we consider
larger blocks of length L → ∞, randomly bin the 2L

realizations of SL
AB into 2L(0.5+�) bins, and broadcast only1

the bin index as S which requires H(S) ≤ L(0.5 + �) bits.
Because of the joint asymptotic equipartition property (AEP),
User 1 finds a unique SL

AB sequence that is jointly typical with
its side-information sequence AL with high probability, while
User 2 finds a unique SL

AB sequence that is jointly typical
with its side-information sequence BL with high probability.
Thus, rates arbitrarily close to 0.5 bits per source symbol are
achievable.2 Remarkably, 0.5 bits per source symbol is also
optimal because

H(A ∨ B | A) = P (A = 0)H(A ∨ B | A = 0)
+ P (A = 1)H(A ∨ B | A = 1) (13)

= 0.5H(B) + 0.5(0)
= 0.5 bits/symbol (14)

and similarly H(A∧B | B) = 0.5 bits /symbol. Thus, at least
0.5 bits/symbol is needed to satisfy either user alone. Fig. 1
illustrates this toy example.

4) Example 4: A Ternary AND/OR Problem: In order to
emphasize the difficulty of the computation broadcast problem
in general, suppose we only slightly modify the example

1Note that directly setting S = SAB and operating over block length
L = 1 is the best solution for L = 1, i.e., R∗

1 = H(w1, w2)/H(SAB) =
H(w1, w2)/(2− 3

4
log2(3)). However, this is not capacity-achieving because

CCB = H(w1, w2)/2 > R∗
1 . The example shows explicitly why the problem

formulation in (1)-(2) in multi-letter form (arbitrarily large L ∈ N) cannot be
trivially single-letterized by restricting to the case L = 1.

2Slepian-Wolf coding with distributed side-information in general may need
ε-error. However, in our case, since the encoder knows all messages and side-
information symbols, centralized coding allows us to achieve zero-error — for
almost all realizations of (W1, W2, W ′

1, W2) the Slepian-Wolf code works,
and for the remaining ε-probable realizations, we simply send out (W1, W2),
which has negligible impact on expected rate, as ε can be chosen to be
arbitrarily small.

Fig. 1. Toy example where User 1 has side-information A and wants to
receive (A ∨ B) while User 2 has side-information B and wants (A ∧ B).
The optimal solution broadcasts only 0.5 bits/symbol to simultaneously satisfy
both users’ demands.

as follows. Suppose now that A, B ∈ {0, 1, 2} are i.i.d.
uniform 3-ary random variables. As the natural extension of
the previous example to 3-ary symbols, let us now define A∨B
as 0 if (A, B) = (0, 0) and 1 otherwise. Similarly, define
A ∧ B as 1 if (A, B) = (1, 1) and 0 otherwise. As before,
User 1 knows A and wants A ∨ B while User 2 knows B
and wants A ∧ B. Even though this problem is only slightly
modified from the previous example for which the capacity
was characterized, the capacity for this modified case seems
to be a challenging open problem.

E. Two Classes of Computation Broadcast Problems

There are two main classes of computation broadcast prob-
lems that we explore in this work – linear settings and
matching problems. These classes are defined next.

1) Class I: Linear Computation Broadcast: Because com-
putations are often linear, it is of particular interest to consider
the linear version of the computation broadcast problem,
denoted linear computation broadcast, or LCB. For LCB,
the defining restriction is that W1, W

�
1, W2, W

�
2 are arbitrary

linear combinations of a basis set of independent symbols
from a finite field. Let the basis symbols be specified through
the m × 1 column vector X = (x1; x2; · · · ; xm), where
xi, i ∈ {1, 2, · · · , m} are i.i.d. uniform symbols from a finite
field Fq , q = pn, for a prime p and an integer n. Since all
symbols are linear combinations of the basis symbols, they are
represented by m×1 vectors of linear combining coefficients.
Each message or side-information is then specified in terms
of such vectors,

W1 = XT V1 (15)

W�
1 = XT V�

1 (16)

W2 = XT V2 (17)

W�
2 = XT V�

2 (18)
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For example, if V1 is comprised of two m × 1 vectors,
i.e., V1 = [V(1)

1 ,V(2)
1 ], then it means that W1 is comprised of

symbols XT V(1)
1 ,XT V(2)

2 , and may be represented as W1 =
[XT V(1)

1 ,XT V(2)
2 ]. Note that the broadcast information S is

not constrained to be a linear function of the basis symbols,
although as we will prove, it turns out that linear forms of S
are information theoretically optimal (refer to Section V).

2) Class II: Matching Problems: While we are able to
characterize the capacity of linear computation broadcast in
this work, the capacity for non-linear settings remains open
in general. In order to explore the challenges that arise
in non-linear settings, we will focus on a limited class of
non-linear computation broadcast problems, that we label as
‘matching’ problems. Here, the dependence between w1 and
w2 is in the form of an invertible function (a perfect matching,
equivalently a permutation) that depends upon w�

1, w
�
2. The

dependence is minimal in the sense that each of (w�
1, w

�
2, w1)

and (w�
1, w

�
2, w2) are independent and uniformly distributed

over [m1] × [m2] × [m]. Mathematically,

(w1, w2, w
�
1, w

�
2) ∈ [m] × [m] × [m1] × [m2], (19)

H(w�
1, w

�
2, w1) = H(w�

1) + H(w�
2) + H(w1)

= log2(m1) + log2(m2) + log2(m),
(20)

H(w�
1, w

�
2, w2) = H(w�

1) + H(w�
2) + H(w2)

= log2(m1) + log2(m2) + log2(m),
(21)

H(w1 | w�
1, w

�
2, w2) = H(w2 | w�

1, w
�
2, w1) = 0. (22)

Note that this setting includes both Example 1 and Exam-
ple 2 as special cases when the matching is reduced to a linear
mapping. We will explore how the structure of the matching
affects the capacity of computation broadcast. In particular,
we will characterize both minimally structured and maximally
structured cases that correspond to the extremal values of
capacity (refer to Theorem 5), while all other settings lie
somewhere between these extremal values.

III. RESULTS

A. A General Converse

Our first result is a general converse bound, stated in the
following theorem.

Theorem 2: [General Converse] For any computation
broadcast problem, we have the converse bound shown in (23),
at the bottom of the page.

The proof of Theorem 2 is presented in Section IV. In fact,
the bound is intuitively quite obvious. The key to the bound
is that

R∗
L ≤ H(W1, W2)/

[
H(W1|W �

1) + H(W2|W �
2)

− min
(
I(W1; W2, W

�
2|W �

1), I(W2; W1, W
�
1|W �

2)
)]

which follows from the following two bounds.

H(S) ≥ H(W1 | W �
1) + H(W2 | W1, W

�
1, W

�
2) (24)

H(S) ≥ H(W2 | W �
2) + H(W1 | W2, W

�
2, W

�
1) (25)

For the first bound in (24), note that User 1, who already
knows W �

1, at least needs another H(W1|W �
1) bits to decode

W1, and after everything known to User 1 is given to User 2 by
a genie, User 2, who now knows W1, W

�
1, W

�
2, needs another

H(W2|W1, W
�
1, W

�
2) bits to decode W2. So without the genie

we cannot need any less. The same intuition can be applied
with the users switched for (25). In fact, the basic intuition
is strong enough that the bound holds even in the relaxed
entropic formulation, so we also have

CCB ≤ H(w1, w2)/
[
H(w1|w�

1) + H(w2|w�
2)

− min
(
I(w1; w2, w

�
2|w�

1), I(w2; w1, w
�
1|w�

2)
)]

Finally, as discussed previously, CCB ≤ CCB is true by definition
since the entropic formulation is a relaxation of the complete
(structural) formulation of the computation broadcast problem.

What is surprising about the converse bound is that it turns
out to be tight for many settings of interest. In particular,
for the linear computation broadcast problem, the converse
bound is tight for both the entropic formulation as well as
the structured formulation, i.e., it is also achievable. For the
class of matching problems, the bound is tight for the entropic
formulation, but not necessarily for the complete structured
formulation, i.e., it is not achievable in general and the capacity
may be strictly smaller once the dependency structure of the
problem is fully accounted for. This makes sense because
the converse bound is based on only entropic inequalities,
in fact it uses only Shannon information inequalities, i.e., sub-
modularity properties, so it cannot capture more structural
constraints than the entropic formulation.

B. Capacity of Linear Computation Broadcast

Our second result shows that the bound in Theorem 2 is
tight for the linear computation broadcast problem for any
block length L. We state this result in the following theorem.

Theorem 3: For linear computation broadcast, the capacity
is shown in the equation at the bottom of the next page.

The proof of Theorem 3 is presented in Section V. Since
the converse is already available from Theorem 2, only a
proof of achievability is needed. Intuitively, the achievable
scheme is described as follows. First without loss of generality
it is assumed that W1 is independent of W �

1, and similarly,
W2 is independent of W �

2, because any dependence can be
extracted separately as a sub-message that is already available
to the user, and therefore can be eliminated from the user’s
demand. The core of the achievability argument then is that

CCB ≤ CCB ≤ H(w1, w2)

H(w1|w�
1) + H(w2|w�

2) − min
(
I(w1; w2, w�

2|w�
1), I(w2; w1, w�

1|w�
2)
) (23)
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for linear computation broadcast, the problem can be parti-
tioned into 3 independent sub-problems, labeled a, b, c. Cor-
respondingly, each message is split into 3 independent parts:
Wi = (Wia,Wib,Wic), i ∈ {1, 2}. The 3 partitions are
then solved as separate and independent problems, with cor-
responding solutions Sa,Sb,Sc that ultimately require a total
of H(S) = H(Sa) + H(Sb) + H(Sc) bits. The sub-messages
W1a,W2a are handled analogously to Example 1, i.e., W1a

is a function3 of W�
2 while W2a is a function of W�

1, so that
it suffices to send H(Sa) = max(H(W1a), H(W2a)) bits
as in Example 1. The partition W1b,W2b is handled analo-
gously to Example 2, i.e., it satisfies a dependence relation
of the form W1bM1b + W2bM2b + W�

1M
�
1 + W�

2M
�
2 = 0,

where H(W1b) = H(W2b), M�
1,M

�
2,M1b,M2b are linear

transformations (matrices) and M1b,M2b are invertible. This
is solved by sending, Sb = W2bM2b+W�

2M
�
2 which satisfies

the demands of both users and requires H(Sb) = H(W1b) =
H(W2b) bits. Finally, the partition W1c,W2c is trivial as it
is comprised of sub-messages that are independent of each
other and of all side-information, so the optimal solution for
this part is simply uncoded transmission Sc = (W1c,W2c)
which takes H(Sc) = H(W1c) + H(W2c) bits. Without loss
of generality, suppose H(W1a) ≥ H(W2a). Then, the total
number of bits needed is H(S) = H(Sa)+H(Sb)+H(Sc) =
H(W1a)+H(W1b)+H(W1c)+H(W2c) = H(W1 | W�

1)+
H(W2 | W1,W�

1,W
�
2) which matches the converse bound.

Therefore H(W1,W2)/CCB = H(W1 | W�
1) + H(W2 |

W1,W�
1,W

�
2)) in this case. Note that if we assumed instead

that H(W1a) ≤ H(W2a) then the number of bits required
by the achievable scheme, and the tight converse bound on
H(W1,W2)/CCB (because it is achievable), would both be
equal to H(W2 | W�

2) + H(W1 | W2,W�
1,W

�
2).

Example

Let X = [x1, x2, x3, x4, x5, x6, x7]T , whose elements are
i.i.d. uniform random variables in F3. Let us define

W�
1 = [x1, x3],

W1 = [(x1 + 2x2), (x3 + x5), (x1 + x4 + x6), x7] (26)

W�
2 = [x2, x4],W2 = [(2x1 + x2), x5, (x2 + x4 + 2x6)]

(27)

Splitting into a, b, c sub-problems (see Section V), we have

W1a = [x1 + 2x2] ≡ [2x2],
W1b = [x3 + x5, x1 + x4 + x6], W1c = [x7] (28)

W2a = [2x1 + x2] ≡ [2x1],
W2b = [x5, x2 + x4 + 2x6], W2c = [ ] (29)

3In fact W1a may be a linear combination of both W′
1,W′

2 (see (97)),
but since W′

1 is already known to User 1, there is no loss of generality in
restricting W1a to be the part that only depends on W′

2. Similarly, there is
no loss of generality in restricting W2a to a function of W′

1.

Following the procedure in Section V we will find that W1a =
[x1 + 2x2], which makes W1a a function of (W�

1,W
�
2).

However, note that setting W1a = [x1 + 2x2] is equivalent
(‘≡’) to setting W1a = [2x2] because User 1 already knows
x1. In the same sense, setting W2a = [2x1 +x2] is equivalent
to setting W2a = [2x1] because x2 is already known to User 2
as side-information. Thus, without loss of generality, W1a

is a function of only W�
2, and W2a is a function of only

W�
1. Thus, sub-problem ‘a’ is analogous to the setting of

Example 1, and is solved by transmitting Sa = [2x2 + 2x1].
For sub-problem ‘b’, note that

W1b

[
1 0
0 2

]
+ W2b

[−1 0
0 −1

]
+ W�

1

[
0 −2
−1 0

]
+ W�

2

[
0 1
0 −1

]
= 0 (30)

and the matrices multiplying W1b and W2b are invertible
matrices. This problem is analogous to Example 2 and is
solved by sending Sb = W2bM2b +W�

2M
�
2 = [−x5,−2x4−

2x6]. Finally, sub-problem ‘c’ is trivially solved by sending
Sc = [W1c,W2c] = [x7]. Combining Sa,Sb,Sc into S,
we have the solution,

S = ((2x2 + 2x1), (−x5), (−2x4 − 2x6), (x7)) (31)

which needs H(S) = 4 symbols from F3 per block, and the
rate achieved is R = H(W1,W2)/H(S) = 7/4. Since this
matches the converse bound from Theorem 2, we have shown
that for this example,

CCB = 7/4. (32)

C. Extra-Entropic Structure Matters

Theorem 3 shows that the general converse of Theorem 2
is tight for linear computation broadcast, and the solution
of the structural formulation in Section II-A coincides with
the solution to the entropic formulation in Section II-B, i.e.,
CCB = CCB. Our next result shows that this is not the case in
general.

Theorem 4: There exist instances of the computation broad-
cast problem where CCB < CCB. Thus, the converse in
Theorem 2 is not always tight for the general (non-linear)
computation broadcast problem, and extra-entropic structure
matters.

Proof: To prove this, we will present two instances of
computation broadcast, say CB1, CB2, that have the same
entropic formulations, so they have the same CCB. Yet,
these two instances have different structural formulations that
produce different capacities. Incidentally, both instances are
matching problems.
CB1: This instance of the computation broadcast problem is
defined by (w�

1, w
�
2, w1, w2) ∈ {0, 1}× {0, 1}× {0, 1, 2, 3}×

{0, 1, 2, 3}. The marginal distribution of each random variable

CCB = CCB =
H(w1, w2)

H(w1|w�
1) + H(w2|w�

2) − min
(
I(w1; w2, w�

2|w�
1), I(w2; w1, w�

1|w�
2)
)

Authorized licensed use limited to: University of North Texas. Downloaded on August 12,2020 at 15:58:52 UTC from IEEE Xplore.  Restrictions apply. 



SUN AND JAFAR: ON THE CAPACITY OF CB 3423

is uniform over its own alphabet set. Furthermore, w�
1, w

�
2, w1

are independent and w2 is uniquely determined by w�
1, w

�
2, w1

according to the functional relationship,

w2 = (w1 + z) mod 4, (33)

where z is a function of (w�
1, w

�
2), defined as follows.

z w�
2 = 0 w�

2 = 1
w�

1 = 0 0 1
w�

1 = 1 2 3
(34)

Thus, for all w�
1, w

�
2 ∈ {0, 1}, w1, w2 ∈ {0, 1, 2, 3}

Pw1,w′
1,w2,w′

2
= Pw′

1
Pw′

2
Pw1Pw2|w′

1,w′
2,w1 (35)

= 1/2 × 1/2 × 1/4

× �

(
w2 = (w1 + z) mod 4

)
(36)

where �(x) is the indicator function that takes value 1 if the
event x is true and 0 otherwise. Note that given (w�

1, w
�
2),

there is an invertible mapping between w1 and w2, which
makes this a matching problem. The entropies of all subsets
of {w�

1, w
�
2, w1, w2} are found as follows.

H(w�
1) = H(w�

2) = 1, H(w1) = H(w2) = 2 (37)

H(u, v) = H(u) + H(v), ∀{u, v} ⊂ {w�
1, w

�
2, w1, w2} (38)

H(t, u, v) = 4, ∀{t, u, v} ⊂ {w�
1, w

�
2, w1, w2} (39)

H(w1, w
�
1, w2, w

�
2) = 4 (40)

Theorem 2 establishes a converse bound for this problem,
CCB ≤ CCB ≤ 2. The bound turns out to be achievable by
setting L = 1 and choosing S = (w1 + 2w�

1) mod 4 which
satisfies both users’ demands. This is verified as follows.
User 1 obtains w1 by computing w1 = (S − 2w�

1) mod 4.
User 2 obtains w2 by computing w2 = (S + w�

2) mod 4,
which is possible because in this problem z = (2w�

1 + w�
2)

mod 4. Since H(S) = 2 bits and the rate achieved is
H(w1, w2)/H(S) = 2, the achievability matches the converse,
which proves that for CB1, the capacity CCB1 = 2.
CB2: CB2 is identical to CB1 in all respects, except that the
definition of z is slightly modified as follows.

z w�
2 = 0 w�

2 = 1
w�

1 = 0 0 1
w�

1 = 3 3 2
(41)

The change in the z does not affect the entropic formulation
of the problem. It is easily verified that the entropies of
all subsets of {w�

1, w
�
2, w1, w2} are still given by (37)-(40).

Since the entropic formulation is not affected we must still
CCB1 = CCB2 = 2. However, the following lemma claims
that the capacity CCB2 = 4

4−log2(3)
is strictly smaller than

CCB1 , i.e., Theorem 4 is proved and the extra-entropic structure
reduces capacity in this case.

Lemma 1: For the computation broadcast problem CB2

defined above,

CCB2 =
4

4 − log2(3)
(42)

The proof of Lemma 1 is presented in Section VI.

D. Capacity of Matching Computation Broadcast

To gain a deeper understanding of the significance of extra-
entropic structure that is revealed by CB1 and CB2, we explore
the capacity of a class of computation broadcast problems
called matching problems, which include CB1 and CB2 as spe-
cial cases. For matching problems we have (w1, w2, w

�
1, w

�
2) ∈

[m1] × [m2] × [m] × [m] where m1, m2, m ∈ N. The tuple
(w�

1, w
�
2, w1) is uniformly distributed over [m1]× [m2]× [m],

while w2 is a function of w�
1, w

�
2, w1 defined as,

w2 = πw′
1,w′

2
(w1) (43)

where πw′
1,w′

2
is a permutation on [m] that depends on the

realization of the side-information (w�
1, w

�
2). Distinct real-

izations of (w�
1, w

�
2) may or may not produce distinct per-

mutations. πw′
1,w′

2
may be represented in a matrix form as

follows.

πw′
1,w′

2
w�

2 = 1 w�
2 = 2 · · · w�

2 = m2

w�
1 = 1 π1,1 π1,2 · · · π1,m2

w�
1 = 2 π2,1 π2,2 · · · π2,m2

...
...

... · · · ...
w�

1 = m1 πm1,1 πm1,2 · · · πm1,m2

Let this matrix be denoted by Π. Specification of Π completely
defines the structure of the matching computation broadcast
problem. For all w�

1 ∈ [m1], w�
2 ∈ [m2], w1, w2 ∈ [m],

we have

Pw1,w′
1,w2,w′

2
= Pw′

1
Pw′

2
Pw1Pw2|w′

1,w′
2,w1 (44)

= 1/m1×1/m2×1/m×�(w2 = πw′
1,w′

2
(w1))

(45)

Note that w�
1, w

�
2, w2 are independent.

Next let us introduce some definitions that are useful to
gauge the amount of structure in a given Π. We begin with the
notion of a cycle, which is a closed path on an m1×m2 grid,
obtained by a sequence of alternating horizontal and vertical
steps. See Fig. 2 for an illustration.

Definition 1 (Cycle): Let N ≥ 4 be an even number.
We say that the N terms, (a1, b1), (a2, b2), · · · , (aN , bN) ∈
[m1] × [m2], form a cycle of length N in [m1] × [m2],
denoted by

(a1, b1) ↔ (a2, b2) ↔ · · · ↔ (aN , bN ) ↔ (a1, b1) (46)

if both of the following properties are true ∀i ∈ [N ]:
1) ai = ai+1 and bi �= bi+1 if i is odd.
2) bi = bi+1 and ai �= ai+1 if i is even.

where we interpret all indices modulo N (so, e.g.,
aN+1 = a1).

Other descriptions are also possible for the same cycle. For
example, the cycle in Fig. 2 can also be identified as (5, 2) ↔
(5, 5) ↔ (4, 5) ↔ (4, 3) ↔ (3, 3) ↔ (3, 1) ↔ (1, 1) ↔
(1, 2) ↔ (5, 2).

Definition 2 (Induced Permutation): For a cycle
(ai, bi)i∈[N ], we define its induced permutation as

πa1,b1π
−1
a2,b2

πa3,b3π
−1
a4,b4

· · ·π−1
aN ,bN

(47)
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Fig. 2. A cycle, (1, 1) ↔ (1, 2) ↔ (5, 2) ↔ (5, 5) ↔ (4, 5) ↔ (4, 3) ↔
(3, 3) ↔ (3, 1) ↔ (1, 1).

Definition 3 (Maximally Structured): We say that Π is
maximally structured if the induced permutation for every
possible cycle in [m1] × [m2] is the identity.4

Definition 4 (Minimally Structured): We say that Π is min-
imally structured if the induced permutation for every possible
cycle in [m1] × [m2] is a derangement.5

Maximal structure is a generalization of the setting in
CB1. In CB1 there is only one possible cycle: (1, 1) ↔
(1, 2) ↔ (2, 2) ↔ (2, 1) ↔ (1, 1), for which the induced
permutation π1,1π

−1
1,2π2,2π

−1
2,1 is the identity. Minimal structure

is a generalization of the setting in CB2. For the cycle (1, 1) ↔
(1, 2) ↔ (2, 2) ↔ (2, 1) ↔ (1, 1), the induced permutation
π1,1π

−1
1,2π2,2π

−1
2,1 is a derangement.

The significance of this structure is revealed by the next
theorem.

Theorem 5: For a matching computation broadcast problem
specified by the structure Π,

2 log2(m)
log2(m) + log2(m1m2) − log2(m1 + m2 − 1)

≤ CCB ≤ 2.

The upper bound is tight if Π is maximally structured. The
lower bound is tight if Π is minimally structured.

The proof of Theorem 5 is presented in Section VII. The
following observations are in order.

1) Since maximally structured settings represent the best
case and minimally structured settings the worst case,
it is evident that structure is beneficial.

2) The proof presented in Section VII shows that the
minimally structured setting still has some (unavoidable)
combinatoric structure that is critical for the optimal
achievable scheme.

3) To contrast with the previous observation, consider the
following. Suppose m1 = m2 � m� and all alphabet
sizes grow together proportionately. Then the minimally
structured setting essentially loses all its structure and
random binning is close to optimal. To see this, con-
sider the term log2(m1m2) − log2(m1 + m2 − 1).

4A permutation π on [m] is the identity if and only if it maps every element
to itself, i.e., π[i] = i for all i ∈ [m].

5A permutation π on [m] is a derangement if and only if no element is
mapped to itself, i.e., π[i] �= i for all i ∈ [m].

For large values of m�, this becomes ≈ 2 log2(m�) −
log2(2m�) = log2(m�)−1 = H(w�

1)−1. So the capacity
CCB approaches the value H(w1, w2)/[H(w1)+H(w�

1)]
which is achievable6 by random binning. Thus, random
binning is asymptotically optimal for minimally struc-
tured instances of matching computation broadcast.

IV. PROOF OF THEOREM 2: A GENERAL CONVERSE

The converse in Theorem 2 consists of the following two
bounds.

H(S) ≥ H(W1|W �
1) + H(W2|W �

2) − I(W2; W1, W
�
1|W �

2)
(48)

= H(W1|W �
1) + H(W2|W1, W

�
1, W

�
2) (49)

H(S) ≥ H(W2|W �
2) + H(W1|W2, W

�
2, W

�
1) (50)

We only need to prove (49), as the proof of (50) follows from
symmetry. The proof of (49) is presented next. Note that in the
proofs, the relevant equations needed to justify each step are
specified by the equation numbers set on top of the (in)equality
symbols.

We expand the joint entropy H(S, W1|W �
1) in two different

ways. On the one hand, we have

H(S, W1|W �
1) = H(S|W �

1) + H(W1|W �
1, S) (51)

(1)

≤ H(S) (52)

On the other hand, we have

H(S, W1|W �
1) (53)

= H(W1|W �
1) + H(S|W1, W

�
1) (54)

≥ H(W1|W �
1) + H(S|W1, W

�
1)

− H(S|W1, W
�
1, W2, W

�
2) (55)

= H(W1|W �
1) + I(S; W2, W

�
2|W1, W

�
1) (56)

= H(W1|W �
1) + H(W2, W

�
2|W1, W

�
1)

− H(W2, W
�
2|W1, W

�
1, S) (57)

= H(W1|W �
1) + H(W �

2|W1, W
�
1) + H(W2|W1, W

�
1, W

�
2)

− H(W �
2|W1, W

�
1, S) − H(W2|W1, W

�
1, W

�
2, S) (58)

(2)
= H(W1|W �

1) + H(W2|W1, W
�
1, W

�
2)

+ I(S; W �
2|W1, W

�
1) (59)

≥ H(W1|W �
1) + H(W2|W1, W

�
1, W

�
2) (60)

Thus combining (52) and (60), we have the desired bound (49).
The proof of Theorem 2 is complete.

V. PROOF OF THEOREM 3: LINEAR ACHIEVABILITY

Without loss of generality we will assume that W1 is
independent of W �

1, and similarly, W2 is independent of W �
2.

There is no loss of generality in this assumption because
any linear dependence between W1 and W �

1, or between W2

and W �
2, can be extracted separately as a sub-message that is

already available to the user, and therefore can be eliminated
from the user’s demand.

6It is achieved by separately compressing and sending w1, w′
1. User 1

directly receives w1 and User 2 decodes w2 = πw′
1,w′

2
(w1).
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Recall that X = (x1; x2; . . . ; xm) is an m×1 random vector,
whose elements xi are i.i.d. uniform over Fq . All entropies in
this section are measured in units of q-ary symbols. For any
matrix A ∈ F

m×n
q , we will use the notation A to denote the

set of column vectors of A.
Lemma 2: For an arbitrary m × n matrix A ∈ F

m×n
q ,

H(XT A) = rank(A).
Definition 5 (Independent subspaces): Subspaces A,B ⊂

F
m
q are independent if A ∩ B = {0}.
Lemma 3: For arbitrary matrices A ∈ F

m×nA
q ,B ∈

F
m×nB
q , the mutual information I(XT A;XT B) = 0 if and

only if span(A) and span(B) are independent subspaces.
The proofs of Lemma 2 and Lemma 3 are immediate and are
deferred to the Appendix.
Define

V1a =
[
V(1)

1a ,V(2)
1a , · · · ,V(n1a)

1a

]
∈ F

m×n1a
q ,

V2a =
[
V(1)

2a ,V(2)
2a , · · · ,V(n2a)

2a

]
∈ F

m×n2a
q (61)

V1b =
[
V(1)

1b ,V(2)
1b , · · · ,V(n1b)

1b

]
∈ F

m×n1b
q ,

V2b =
[
V(1)

2b ,V(2)
2b , · · · ,V(n2b)

2b

]
∈ F

m×n2b
q (62)

V1c =
[
V(1)

1c ,V(2)
1c , · · · ,V(n1c)

1c

]
∈ F

m×n1c
q ,

V2c =
[
V(1)

2c ,V(2)
2c , · · · ,V(n2c)

2c

]
∈ F

m×n2c
q (63)

such that

1) V1a, V1b, V1c are disjoint sets.
2) V1a is a basis for span(V1) ∩ span(V �

1 ∪ V �
2).

3) V1a ∪ V1b is a basis for span(V1)∩ span(V �
1 ∪ V �

2 ∪ V2).
4) V1a ∪ V1b ∪ V1c is a basis for span(V1).
5) V2a, V2b, V2c are disjoint sets.
6) V2a is a basis for span(V2) ∩ span(V �

1 ∪ V �
2).

7) V2a ∪ V2b is a basis for span(V2)∩ span(V �
1 ∪ V �

2 ∪ V1).
8) V2a ∪ V2b ∪ V2c is a basis for span(V2).

Recall that basis vectors must be linearly independent. The
existence of such Via, Vib, Vic, i ∈ {1, 2}, follows from the
Steinitz exchange lemma which guarantees that given a set of
basis vectors {p1,p2, · · · ,pk} for a k-dimensional subspace
P , and an arbitrary m-dimensional vector space Q, such
that P ⊂ Q, there exist q1, · · · ,qm−k ∈ Q\P such that
{p1,p2, · · · ,pk,q1,q2, · · · ,qm−k} is a basis for Q.

Remark: As an illustration of this construction, consider the
example presented in Section III-B where we have,

X = [x1, x2, x3, x4, x5, x6, x7]T (64)

W�
1 = [x1, x3], W1 = [x1+2x2, x3+x5, x1+x4+x6, x7]

(65)

W�
2 = [x2, x4], W2 = [2x1 + x2, x5, x2 + x4 + 2x6] (66)

This gives us,

V�
1 = [e1, e3], V1 = [e1 + 2e2, e3 + e5, e1 + e4 + e6, e7]

(67)

V�
2 = [e2, e4], V2 = [2e1 + e2, e5, e2 + e4 + 2e6] (68)

and

V1a = [e1 + 2e2], V2a = [2e1 + e2] (69)

V1b = [e3 + e5, e1 + e4 + e6], V2b = [e5, e2 + e4 + 2e6]
(70)

V1c = [e7], V2c = [ ] (71)

where ei denotes the ith column of the 7 × 7 identity
matrix.

Next, for i ∈ {1, 2} and {i, ic} = {1, 2}, define Wia =
XT Via, Wib = XT Vib, Wic = XT Vic, so that

H(Wia,Wib,Wic) = H(Wi) (72)

H(Wia) + H(Wib) + H(Wic) = H(Wi) (73)

nia + nib + nic = H(Wi) (74)

H(Wia) = nia (75)

H(Wia | W�
1,W

�
2) = 0 (76)

H(Wib | W�
1,W

�
2) = nib (77)

H(Wia,Wib | W�
1,W

�
2,Wic) = 0 (78)

H(Wic | W�
1,W

�
2,Wic) = nic (79)

H(Wia,Wib,Wic | W�
1,W

�
2,W1,W2) = 0 (80)

(72) follows from the fact that Via ∪ Vib ∪ Vic is the basis
for the space spanned by Vi, which makes Wi an invertible
function of (Wia,Wib,Wic). (73)-(75) follow from Lemma 2
and the fact that the nia + nib + nic vectors in Via ∪Vib ∪Vic

form a basis, so they are linearly independent. (76) holds
because Via ⊂ span(V �

1 ∪ V �
2), which makes Wia a function

of W�
1,W

�
2. (77) holds because span(Vib) is independent of

span(V �
1 ∪ V �

2 ). This is because if a non-zero vector U ∈
span(Vib) ∩ span(V �

1 ∪ V �
2) then U ∈ span(Vib) and U ∈

span(Via), i.e., Vib and Via do not span independent spaces,
so Via∪Vib∪Vic cannot be a set of basis vectors. Similarly, (79)
holds because Vic and V �

1 ∪ V �
2 ∪ Vic span independent spaces

(otherwise Vic and Vib cannot span independent spaces). (78)
holds because Via ∪Vib ⊂ span(V �

1 ∪V �
2 ∪Vic), and (80) holds

because Via ∪ Vib ∪ Vic ⊂ span(V �
1 ∪ V �

2 ∪ V1 ∪ V2).
Since V1b ⊂ span(V �

1 ∪V �
2 ∪V2), there exist matrices M�

1 ∈
F

n′
1×n1b

q , M�
2 ∈ F

n′
2×n1b

q , M2a ∈ F
n2a×n1b
q , M2b ∈ F

n2b×n1b
q ,

M2c ∈ F
n2c×n1b
q , such that

V1b = V�
1M

�
1 + V�

2M
�
2 + V2aM2a + V2bM2b + V2cM2c.

(81)

We will now show that without loss of generality, M2a,M2c

are zero matrices, and M2b is an invertible square matrix.
Since V2a can be expanded as a linear combination of V�

1

and V�
2, and absorbed into corresponding terms in (81), there

is no loss of generality in the assumption that M2a is the
zero matrix, i.e., a matrix whose elements are all zeros. Next,
without loss of generality, we can also assume M2c is a zero
matrix because span(V2c) and span(V �

1 ∪ V �
2 ∪ V2b ∪ V1b) are

independent subspaces. This is because of Lemma 3 and the
fact that W2c is independent of (W�

1,W
�
2,W2b,W1b) as
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shown below.

I(W2c;W�
1,W

�
2,W2b,W1b)

= H(W2c) − H(W2c | W�
1,W

�
2,W2b,W1b) (82)

= n2c − H(W2c | W�
1,W

�
2,W2b,W1b) (83)

≤ n2c − H(W2c | W�
1,W

�
2,W2b,W1) (84)

= n2c − H(W2c | W�
1,W

�
2,W1) (85)

= 0. (86)

(84) holds because V1b ⊂ span(V1), which makes W1b a
function of W1, while (85) holds because according to (78)
W2b is a function of W�

1,W
�
2,W1. Thus, without loss of

generality (81) reduces to

V1b = V�
1M

�
1 + V�

2M
�
2 + V2bM2b. (87)

Next, let us prove that M2b is a square matrix, i.e., n1b = n2b.

I(W1;W2 | W�
1,W

�
2)

= H(W1 | W�
1,W

�
2) − H(W1 | W2,W�

1,W
�
2) (88)

= n1b + n1c − n1c (89)

= n1b (90)

and similarly,

I(W1;W2 | W�
1,W

�
2)

= H(W2 | W�
1,W

�
2) − H(W2 | W1,W�

1,W
�
2) (91)

= n2b + n2c − n2c (92)

= n2b (93)

Therefore, n1b = n2b � nb and M2b is a square matrix. Next,
let us prove that it has full rank. Suppose on the contrary
that M2bU = 0 for some U ∈ F

nb×1
q which is not the

zero vector. Then (81) implies that V1bU = V�
1M

�
1U +

V�
2M

�
2U ∈ span(V1a). But V1bU also belongs to span(V1b).

Since span(V1a) and span(V1b) are independent subspaces,
we must have V1bU = 0. This is a contradiction because
V1b is comprised of linearly independent vectors (because it is
a basis), and U is not the zero vector. The contradiction proves
that M2b must have full rank, i.e., it must be invertible.
Remark: For the example presented in Section III-B and
matrices specified in (67) - (71), we have

V1b = [e3 + e5, e1 + e4 + e6] (94)

= [e1, e3]
[

0 1
1 0

]
+ [e2, e4]

[
0 − 1

2
0 1

2

]

+ [e5, e2 + e4 + 2e6]
[

1 0
0 1

2

]
(95)

= V�
1M

�
1 + V�

2M
�
2 + V2bM2b (96)

Without loss of generality, suppose n1a ≥ n2a. Since V1a ⊂
span(V �

1∪V �
2), there exist P�

1 ∈ F
n′

1×n1a
q , P�

2 ∈ F
n′

2×n1a
q , such

that the m × n1a matrix

V1a = V�
1P

�
1 + V�

2P
�
2. (97)

Similarly, there exist Q�
1 ∈ F

n′
1×n1a

q , Q�
2 ∈ F

n′
2×n1a

q , such that
the m × n1a matrix[

V2a,0m×(n1a−n2a)

]
= V�

1Q
�
1 + V�

2Q
�
2. (98)

Note that n1a − n2a columns of zeros are appended to V2a

to create a matrix the same size as V1a.
The transmitted vector S ∈ F

(n1a+n1b+n1c+n2c)×1
q is now

specified as

S =

(
XT (V�

1Q
�
1 + V�

2P
�
2)︸ ︷︷ ︸

Sa: 1×n1a

, XT (V2bM2b + V�
2M

�
2)︸ ︷︷ ︸

Sb: 1×n1b

,

XT V1c,XT V2c︸ ︷︷ ︸
Sc: (1×n1c),(1×n2c)

)T

(99)

Remark: For the example presented in Section III-B and
matrices specified in (67) - (71), we have

V1a = [e1 + 2e2] = [e1, e3]
[

1
0

]
+ [e2, e4]

[
2
0

]
= V�

1P
�
1 + V�

2P
�
2 (100)

V2a = [2e1 + e2] = [e1, e3]
[

2
0

]
+ [e2, e4]

[
1
0

]
= V�

1Q
�
1 + V�

2Q
�
2 (101)

Sa = XT (V�
1Q

�
1 + V�

2P
�
2) = XT (2e1 + 2e2) = 2x1 + 2x2

(102)

Sb = XT (V2bM2b + V�
2M

�
2) = XT (e5, e4 + e6)

= (x5, x4 + x6) (103)

Sc = (XT V1c,XT V2c) = XT e7 = x7 (104)

Note that Sb in (103) is slightly different (in fact invertible)
from that in (31) because here the invertible matrix M1b is
absorbed into M2b.

Let us verify that each user can recover their desired
message from S and their own side-information.

Sa − W�
1Q

�
1 + W�

1P
�
1

= XT (V�
1Q

�
1 + V�

2P
�
2 − V�

1Q
�
1 + V�

1P
�
1) = XT V1a = W1a

(105)

Sb + W�
1M

�
1

= XT (V2bM2b + V�
2M

�
2 + V�

1M
�
1) = XT V1b = W1b

(106)

Sa − W�
2P

�
2 + W�

2Q
�
2

= XT (V�
1Q

�
1 + V�

2P
�
2 − V�

2P
�
2 + V�

2Q
�
2)

= XT [V2a,0] = [W2a,0] (107)

(Sb − W�
2M

�
2)M

−1
2b

= XT (V2bM2b + V�
2M

�
2 − V�

2M
�
2)M

−1
2b = XT V2b = W2b

(108)

Sc = (W1c,W2c) (109)

Thus, User 1 is able to recover W1a from (Sa,W�
1) according

to (105), W1b from (Sb,W�
1) according to (106), and W1c

directly from Sc. Similarly, User 2 is able to recover W2a

from (Sa,W�
2) according to (107), W2b from (Sb,W�

2)
according to (108), and W2c directly from Sc.

Finally, note that H(S) ≤ n1a + n1b + n1c + n2c =
H(W1) + H(W2 | W�

1,W
�
2,W1) = H(W1 | W�

1) +
H(W2 | W�

1,W
�
2,W1) which matches the converse.
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VI. PROOF OF LEMMA 1

Define the optimal normalized broadcast cost as

H∗ � H(w1, w2)
CCB

= inf
H(S)

L
. (110)

Note that the infimum is over all feasible S subject to (1),
(2), (3) and L ∈ N. Now proving CCB2 = 4/(4 − log2(3))
is equivalent to proving that H∗ = 4 − log2(3). To show
that H∗ = 4 − log2(3) bits, we first prove a converse bound
that shows H∗ ≥ 4 − log2(3) in Section VI-A, and then
an achievable scheme that shows H∗ ≤ 4 − log2(3) in
Section VI-B.

A. Converse: H∗ ≥ 4 − log2(3) bits

Let us start with a key observation, stated in the following
lemma.

Lemma 4: Any achievable scheme for CB2 with block
length L, i.e., any PS|W1,W2,W ′

1,W ′
2

that satisfies (1)-(3) for the
Pw1,w2,w′

1,w′
2

specified by CB2, must have H(W �
1, W

�
2|S) ≤

L log2(3).
Proof: Denote the decoding functions of User 1 and User 2

by FW ′
1

and GW ′
2
, respectively. The subscripts indicate that the

decoding functions depend on the side-information available
to each user. Because we require zero-error decoding, we must
have,

FW ′
1
(S) = W1, GW ′

2
(S) = W2 (111)

⇔ [FW ′
1
(S)
]
l
= W1(l),

[GW ′
2
(S)
]
l
= W2(l), ∀l ∈ [L]

(112)

where for a length L sequence A, [A]l denotes the l-th symbol
of A.

From (41), we note the following relationship. For any
l ∈ [L],

W �
1(l) = 0 ⇒ W2(l) = (W1(l) + W �

2(l)) mod 4 (113)

W �
1(l) = 1 ⇒ W2(l) = (W1(l) + 3 − W �

2(l)) mod 4
(114)

We now show that conditioned on any realization of S, and
for each index l ∈ [L], there are only three possible values
for the tuple (W �

1(l), W
�
2(l)). Here is a proof by contradiction.

Suppose on the contrary that there exists some realization S∗

of S and some index l∗ ∈ [L] such that (W �
1(l

∗), W �
2(l

∗))
can take all 4 values in the set {(0, 0), (0, 1), (1, 0), (1, 1)}.
In particular, let A1, A2 be the realizations of the length L
sequence W �

1 and B1, B2 be the realizations of the length
L sequence W �

2 such that (A1(l∗), A2(l∗)) = (0, 1) and
(B1(l∗), B2(l∗)) = (0, 1). From (112), (113), (114), we have

W �
1 = A1, W

�
2 = B1

⇒W �
1(l

∗) = 0, W �
2(l

∗) = 0 (115)
(113)⇒ W2(l∗) = (W1(l∗) + 0) mod 4 (116)
(112)⇒ [GB1(S

∗)]l∗ = ([FA1(S
∗)]l∗ + 0) mod 4 (117)

Similarly, W �
1 = A1, W

�
2 = B2

⇒ [GB2(S
∗)]l∗ = ([FA1(S

∗)]l∗ + 1) mod 4 (118)

W �
1 = A2, W

�
2 = B1

⇒ [GB1(S
∗)]l∗ = ([FA2(S

∗)]l∗ + 3 − 0) mod 4 (119)

W �
1 = A2, W

�
2 = B2

⇒ [GB2(S
∗)]l∗ = ([FA2(S

∗)]l∗ + 3 − 1) mod 4 (120)

Note that (117) - (118) - (119) + (120) gives us 0 = −2
mod 4, which is a contradiction. Thus, we have shown that
given any realization of S, there are at most 3L possible
realizations of (W �

1, W
�
2). Using the fact that the uniform

distribution maximizes entropy, H(W �
1, W

�
2 | S) ≤ L log2(3)

and Lemma 4 is proved.

Equipped with Lemma 4, the converse proof is immediate.
Let us expand H(W �

1, W
�
2, S) in two ways. On the one hand,

H(W �
1, W

�
2, S) = H(W �

1, W
�
2) + H(S|W �

1, W
�
2) (121)

= 2L + H(S, W1, W2|W �
1, W

�
2) (122)

≥ 2L + H(W1, W2|W �
1, W

�
2) (123)

= 4L (124)

where (122) follows from the decoding constraints, i.e., from
S, W �

1, W
�
2, we can decode W1, W2 with no error. On the other

hand,

H(W �
1, W

�
2, S) = H(S) + H(W �

1, W
�
2|S) (125)

≤ H(S) + L log2(3) (126)

as shown in Lemma 4. Combining (124) and (126), we have

∀L ∈ N, H(S) + L log2(3) ≥ 4L (127)

⇒ H(S)
L

≥ 4 − log2(3) (128)

⇒ H∗ = inf
H(S)

L
≥ 4 − log2(3). (129)

and the proof of the converse bound H∗ ≥ 4 − log2(3) is
complete.

B. Achievability: H∗ ≤ 4 − log2(3) bits

Based on the alphabet, the set of possible values of
(w�

1, w
�
2) is W �

1×W �
2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. Note that

|W �
1 × W �

2| = 4. Consider an arbitrary sequence of subsets
W(l) ⊂ W �

1 × W �
2 such that |W(l)| = 3. First we show

that if (W �
1(l), W

�
2(l)) tuples are restricted to take values in

W(l), then sending 2L bits is sufficient to satisfy both users’
demands. This result is stated in the following lemma.

Lemma 5: For any L ∈ N, if for all l ∈ [L], the tuple
(W �

1(l), W
�
2(l)) ∈ W(l) ⊂ W �

1 × W �
2, |W(l)| = 3, and

the sequence W(l), l ∈ [L] is already known to the users,
then broadcasting 2L bits is sufficient to satisfy both users’
demands.

Proof: We have 4 cases for W(l) as listed below.

1) W = {(0, 0), (0, 1), (1, 0)}. In this case, the relationship
between W2(l) and W1(l) can be described as W2(l) =
(W1(l)+3W �

1(l)+W �
2(l)) mod 4 such that transmitting

S(l) = (W1(l)+3W �
1(l)) mod 4 is sufficient to satisfy

both users’ demands. User 1 simply subtracts 3W �
1(l)

(modulo 4) to get W1(l), and User 2 adds W �
2(l)

(modulo 4) to get W2(l).
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2) W = {(0, 0), (0, 1), (1, 1)}. Here we have W2(l) =
(W1(l) + W �

1(l) + W �
2(l)) mod 4 and set S(l) =

(W1(l)+W �
1(l)) mod 4. User 1 simply subtracts W �

1(l)
to get W1(l), and User 2 adds W �

2(l) to get W2(l), all
modulo 4.

3) W = {(0, 0), (1, 0), (1, 1)}. Here we have W2(l) =
(W1(l) + 3W �

1(l) − W �
2(l)) mod 4 and we choose to

send S(l) = (W1(l)+3W �
1(l)) mod 4. User 1 subtracts

3W �
1(l) from S(l) to get W1(l), and User 2 subtracts

W �
2(l) from S(l) to get W2(l), all modulo 4.

4) W = {(0, 1), (1, 0), (1, 1)}. Here we have W2(l) =
(W1(l)+W �

1(l)+W �
2(l)+2) mod 4 and we set S(l) =

(W1(l) + W �
1(l)) mod 4. User 1 subtracts W �

1(l) from
S(l) to get W1(l), and User 2 adds W �

2(l)+2 from S(l)
to get W2(l), all modulo 4.

Note that in every case, for each l ∈ [L], S(l) is a number
modulo 4 which is represented by 2 bits, so broadcasting
2L bits is sufficient overall. The proof of Lemma 5 is thus
complete.

The key to the achievable scheme is to send W(l) to
the users, in addition to the 2L bits that are needed once
W(l) is known to both users. To describe W(l) it suffices to
describe its complement, i.e., (W �

1×W �
2)\W(l). Equivalently,

we wish to describe to the users 1 element of W �
1 × W �

2

which is not the actual realization of (W �
1(l), W

�
2(l)) tuple

so that the users know that the actual realization is among the
3 remaining values. Since there are 3 values that are not the
actual realization, we have 3 choices for what to send for each
l ∈ [L]. Overall, we have 3L choices for (W �

1, W
�
2) tuples that

do not match the actual realization for any l ∈ [L]. We next
show that conveying one of these 3L possibilities (out of the
total 4L possibilities) requires (2− log2(3))L+o(L) bits with
probability of error � → 0 as L → ∞. This result is stated in
the following lemma with general parameters, which will be
used again in the proof of Theorem 5.

Lemma 6: Suppose there is a set of nL
1 tuples known to a

transmitter and receiver, out of which an arbitrary subset of
nL

2 tuples are designated acceptable, n1, n2 ∈ N, n2 < n1.
The acceptable tuples are known only to the transmitter, and
the goal is for the transmitter to communicate any one of
these acceptable tuples to the receiver. Then there exists an
�-error scheme that allows the transmitter to accomplish this
task by sending only (log2(n1) − log2(n2))L + o(L) bits to
the receiver.

The detailed proof of Lemma 6 is deferred to Section VI-
C. Let us present an outline of the proof here. The scheme
is based on random binning. Throw the nL

1 tuples uniformly
into roughly nL

2 bins. Pick bin 1. Find an acceptable tuple in
bin 1 and send its index. Because there are nL

2 bins and nL
2

acceptable tuples, an � change in the exponents will guarantee
that each bin will typically get at least one acceptable tuple
with high probability. Specifying the index of the acceptable
tuple will take log2(nL

1 /nL
2 ) = (log2(n1) − log2(n2))L bits

because each bin contains approximately nL
1 /nL

2 tuples.
Finally, let us summarize the overall achievable scheme

which requires a minor adjustment to make it a zero-error
scheme. For each realization of (W1, W2, W

�
1, W

�
2), we use

the scheme from Lemma 6 to find and specify one acceptable

(W �
1, W

�
2) tuple, i.e., a tuple that does not match the actual

realization of (W �
1(l), W �

2(l)) for any l ∈ [L] to both users.
With probability 1− �, an acceptable (W �

1, W
�
2) tuple is found

and specified, and then we use the scheme from Lemma 5 so
that each user decodes the desired message. The total number
of bits broadcast in this case is (2 − log2(3))L + o(L) + 2L.
With probability �, we do not find an acceptable (W �

1, W
�
2)

tuple. In this case, we directly send (W1, W2), and the number
of bits broadcast is 8L bits. Therefore, the average number of
bits broadcast to the users is

(1 − �) × [(4 − log2(3))L + o(L)] + � × 8L + 1 (130)

where 1 extra bit is used to specify if an acceptable (W �
1, W

�
2)

tuple is found. This implies that

H(S) ≤ (1 − �) × [(4 − log2(3))L + o(L)] + � × 8L + 1

(131)

⇒ H∗ = inf
H(S)

L
≤ 4 − log2(3). (132)

The achievability proof, i.e., the proof of the bound H∗ ≤
4 − log2(3) bits, is thus complete.

Combining the converse and achievability proofs we have
shown that H∗ = 4− log2(3) bits, which implies that CCB2 =
H(w1,w2)

H∗ = 4
4−log2(3)

by definition.

C. Proof of Lemma 6

Fix L ∈ N and δ = 1√
L

such that L(1 − δ) is an integer.

We have nL
1 tuples and n

L(1−δ)
2 bins. For each tuple, choose a

bin index independently and uniformly over [nL(1−δ)
2 ]. Denote

the bin index of the i-th tuple by Xi, i ∈ [nL
1 ], so Xi is

uniformly distributed over [nL(1−δ)
2 ].

The number of tuples with bin index 1 is T1 =∑
i∈[nL

1 ] �(Xi = 1). Its expected value and variance are
computed as follows.

μ1 = E

⎡
⎣ ∑

i∈[nL
1 ]

�(Xi = 1)

⎤
⎦ =

∑
i∈[nL

1 ]

E [�(Xi = 1)]

=
nL

1

n
L(1−δ)
2

(133)

σ2
1 = E

⎡
⎢⎣
⎛
⎝ ∑

i∈[nL
1 ]

�(Xi = 1)

⎞
⎠2
⎤
⎥⎦− μ2

1

= E

⎡
⎣
⎛
⎝ ∑

i∈[nL
1 ]

�(Xi = 1)

⎞
⎠
⎛
⎝ ∑

j∈[nL
1 ]

�(Xj = 1)

⎞
⎠
⎤
⎦− μ2

1

=
∑

i∈[nL
1 ]

E

[
(�(Xi = 1))2

]
+

∑
i�=j,i,j∈[nL

1 ]

E [�(Xi = 1)(Xj = 1)] − μ2
1 (134)

=
nL

1

n
L(1−δ)
2

+
n2L

1 − nL
1

n
2L(1−δ)
2

− n2L
1

n
2L(1−δ)
2

= nL
1

(
1

n
L(1−δ)
2

− 1

n
2L(1−δ)
2

)
(135)

Authorized licensed use limited to: University of North Texas. Downloaded on August 12,2020 at 15:58:52 UTC from IEEE Xplore.  Restrictions apply. 



SUN AND JAFAR: ON THE CAPACITY OF CB 3429

From Chebyshev’s inequality, we have

Pr(T1 ≥ (1 + δ)μ1)

≤ σ2
1

δ2μ2
1

=
nL

1

(
1

n
L(1−δ)
2

− 1

n
2L(1−δ)
2

)
δ2 n2L

1

n
2L(1−δ)
2

=
n

L(1−δ)
2 − 1

δ2nL
1

(136)

Therefore, for any small constant �, we can find a sufficiently
large L such that

Pr(T1 ≥ (1 + δ)μ1) ≤ �/2 (137)

Consider any nL
2 acceptable tuples. Denote the bin index for

the i-th acceptable tuple by Yi, i ∈ [nL
2 ], and Yi is also

uniform over [nL(1−δ)
2 ]. We similarly consider the number

of acceptable tuples with bin index 1, denoted as T2 =∑
i∈[nL

2 ] �(Yi = 1).

μ2 = E [T2] = nLδ
2 , σ2

2 = E
[
T 2

2

]− μ2
2

= nLδ
2 (1 − n

−L(1−δ)
2 ) (138)

Pr(T2 = 0) ≤ Pr(|T2 − μ2| ≥ δμ2)

≤ 1 − n
−L(1−δ)
2

δ2nLδ
2

≤ �/2 (139)

The coding scheme works as follows. When the number of
tuples in bin 1, i.e., T1 ≥ (1+ δ)μ1, declare an error. If there
is no acceptable tuple in bin 1 (T2 = 0), declare an error.
Otherwise, we send the index of any acceptable tuple. From
(137), (139) and the union bound, the error probability is no
larger than �/2+�/2 = �, which can be made arbitrarily small
by picking a sufficiently large L.

Finally, we compute the number of bits used. Note that
δ = 1/

√
L.

log2 ((1 + δ)μ1)

= log2(1 + δ) + log2

(
nL

1

nL
2 n−Lδ

2

)

= L log2

(
n1

n2

)
+
√

L log2(n2) + log2(1 +
1√
L

)

= L(log2(n1) − log2(n2)) + o(L) (140)

Therefore, the number of bits used matches that in the lemma.
The proof of Lemma 6 is complete.

VII. PROOF OF THEOREM 5

For the proof, it will be less cumbersome to work with the
optimal normalized broadcast cost as defined in (110). Specif-
ically, we first prove that log2(m) bits ≤ H∗ ≤ log2(m) +
log2(m1m2) − log2(m1 + m2 − 1) bits in Section VII-A.
Then we show that the upper extreme is tight for mini-
mally structured settings in Section VII-B, and that the lower
extreme is tight if the setting is maximally structured in
Section VII-C.

A. log2(m) bits ≤ H∗ ≤ log2(m) + log2(m1m2)−
log2(m1 + m2 − 1) bits

The lower bound, H∗ ≥ log2(m) bits follows immediately
from Theorem 2. The bound is quite obvious, as H∗ ≥
H(w1|w�

1) = log2(m). The remainder of this section is aimed
at proving the upper bound, H∗ ≤ log2(m) + log2(m1m2)−
log2(m1 + m2 − 1) bits. We will construct an achievable
scheme that works for all settings of matching computation
broadcast. To this end, let us introduce some definitions along
with illustrative examples. Without loss of generality, we will
assume m1 ≥ m2.

Definition 6 (Standard Form, •-Set and ◦-Set): Let us att-
ach a label to each element (ai, bj), i ∈ [m1], j ∈ [m2] of the
Π matrix as follows. The (ai, bj) element is labelled with • if
bj = 1 or if bj = ai + 1. Otherwise, label it with ◦. We will
refer to this labelling of Π as the standard form. The set of
(ai, bj) with label • is called the •-set and the set of (ai, bj)
with label ◦ is called the ◦-set. Note that the cardinality of the
•-set is m1 + m2 − 1 and the ◦-set is the complement of the
•-set.

For example, when m1 = 3, m2 = 2, the standard form
of Π, •-set and ◦-set are shown below.

w�
2 = 1 w�

2 = 2
w�

1 = 1 • π1,1 • π1,2

w�
1 = 2 • π2,1 ◦ π2,2

w�
1 = 3 • π3,1 ◦ π3,2

(standard form)

• − set : {(1, 1), (2, 1), (3, 1), (1, 2)}
◦ − set : {(2, 2), (3, 2)}

Definition 7 (Translation): Consider any cyclic shift of the
rows and/or columns of Π labelled in standard form, i.e., ∀i ∈
[m1], the i-th row is shifted to the ((i+z1) mod m1)-th row
and ∀j ∈ [m2], the j-th column is shifted to the ((j + z2)
mod m2)-th column, i, z1 ∈ [m1], j, z2 ∈ [m2]. The resulting
•-set and ◦-set are called translations.

For example, when m1 = 3, m2 = 2, all possible transla-
tions of the •-set and the ◦-set are shown below.

• •
• ◦
• ◦

• ◦
• ◦
• •

• ◦
• •
• ◦

• •
◦ •
◦ •

◦ •
◦ •
• •

◦ •
• •
◦ •

where the first translation is the original standard form, and
the second translation is obtained by setting z1 = 2, z2 = 2 =
0 mod 2 (rows are cyclicly shifted by 2 and columns are not
shifted).

Following the notion in geometry, translation refers to a
function that moves an object without rotating or flipping it.
Intuitively, we may think of it as replicating the standard form
grid pattern infinitely in space, and choosing any contiguous
m1 × m2 block from that infinite grid. Such a block is a
translation.

For our achievable scheme, we will only consider the •-sets
and ◦-sets that can be obtained by translations of the standard
form. Such •-sets and ◦-sets are called regular •-sets and
regular ◦-sets, respectively. The importance of regular •-sets
is highlighted in the following lemma, where we show that
if (w�

1, w
�
2) can only take values from a regular •-set, then

sending log2(m) bits per symbol is sufficient to satisfy both
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users’ demands. Essentially, the following lemma generalizes
Lemma 5.

Lemma 7: For any L ∈ N, if for all l ∈ [L], the tuple
(W �

1(l), W
�
2(l)) ∈ W(l) ⊂ [m1]× [m2], each W(l) is a regular

•-set, and the sequence W(l), l ∈ [L] is already known to the
users, then broadcasting L log2(m) bits is sufficient to satisfy
both users’ demands.

Proof: For any L, consider an arbitrary regular •-set with
cyclic shifts z1, z2 so that the •-set contains the following
elements.

•-set = {(1 + z1, 1 + z2), (2 + z1, 1 + z2), · · · ,

(m1 + z1, 1 + z2), (1 + z1, 2 + z2),
(2 + z1, 3 + z2), · · · , (m2 − 1 + z1, m2 + z2)}

(141)

where for an element (ai, bj) ∈ •-set, ai is interpreted modulo
m1 and bj is interpreted modulo m2.

We show that there exist m1 + m2 permutations
δ1, · · · , δm1 , γ1, · · · , γm2 over [m] such that the following
equation holds.

γw′
2
δw′

1
= πw′

1,w′
2
, ∀(w�

1, w
�
2) ∈ •-set (142)

Such δi, γj , i ∈ [m1], j ∈ [m2] are chosen as follows.

Choose γ1+z2 to be an arbitrary permutation, say identity.

Set δ1+z1 = γ−1
1+z2

π1+z1,1+z2

such thatγ1+z2δ1+z1 = π1+z1,1+z2

Set δ2+z1 = γ−1
1+z2

π2+z1,1+z2

such that γ1+z2δ2+z1 = π2+z1,1+z2

... (143)

Set δm1+z1 = γ−1
1+z2

πm1+z1,1+z2

such that γ1+z2δm1+z1 = πm1+z1,1+z2

Set γ2+z2 = π1+z1,2+z2δ
−1
1+z1

such that γ2+z2δ1+z1 = π1+z1,2+z2

Set γ3+z2 = π2+z1,3+z2δ
−1
2+z1

such that γ3+z2δ2+z1 = π2+z1,3+z2

...

Set γm2+z2 = πm2−1+z1,m2+z2δ
−1
m2−1+z1

such that γm2+z2δm2−1+z1 = πm2−1+z1,m2+z2

where we interpret the index of δi modulo m1 and the index
of γj modulo m2. It is easy to verify that with the choice
of δi, γj in (143), (142) is satisfied. The choices of δi, γj for
any regular •-set are fixed and known globally. The achievable
scheme now works as follows.

For any realization of (W1(l), W2(l), W �
1(l), W �

2(l)),
we send S(l) = δW ′

1(l)(W1(l)), which contains log2(m)
bits. Both users decode their desired messages using the
following structured decoding rule. User 1 takes the received
δW ′

1(l)(W1(l)) and applies the permutation δ−1
W ′

1(l) to obtain
W1(l). User 2 takes the received δW ′

1(l)(W1(l)) and applies

the permutation γW ′
2(l)

to obtain

γW ′
2(l)δW ′

1(l)(W1(l))
(142)
= πW ′

1(l),W ′
2(l)(W1(l))

(43)
= W2(l)

(144)

Note that (W �
1(l), W �

2(l)) ∈ •-set. Repeating the scheme above
for all l ∈ [L] gives us the zero-error scheme that broadcasts
L log2(m) bits. This completes the proof of Lemma 7.

To complete the description of the general achievable
scheme we must also send some information so that for each
l ∈ [L], the users know one regular •-set that includes the
actual realization of (W �

1(l), W
�
2(l)), so that we can apply the

scheme in Lemma 7. Such a regular •-set is called acceptable.
For example, suppose m1 = 3, m2 = 2 and the actual
realization of (W �

1(1), W �
2(1)) is (2, 1). Then the acceptable

regular •-set must contain (2, 1), which is indicated with a
shaded gray region below. So the only acceptable •-sets are
the following 4(= m1 + m2 − 1).

• •
•
•

•
•
• •

•
• •
•

•
• •

•
In general, for any realization of (W �

1(l), W
�
2(l)), let us show

that there are (m1 + m2 − 1) acceptable regular •-sets. This
result is stated in the following lemma.

Lemma 8: For any L and any realization of (W �
1, W

�
2), there

are (m1 + m2 − 1)L acceptable regular •-sets, out of all
(m1m2)L regular •-sets.

Proof: We first show that for any l ∈ [L], there are m1m2

regular •-sets. To this end, it suffices to show that all transla-
tions of the standard form produce distinct regular •-sets. Con-
sider two translated •-sets with cyclic shifts, (z1, z2), (z�1, z

�
2)

such that z1, z
�
1 ∈ [m1], z2, z

�
2 ∈ [m2], (z1, z2) �= (z�1, z

�
2).

Note that the •-set in standard form contains a column where
each element is labelled by •, so if z2 �= z�2, the two translated
•-sets are distinct (the column with all • is different). Now
consider the case where z2 = z�2 while z1 �= z�1. Here the two
translated •-sets are again distinct because the first row of the
•-set in standard form is distinct from all other rows and as
z1 �= z�1, the first row is shifted to distinct rows. Thus in total,
we have (m1m2)L regular sets.

Next we show that for any l ∈ [L] and any realization
(i∗, j∗) ∈ [m1] × [m2] of (W �

1(l), W
�
2(l)), there are m1 +

m2 − 1 acceptable regular •-sets. To see this, note that there
are m1 + m2 − 1 distinct elements labelled with a • in the
standard form. We may shift each element to (i∗, j∗), and
each such shift corresponds to a distinct translation. Thus in
total, we have (m1 +m2−1)L acceptable regular •-sets. This
completes the proof of Lemma 8.

Combining Lemma 8 and Lemma 6, we know that com-
municating an acceptable regular •-set to the users requires
L(log2(m1m2) − log2(m1 + m2 − 1)) bits with probability
1 − �. The overall achievable scheme is described as follows.
For each realization of (W1, W2, W

�
1, W

�
2), we use the scheme

from Lemma 6 to find and specify one acceptable regular •-set.
With probability 1 − �, an acceptable regular •-set is found,
and then we use the scheme from Lemma 7 so that each user
decodes the desired message. The number of bits broadcast is
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L(1 − �)[log2(m1m2) − log2(m1 + m2 − 1) + log2(m)]. For
the remaining probability �, we directly send (W1, W2). The
number of bits broadcast is 2L� log2(m) bits. One extra bit is
used to identify the cases where (W1, W2) are directly sent.
Therefore,

H∗ = inf
L∈N

H(S)
L

≤ 1/L
[
(1 − �) × [(log2(m) + log2(m1m2)

− log2(m1 + m2 − 1))]L + � × 2L log2(m) + 1
]

(145)

and since � → 0 as L → ∞, we have

H∗ ≤ log2(m) + log2(m1m2) − log2(m1 + m2 − 1).
(146)

The achievable scheme requires L → ∞ (mainly because of
the random binning operation in Lemma 6) which is sufficient
for our purpose. However, non-asymptotic schemes may also
be possible. To show this, let us show an example of an L = 1
scheme when m1 = 4, m2 = 3. This example is special
because log2(m1m2) − log2(m1 + m2 − 1) takes an integer
value of 1.

A non-asymptotic scheme when m1 = 4, m2 = 3: While
this scheme uses similar ideas as the asymptotic scheme, it is
based on a different definition of the •-set (not obtained by
translations from standard form). Specifically for this example,
the •-set is defined as follows.

γ1 γ2 γ3

δ1 • π1,1 ◦ π1,2 ◦ π1,3

δ2 • π2,1 • π2,2 ◦ π2,3

δ3 ◦ π3,1 • π3,2 • π3,3

δ4 ◦ π4,1 ◦ π4,2 • π4,3

Note that we label the rows and columns by the permutations
δi, γj that we assign as follows to satisfy γjδi = πi,j if (i, j) ∈
•-set (following the same idea from Lemma 7).

Choose γ1 to be an arbitrary permutation

Set δ1 = γ−1
1 π1,1, δ2 = γ−1

1 π2,1, γ2 = π2,2δ
−1
2 (147)

Set δ3 = γ−1
2 π3,2, γ3 = π3,3δ

−1
3 , δ4 = γ−1

3 π4,3

If the users know that (W �
1(1), W �

2(1)) ∈ •-set, then sending
δW ′

1(1)(W1(1)) (using log2(m) bits) is sufficient to satisfy
both users’s demands. After receiving δW ′

1(1)(W1(1)), User 1
applies δ−1

W ′
1(1) to obtain W1(1), and User 2 applies γW ′

2(1)

to obtain γW ′
2(1)δW ′

1(1)(W1(1)) = πW ′
1(1),W ′

2(1)(W1(1)) =
W2(1). Interestingly, if (W �

1(1), W �
2(1)) ∈ ◦-set, we may

assign δi, γj (differently) as follows such that γjδi = πi,j

if (i, j) ∈ ◦-set and sending δW ′
1(1)

(W1(1)) is sufficient to
satisfy both users’ demands.

Choose γ1 to be an arbitrary permutation

Set δ3 = γ−1
1 π3,1, δ4 = γ−1

1 π4,1, γ2 = π4,2δ
−1
4 (148)

Set δ1 = γ−1
2 π1,2, γ3 = π1,3δ

−1
1 , δ2 = γ−1

3 π2,3

The only remaining step is to send information so that
the users know (W �

1(1), W �
2(1)) belong to •-set or ◦-set, for

which 1 bit is sufficient. The broadcast cost thus achieved is

log2(m) + 1 = log2(m) + log2(m1m2)− log2(m1 + m2 − 1)
bits, which matches the optimal value H∗.

B. H∗ = log2(m) + log2(m1m2) − log2(m1 + m2 − 1) bits
if Minimally Structured

We show that for minimally structured settings, the general
achievable scheme described in Section VII-A is the best pos-
sible, i.e., H∗ ≥ log2(m)+log2(m1m2)− log2(m1 +m2−1)
bits.

We start with a lemma, which is a generalization of
Lemma 4. Interpreted through the lens of induced permu-
tations, Lemma 4 states that if the induced permutation of
a length-4 cycle is a derangement, then given S the set
of feasible (W �

1, W
�
2) tuple values can not include all the

terms of the cycle. The following lemma generalizes the same
argument to cycles of any length. For simplicity, if the induced
permutation of a cycle is a derangement, we say that the cycle
is a derangement cycle.

Lemma 9: For any given realization of S and for any sym-
bol index l ∈ [L], the set of feasible values for (W �

1(l), W �
2(l))

contains no derangement cycle.
Proof: The proof is by contradiction. So, let us assume

that for some given realization S∗ of S, and some l∗ ∈ [L],
the set of feasible values of (W �

1(l
∗), W �

2(l
∗)) contains a cycle

of length N ,

(a1, b1) ↔ (a2, b2) ↔ · · · ↔ (aN , bN ) ↔ (a1, b1) (149)

Thus, the feasible values for (W �
1(l∗), W �

2(l∗)) include all
of the values in the set {(a1, b1), (a2, b2), · · · , (aN , bN)}.
Let A1, A2, · · · , AN denote the corresponding realizations
of W �

1, so that we have Aj(l∗) = aj, j ∈ [N ], and
B1, B2, · · · , BN denote the corresponding realizations of W �

2

such that Bj(l∗) = bj . If aj = ak then Aj = Ak, and if
bj = bk then Bj = Bk. Recall that F ,G denote the decoding
functions of users 1 and 2, respectively. Based on the structure
of the matching computation broadcast problem (43) and the
zero-error decoding constraint (1), (2), we have

[GB1(S
∗)]l∗ = πa1,b1 [FA1(S

∗)]l∗

[GB2(S
∗)]l∗ = πa2,b2 [FA2(S

∗)]l∗

[GB3(S
∗)]l∗ = πa3,b3 [FA3(S

∗)]l∗
... (150)

[GBN (S∗)]l∗ = πaN ,bN [FAN (S∗)]l∗

From the definition of a cycle, it follows that

a1 = a2 ⇒ A1 = A2

b2 = b3 ⇒ B2 = B3

a3 = a4 ⇒ A3 = A4

b4 = b5 ⇒ B4 = B5

...
... (151)

aN−1 = aN ⇒ AN−1 = AN

bN = b1 ⇒ BN = B1
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Combining (150) and (151), we have

[GBN (S∗)]l∗ = πa1,bN [FA1(S
∗)]l∗

[GB2(S
∗)]l∗ = πa1,b2 [FA1(S

∗)]l∗
[GB2(S

∗)]l∗ = πa3,b2 [FA3(S
∗)]l∗

... (152)

[GBN (�s)]i∗ = πaN−1,bN

[FAN−1(S
∗)
]
l∗

which implies that

[GBN (S∗)]l∗ = πa1,bN π−1
a1,b2

πa3,b2 · · ·π−1
aN−1bN

[GBN (S∗)]l∗
(153)

Note that the cycle is a derangement cycle, so the induced
permutation πa1,bN π−1

a1,b2
πa3,b2 · · ·π−1

aN−1bN
is a derangement,

i.e., there is no fixed point.
However, note that

[GBN (S∗)]l∗ = W2(l∗)

= πa1,bN π−1
a1,b2

πa3,b2 · · ·π−1
aN−1bN

(W2(l∗)),

so the decoding is incorrect. Thus, we arrive at the contradic-
tion which completes the proof of Lemma 9.

Note that Lemma 9 holds in general, e.g., it is not limited to
minimally structured settings. Next, for minimally structured
settings we show that if a set of values for (W �

1(l), W �
2(l))

contains no derangement cycle, then the cardinality of the set
is no more than m1 + m2 − 1. The intuitive reason is that a
set of values for (W �

1(l), W �
2(l)) with more than m1 +m2− 1

elements over [m1]×[m2] must contain a cycle and every cycle
is a derangement cycle for minimally structured settings. This
result is stated in the following lemma.

Lemma 10: For minimally structured settings, if the set
M ⊂ [m1] × [m2] contains no derangement cycle, then

|M| ≤ m1 + m2 − 1 (154)

Proof: Since every cycle for a minimally structured setting
is a derangement cycle, we only need to show that |M| ≤
m1+m2−1 for cycle-free M ⊂ [m1]×[m2]. Let the elements
of [m1] × [m2] be mapped to the m1 × m2 table under the
natural ordering. Remove any rows or columns of the table
that have no elements of M, leaving us with m�

1 ≤ m1 rows
and m�

2 ≤ m2 columns. This cannot introduce cycles, so it
suffices to show that |M| ≤ m�

1 + m�
2 − 1, for cycle-free

M ⊂ [m�
1]× [m�

2]. This is equivalent to the original statement
of the lemma, so without loss of generality we can assume
that (m�

1, m
�
2) = (m1, m2). Now, find a row or a column of

the table that has exactly 1 element of M. There must exist
such a row or column, because otherwise M contains a cycle.
Eliminate this row or column, and remove the corresponding
element from M. So it now remains to show that |M|− 1 ≤
m1+m2−2, which is also equivalent to the original statement,
i.e., the proof for the reduced setting implies the proof for
the original setting. Continue this step, until there remains
only one row or only one column. Without loss of generality,
suppose in the end we have m1 rows and one column. Then
we only have to show that any subset of this table cannot
have more than m1 elements, which is trivially true. Hence,
Lemma 10 is proved.

The converse proof is a simple consequence of the above
two lemmas. From Lemma 9 and Lemma 10, we know
that given any realization of S, the number of feasible
values for (W �

1, W
�
2) is no more than (m1 + m2 − 1)L,

i.e., H(W �
1, W

�
2|S) ≤ L log2(m1 + m2 − 1). Then we expand

H(S, W �
1, W2) in two ways, similar to the proof of Lemma 1.

H(S, W �
1, W2)

= H(W �
1, W

�
2) + H(S|W �

1, W
�
2)

= L log2(m1m2) + L log2(m) (155)

= H(S) + H(W �
1, W

�
2|S)

≤ H(S) + L log2(m1 + m2 − 1) (156)

⇒ H(S)/L

≥ log2(m) + log2(m1m2) − log2(m1 + m2 − 1)
(157)

As H∗ = inf H(S)/L, the desired bound follows and the
proof of the converse bound, H∗ ≥ log2(m)+ log2(m1m2)−
log2(m1 + m2 − 1) bits for minimally structured settings is
thus complete.

C. H∗ = log2(m) bits if Maximally Structured

We show that for maximally structured settings, the broad-
cast cost log2(m) is achievable, which is a simple consequence
of Lemma 7. Specifically, we show that although the choice
of δi, σj in Lemma 7 (refer to (143)) is designed to satisfy

γw′
2
δw′

1
= πw′

1,w′
2

(158)

for all (w�
1, w

�
2) from only a •-set (refer to (142)), in fact it

automatically satisfies (158) for all (w�
1, w

�
2) ∈ [m1] × [m2]

if the setting is maximally structured. Specifically, following
(143), we proceed as follows.

Choose γ1 to be an arbitrary permutation

Set δ1 = γ−1
1 π1,1, δ2 = γ−1

1 π2,1, · · · , δm1 = γ−1
1 πm1,1

Set γ2 = π1,2δ
−1
1 , γ3 = π2,3δ

−1
2 , · · · , γm2 = πm2−1,m2δ

−1
m2−1

(159)

and show that (158) is satisfied for all (w�
1, w

�
2) ∈ [m1] ×

[m2] for maximally structured settings. For any (w�
1, w

�
2) ∈

[m1] × [m2], we have a length-4 cycle (w�
1 − 1, 1) ↔

(w�
1 − 1, w�

2) ↔ (w�
1, w

�
2) ↔ (w�

1, 1) ↔ (w�
1 −

1, 1). As the setting is maximally structured, the induced
permutation πw′

1−1,1π
−1
w′

1−1,w′
2
πw′

1,w′
2
π−1

w′
1,1 is an identity.

We have

Identity = πw′
1−1,1π

−1
w′

1−1,w′
2
πw′

1,w′
2
π−1

w′
1,1 (160)

(159)
= γ1δw′

1−1(γw′
2
δw′

1−1)−1πw′
1,w′

2
(γ1δw′

1
)−1

(161)

= γ1δw′
1−1δ

−1
w′

1−1γ
−1
w′

2
πw′

1,w′
2
δ−1
w′

1
γ−1
1 (162)

⇒ γw′
2
δw′

1
= πw′

1,w′
2

(163)

so that (158) is satisfied for all (w�
1, w

�
2) ∈ [m1] × [m2].

The remaining description of the achievable scheme is the
same as that in Lemma 7. For any l ∈ [L], we send S(l) =
δW ′

1(l)(W1(l)), which requires log2(m) bits. User 1 takes the
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received δW ′
1(l)(W1(l)) and applies the permutation δ−1

W ′
1(l)

to
obtain W1(l). User 2 takes the received δW ′

1(l)(W1(l)) and
applies the permutation γW ′

2(l) to obtain

γW ′
2(l)δW ′

1(l)
(W1(l))

(158)
= πW ′

1(l),W ′
2(l)(W1(l))

(43)
= W2(l).

(164)

The broadcast cost thus achieved is log2(m) bits. For maxi-
mally structured settings, we note that it suffices to set L = 1
because there is no need to send additional information in the
manner of Lemma 8. The proof that H∗ = log2(m) bits for
maximally structured settings, is thus complete.

VIII. CONCLUSION

The computation broadcast problem represents a small step
towards an understanding of the dependencies that exist across
message flows and side-informations when communication
networks are used for distributed computing applications.
Since linear computations are quite common, the capacity
characterization for the linear computation broadcast problem
is significant. The immediate question for future work is to
find the capacity of linear computation broadcast for more
than 2 users. The question is particularly interesting because
even the 3 user setting appears to be non-trivial, i.e., it does
not follow as a direct extension from the 2 user case studied
here. Beyond linear settings, a number of questions remain
open even for 2 users. While the general converse bound of
Theorem 2 uses only entropic structure, it is not known if it
captures all of the entropic structure, i.e., whether the bound
is always tight for the entropic formulation of the computation
broadcast problem. Another interesting problem is to use the
insights from the linear and matching computation broadcast
problems to construct powerful achievable schemes for general
computation broadcast, even for two users. For example, is it
possible to create an efficient a, b, c partition of a general com-
putation broadcast problem? If so, then the optimal solutions
for a and c partitions are already known in the general case,
which leaves us with only the b partition, i.e., the minimally
dependent part of the problem. The matching problems appear
to be the key to the general solution of such settings. The
exact capacity for matching computation broadcast problems
also remains open for settings that are neither maximally
structured nor minimally structured. A remarkable insight from
the capacity characterization for minimally structured settings
is that it is better to exploit local structure even with the
additional overhead cost of identifying this local structure
to both receivers (this overhead is the greatest in minimally
structured settings), rather than the obvious alternative, which
is to ignore the minimal structure and simply use random
coding. The possibility of generalizing this intuition to broader
classes of computation broadcast is worth exploring as well.
Evidently, the computation broadcast problem presents a fresh
opportunity to explore some of the deeper questions in infor-
mation theory regarding the structure of information, in a
setting that is most appealing for its simplicity – involving
only 5 random variables: W1, W

�
1, W2, W

�
2, S.

APPENDIX

PROOFS OF LEMMA 2 AND LEMMA 3

Proof of Lemma 2: From the definition of the rank
function, there exist μ = rank(A) column vectors of the matrix
A that are linearly independent. Denote the matrix formed
by these vectors Asub. The column vectors of A are linear
combinations of those of Asub, i.e., XT A are deterministic
functions of XT Asub. Therefore we have

H(XT A) = H(XT Asub) (165)

It suffices now to prove that H(XT Asub) ≤ μ and
H(XT Asub) ≥ μ. It is trivial to see that H(XT Asub) ≤ μ
because XT Asub contains only μ elements in Fq so its entropy
cannot be more than μ in q-ary units (uniform distribution
maximizes entropy). Next, we show that H(XT Asub) ≥ μ.
From the definition of the rank function, Asub contains a
square μ × μ invertible sub-matrix. Denote this sub-matrix
as Asqu. Without loss of generality, assume Asqu is formed
by the first μ rows of Asub.

H(XT Asub)

≥ H(XT Asub | xμ+1, · · · , xm−1, xm) (166)

= H([x1, x2, · · · , xμ]Asqu | xμ+1, · · · , xm−1, xm) (167)

= H(x1, x2, · · · , xμ | xμ+1, · · · , xm−1, xm) (168)

= μ (169)

where (168) follows from the fact that Asqu is invertible
and applying invertible transformations does not change the
entropy, and the last step is due to the condition that
x1, · · · , xm are i.i.d. uniform over Fq . This completes the
proof of Lemma 2.
Proof of Lemma 3: Lemma 3 follows immediately from
Lemma 2. Note that

I(XT A;XT B) = H(XT A) + H(XT B) − H(XT [A,B])
(170)

= rank(A) + rank(B) − rank([A,B])
(171)

where we have used Lemma 2 in the last step. Therefore
I(XT A;XT B) = 0 if and only if rank(A) + rank(B) =
rank([A,B]), which is in turn equivalent to that span(A) and
span(B) are independent subspaces. This completes the proof
of Lemma 3.
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