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Conditional Disclosure of Secrets: A Noise and
Signal Alignment Approach

Zhou Li and Hua Sun , Member, IEEE

Abstract— In the conditional disclosure of secrets (CDS) prob-
lem, Alice and Bob (each holds an input and a common secret)
wish to disclose, as efficiently as possible, the secret to Carol if and
only if their inputs satisfy some function. The capacity of CDS is
the maximum number of bits of the secret that can be securely
disclosed per bit of total communication. We characterize the
necessary and sufficient condition for the extreme case where
the capacity of CDS is the highest and is equal to 1/2. For
the simplest instance where the capacity is smaller than 1/2,
we show that the linear capacity is 2/5.

Index Terms— Conditional disclosure of secrets, noise align-
ment, signal alignment, capacity.

I. INTRODUCTION

IN A seminal work [1], Shannon introduced the notion
of information theoretic security [2], [3] based on sta-

tistical independence and established the fundamental limits
of a single-user secure communication system. While [1]
provided an elegant theoretical foundation for cryptography,
the optimal solutions are deemed too inefficient to implement
in practice [4]. Cryptographers therefore relax the stringent
requirement of information theoretic security to computational
security, defined based on indistinguishability with limited
computation power. Most existing commercial security pro-
tocols are built on computational security.

Modern secure communication systems naturally involve
multiple users. Interestingly, for multi-user secure communica-
tion systems, solutions based on information theoretic security
are not necessarily less efficient when compared to those
based on computational security (e.g., see [5] for a specific
context of private information retrieval). As such, there is
much potential for information theoretic security in multi-
user networks, especially considering the fact that multi-user
security protocols based on both information theoretic and
computational security criteria are primarily studied in acad-
emia and the potential of large-scale practical implementations
is not yet fully exploited. It is thus imperative to understand the
fundamental limits of information theoretic security in multi-
user networks, which has been studied in the cryptography
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Fig. 1. 1). The CDS problem. 2) An example of f(x, y) represented
by a bipartite graph. Nodes in the left (right) column are the signals from
Alice (Bob) for various input values. From pair of nodes connected by a
solid black edge (i.e., f(x, y) = 1), Carol can decode S; from pair of nodes
connected by a dashed red edge (i.e., f(x, y) = 0), Carol learns nothing
about S.

and theoretical computer science communities [6], although
typically not using Shannon theoretic formulations. Due to the
increasing importance of security in modern communication
systems, it has also recently become one of the focuses for the
information theory community [7]–[9], where both classical
cryptography formulations are studied [10]–[15] and new
models are introduced [16]–[20]. The goal of this paper is to
use information theoretic tools to study a canonical theoretical
computer science problem (i.e., a cryptographic primitive) -
conditional disclosure of secrets (CDS) [21]–[23].

In the CDS problem (see Fig. 1), Alice and Bob hold inputs
x and y respectively, in addition to a common secret S. Alice
and Bob wish to disclose the secret S to Carol if their inputs
x, y satisfy some function f , i.e., when f(x, y) = 1. Otherwise
f(x, y) = 0, absolute no information is revealed to Carol in
the information theoretic sense (i.e., statistical independence).
A common noise variable Z is available to Alice and Bob to
assist the task, while Carol is fully ignorant of Z . Alice and
Bob send signals Ax and By respectively to Carol. The aim
is to find an efficient communication protocol, i.e., we wish
to minimize the number of bits contained in Ax and By .

A. Motivation

The CDS problem is a minimal model that captures the
challenges of characterizing the communication cost of secu-
rity in multi-user networks. Note that if there is no security
constraint (or if the problem is centralized, i.e., the value of
f(x, y) is known to either Alice or Bob when f(x, y) = 1),
the problem is trivial as either Alice or Bob may directly send
the secret to Carol. However, once the security constraint is
included, the optimal communication cost of the CDS problem
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Fig. 2. The secret is disclosed if and only if x = y = 1 (i.e., from A1, B1).
In the code construction shown (which is optimal, see Theorem 1), S = (s)
is 1 bit and Z = (z1, z2) contains 2 i.i.d. uniform bits.

immediately becomes one of the notable open problems in
information theoretic cryptography [24]. Further, considering
that there are only three users in the CDS problem, we find it to
be the simplest intriguing theoretical model and are interested
in understanding its fundamental communication limits.

Beyond the theoretical value, the CDS problem is also
relevant in modeling several interesting secure communication
scenarios. One may interpret x and y as the queries sent from
the user Carol to two distributed non-communicating servers,
Alice and Bob, respectively. The signals Ax and By are the
answers from the servers that enable the user to obtain the
desired data, S. The security condition of f(x, y) = 1 is
to ensure that data retrieval is successful if the queries are
qualified while for unqualified queries, nothing is revealed.
So if Carol is legal, then qualified queries can be chosen
while if Carol is illegitimate, f is not known and unqualified
queries cannot reveal the secret. Note that the distributed
servers are non-communicating so that Alice only knows x
and Bob only knows y. We then need a mechanism for
Alice and Bob to produce answers without knowing the other
query. In fact, the CDS problem was introduced first in the
context of symmetric private information retrieval [21], exactly
motivated by this need of providing distributed data access
service with protection under unqualified (malicious) queries.
Another interesting application may be seen as follows. Alice
and Bob wish to share the secret (e.g., a business plan) with
Carol if and only if they wish to collaborate, and f(x, y)
captures the condition under which they agree to collaborate.
Alice and Bob do not want to reveal their inputs due to privacy
considerations (so that while the function f is globally known,
the value of f(x, y) is not known to Alice or Bob in general as
Alice only knows x and Bob only knows y). A CDS protocol
ensures that if and only if they agree to collaborate, the secret
is communicated to Carol. For instance, let x ∈ {0, 1} be
Alice’s input, where x = 1 means Alice agrees to collaborate
and x = 0 otherwise. Bob’s input y ∈ {0, 1} is similarly
defined. As a result, f(x, y) = x · y, i.e., if and only if
x = y = 1, Carol can obtain the secret (see Fig. 2). In this
manner, the collaboration is realized in a distributed and secure
manner.

From a different perspective, the CDS problem could be
viewed as a secure data storage system over a bipartite graph
(see Fig. 1.2). The nodes in the graph are the storage variables
and there are two types of edges, where from the pair of
nodes connected by one type of edge, the secret is recoverable
and otherwise, from the other type of edge, no information

is disclosed. As such, the CDS problem is meant to pro-
vide fine-grained access control for encrypted data, where
the access structure may be very diverse depending on the
underlying graph (i.e., f(x, y)). That is, CDS can be viewed
as a secret sharing problem [25] with a graph based access
structure. For other applications of CDS, we refer to [22],
[23], [26], [27] and references therein.

B. Comparison to Previous Approach

In cryptography and theoretical computer science commu-
nities, the typical formulation of the CDS problem is as
follows [21]–[24], [26]–[28].

• The secret S has 1 bit. The communication cost (i.e.,
the number of bits in Ax, By) is measured as order
functions of the input size (the logarithm of the number
of possibilities of inputs x, y). So the studied question
is - how does the communication cost of disclosing a
one-bit secret scale with the complexity of the function
f(x, y)?

• Implicit to the above formulation is that the proposed
protocols must work for all functions f(x, y). In other
words, the considered setting is the worst case scenario
that targets at the most challenging f(x, y).

In contrast, in this work we will take a Shannon theoretic
formulation.

• We allow the secret size to scale to infinity while the
function f(x, y) is fixed. Our metric is the communication
rate,1 which is defined as the ratio of the secret size to the
number of bits communicated to Carol. So our question
is - what is the maximum number of bits that can be
secretly disclosed, per bit of total communication?

• Regarding the function f(x, y), we are interested in the
instance optimal setting, i.e., for a fixed instance of
f(x, y), what is the optimal communication strategy?

C. Main Contribution and Technique

In this work, we mainly consider the best cases of f(x, y),
i.e., when the communication rate is the highest. As long as
the security constraint is not empty for any input value (i.e.,
for any x (y), there exist some y (x) such that f(x, y) = 0),
the size of Ax, By cannot be smaller than the secret size (as
each of Ax and By must be independent of the secret by
itself). Note that we assume each Ax, By has the same size
and f(x, y) is not always 0. For all such non-degenerate cases,
the rate cannot be larger than 1/2 (a detailed proof appears
in Section IV-B), because to disclose 1 bit of the secret, both
Alice and Bob must communicate 1 bit to Carol (then the
total communication must be at least 2 bits). Our first main
result is a complete characterization of all instances of f(x, y)
such that the capacity of CDS is 1/2 (see Theorem 1). The
characterization is stated in terms of the graph theoretic prop-
erties of f(x, y). Our second main result is the linear capacity
characterization of the simplest CDS instance such that its

1The metric of rate has also been studied in cryptography [23], [29],
whose results will be discussed in more details within our framework in the
conclusion section.
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capacity is smaller than 1/2 (see Theorem 2). Interestingly,
once we go beyond the best case of capacity 1/2, the problem
becomes significantly more challenging and we are only able
to settle the linear capacity.

The main results are obtained using an alignment view of
the CDS problem, which can be viewed as generalizations
and adaptations of interference alignment [30]. Interference
alignment originated in wireless networks [31], [32] and
has been applied much beyond the wireless context, e.g.,
to distributed storage repair [33]–[35], to network coding [36],
[37] and index coding [38], [39], and to private information
retrieval [40], [41]. Interference alignment aims to let the
multiple undesired signal spaces overlap as much as possible,
so as to maximize the number of dimensions left for the
desired signal. It is then obvious that in the CDS problem,
we only have two objects - the secret S and the noise Z ,
so there is no interference to say, not to mention multiple
interferences. What we develop in this work is a new look
of the CDS problem from the perspective of the overlap of
the noise spaces and the signal spaces, i.e., noise alignment
and signal alignment. Both the converse results and achievable
schemes are based on such an alignment argument.

II. PROBLEM STATEMENT

Consider a pair of inputs (x, y) from some set I ⊂
{1, 2, · · · , X} × {1, 2, · · · , Y }. Input x is available (only)
to Alice and input y is available (only) to Bob. Alice and
Bob also both hold a secret S that is comprised2 of L i.i.d.
uniform symbols from a finite field Fp and an independent
common noise variable Z that is comprised of LZ i.i.d.
uniform symbols from Fp. In p-ary units,

H(S) = L, H(Z) = LZ ,

H(S, Z) = H(S) + H(Z) = L + LZ . (1)

Alice and Bob wish to communicate the secret S to Carol
if f(x, y) = 1, for a globally known binary output function f ,
defined over domain I. When f(x, y) = 0, zero information
about S should be revealed. To this end, Alice sends signal
Ax and Bob sends signal By to Carol. Ax has LAx symbols
from Fp and By has LBy symbols from Fp. Ax and By are
functions of S, Z ,

H(Ax, By|S, Z) = 0, for all (x, y) ∈ I. (2)

From Ax, By , Carol can recover S with no error3 if
f(x, y) = 1, and otherwise f(x, y) = 0, Ax, By must be
independent4 of S. For all (x, y) ∈ I, we have

[Correctness] H(S|Ax, By) = 0, if f(x, y) = 1; (3)

2As usual for an information theoretic formulation, the actual size of the
secret is allowed to approach infinity. The parameters L and p partition
the data into blocks and may be chosen freely by the coding scheme to match
the code dimensions. Since the coding scheme for a block can be repeated for
each successive block of data with no impact on rate, it suffices to consider
one block of data subject to optimization over L and p.

3The results of this work also hold under the �-error framework.
4Equivalently, security is measured by the mutual information between the

signals Ax, By and the secret S being 0 (see (4)). Note that the signals
Ax, By are received perfectly by Carol (without noise), so the leakage can
be made exactly zero (while in noisy settings, mutual information leakage is
required to approach 0 normalized or not, called weak or strong security).

[Security] H(S|Ax, By) = H(S), else f(x, y) = 0. (4)

The collection of the mappings from x, y, S, Z to Ax, By is
called a CDS scheme.

A signal rate tuple ( L
LA1

, L
LA2

, · · · , L
LAX

, L
LB1

, · · · , L
LBY

) is

said to be achievable if there exists a CDS scheme, for which
the correctness and security constraints (3), (4) are satisfied.
The closure of the set of all achievable signal rate tuples is
called the capacity region C. The achievable communication
rate characterizes how many symbols of the secret are securely
disclosed per symbol of total communication and is defined
with respect to the symmetric signal rate tuple5 as follows.

R =
L

2N
s.t. (

L

N
, · · · ,

L

N
) ∈ C. (5)

The supremum of achievable communicate rates is called the
capacity6 of CDS, C.

For a linear scheme, each signal is a linear function of the
secret S ∈ F

L×1
p and the noise Z ∈ F

LZ×1
p , i.e., each signal

is equal to FS + HZ , where F ∈ F
N×L
p , and H ∈ F

N×LZ
p .

The supremum of L/(2N) for a linear scheme is called the
linear capacity of CDS.

The randomness rate specifies how many secret symbols
are disclosed per noise symbol and is defined as RZ = L

LZ
.

In this work, we focus mainly on the metric of capacity C
and allow as much noise as needed, i.e., the randomness rate
is unconstrained.

A. Graph Representation of f (x, y)

The function f(x, y) can be equivalently specified by its
characteristic undirected bipartite graph Gf (V, E), defined as
follows. The vertex set of Gf is comprised of all signals sent
from Alice and Bob, i.e., V = {A1, · · · , AX , B1, · · · , BY }.
As the vertices and the signals have an invertible mapping,
we use vertex and signal interchangeably in this paper. The
edge set of Gf is comprised of the unordered pairs {Ax, By}
from the vertex set such that (x, y) ∈ I. The edges have
two types, t : E → {0, 1}. For the first type, {Ax, By} is
a solid black edge and is referred to as a qualified edge if
f(x, y) = 1 and equivalently t(Ax, By) = 1; for the second
type, {Ax, By} is a dashed red edge and is referred to as an
unqualified edge if f(x, y) = 0 and equivalently t(Ax, By) =
0 (see Fig. 1.2 for an example).

The following notions of the characteristic graph Gf will
be used to state our results. We follow standard graph theory
terminologies (e.g., see [42]).

Definition 1 (Qualified/Unqualified Path): A sequence of
distinct connecting qualified (unqualified) edges is called a
qualified (unqualified) path.

5For simplicity, we have adopted the single parameter of symmetric
rate as the metric while leaving the characterization of the full capac-
ity region as an interesting future work. Note that the symmetric rate
can be defined equivalently through maximum signal size, i.e., N =
max(LA1 , · · · , LAX

, LB1 , · · · , LBY
) in (5) as we may fill in dummy

symbols to ensure that all signals have the same size.
6As block codes are allowed, i.e., L can approach infinity, we have that C =

supL R = lim supL→∞
L

2N
. A short proof is provided in the Appendix.

As a result, the limit of L
2N

is also called an (asymptotically) achievable
rate R.
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Fig. 3. 1). A CDS instance, described by its characteristic graph Gf . 2) The
coding scheme that achieves rate 1/2. The secret has 1 symbol s from F5,
the noise variable has 2 independent symbols z1, z2 from F5, and each signal
has 1 symbol from F5. Gf contains two qualified components (denoted by
a. and b.).

For example, in Fig. 1.2, P = ({A1, B1}, {B1, A2},
{A2, B2}, {B2, A3}, {A3, B3}) is a qualified path while P =
({B2, A1}, {A1, B3}, {B3, A2}) is an unqualified path. Note
that a path can be equivalently specified by a sequence of
vertices or edges.

Definition 2 (Internal Qualified Edge): A qualified edge
that connects two vertices in an unqualified path is called
an internal qualified edge.

For example, consider the unqualified path P =
({B2, A1}, {A1, B3}, {B3, A2}) in Fig. 1.2, which can be
equivalently specified by a vertex sequence (B2, A1, B3, A2).
The qualified edge {B2, A2} is an internal qualified edge.

Definition 3 (Qualified Component): A qualified (con-
nected) component is a maximal induced subgraph of Gf

such that any two vertices in the subgraph are connected by
a qualified path.

In this work, to avoid degenerate settings and to simplify
the presentation of results,7 we restrict ourselves to functions
f(x, y) such that the security constraint (4) is not empty for
any individual x and any individual y.

Definition 4 (Non-Degenerate Condition): A CDS instance,
described by the characteristic graph Gf (V, E) is called non-
degenerate if for any vertex v ∈ V , there exists some vertex
u ∈ V such that {u, v} ∈ E is an unqualified edge.

III. RESULTS

Our first main result is the necessary and sufficient condition
for all CDS instances such that the capacity is 1/2 (highest),
stated in Theorem 1.

Theorem 1: The capacity of CDS is 1/2 if and only if within
any qualified component, there is no internal qualified edge in
an unqualified path.

The proof of Theorem 1 is presented in Section IV. Here
to illustrate the idea, we give two examples. For the first one,
the half-rate feasibility condition is satisfied and rate 1/2 is
achievable.

Example 1: Consider the CDS instance in Fig. 3.1, where
the characteristic graph Gf has two qualified components.

7Note that a degenerate setting can be converted to a non-degenerate one.
Consider any vertex v that is connected to only qualified edges. In other
words, this vertex has no security constraint. Then we may set the signal v
to be the secret S and eliminate v. Repeating the same procedure for all such
vertices, we have a non-degenerate setting.

Fig. 4. A CDS instance that has an internal qualified edge {B2, A2} in
an unqualified path (B2, A1, B3, A2) within a qualified component Gf , and
the achievable scheme of rate 2/5. The secret has L = 4 bits, s1, s2, s3, s4,
the noise has LZ = 9 independent uniform bits, z0, z1, · · · , z8, and each
signal has N = 5 bits. The rate achieved is R = L/(2N) = 2/5.

Within qualified component a., there are 3 unqualified paths
and none of them has an internal qualified edge (see the blue
circles in Fig. 3.2). Note that a vertex that is not connected to
any unqualified edge is a (trivial) unqualified path/component
(e.g., vertex B2 in qualified component a.). Qualified com-
ponent b. only has two nodes that are connected by one
qualified edge. Therefore, the half-rate feasibility condition in
Theorem 1 is satisfied and the scheme that achieves rate 1/2 is
shown in Fig. 3.2.

For the scheme, every vertex in a qualified component uses
the same noise variable and different qualified components
use independent noise variables (e.g., qualified components a.
and b. use z1 and z2, respectively). Within a qualified com-
ponent, we consider each unqualified component (a maximal
set of vertices where any two vertices are connected by an
unqualified path) sequentially, and assign each vertex in the
unqualified component a linearly independent combination of
the secret and noise (e.g., the 3 unqualified components in a.
are assigned s + z1, s + 2z1, s + 3z1 respectively).

The correctness constraint (3) holds because 1) any qual-
ified edge belongs to a qualified component (e.g., {A2, B2}),
2) the two vertices belong to different unqualified components
(note that there is no internal qualified edge, e.g., consider
A2, B2), and 3) any distinct unqualified components are
assigned a linearly independent combination of secret and
noise, from which the secret can be successfully recovered
(e.g., A2 = s + 2z1, B2 = s +3z1). We show that the security
constraint (4) is guaranteed as well. There are two cases.
First, for unqualified edges within a qualified component (e.g.,
{B1, A3}), they belong to the same unqualified component so
that the same signal is assigned and no information about
the secret is revealed (e.g., B1 = A3 = s + z1). Second,
for unqualified edges across two qualified components (e.g.,
{B2, A4}), different noise variables are used so that again
nothing about the secret is leaked (e.g., B2 = s + 3z1, A4 =
s + 2z2).

For the second example, the condition in Theorem 1 is
violated such that rate 1/2 is not achievable. We use the CDS
instance in Fig. 1 as the second example (reproduced in Fig. 4).

Example 2: Consider the CDS instance in Fig. 4, where
the characteristic graph Gf is a qualified component.
The unqualified path (B2, A1, B3, A2) contains an internal

Authorized licensed use limited to: University of North Texas. Downloaded on June 17,2022 at 17:04:03 UTC from IEEE Xplore.  Restrictions apply. 



4056 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 6, JUNE 2022

qualified edge {B2, A2}, so the half-rate feasibility condition
in Theorem 1 is violated and rate 1/2 is not achievable.
An intuitive explanation by contradiction is as follows.

Suppose rate 1/2 is achievable, then the size of each signal
Ax, By that is connected to a qualified edge must be N = L
symbols (we omit o(L) terms in this explanation) and the
noise appeared in the signal has size L symbols as well
(see Lemma 1 in Section IV-A). For any qualified edge, the
noise variables for the two signals must be the same to
ensure that the secret can be decoded, i.e., the noise space
must fully overlap (see Lemma 2 for a proof). For example,
in Fig. 4 A2, B2 must use the same noise. Then by sub-
modularity, full noise alignment must hold for any qualified
component, i.e., all signals in a qualified component must
use the same noise variables (see Lemma 3). For example,
in Fig. 4 A1, A2, A3, B1, B2, B3 must use the same noise.
Next, consider any unqualified edge, given that the noise space
is fully overlapped, the signal space must fully overlap to
avoid leaking information about the secret (see Lemma 4). For
example, B2 must be equal to A1 in Fig. 4. Similarly by sub-
modularity, for any unqualified path within a qualified com-
ponent, the signal spaces must fully overlap (see Lemma 5).
For example, in Fig. 4 we must have B2 = A1 = B3 = A2 for
the unqualified path (B2, A1, B3, A2). Finally, the presence of
an internal qualified edge {B2, A2} results in a contradiction,
because B2 = A2 and B2 is independent of the secret so that
the edge {B2, A2} cannot be qualified.

Remark 1: From the computational complexity perspec-
tive, there are efficient algorithms to test if the condi-
tion in Theorem 1 is satisfied. It is well known (refer to
Section 22.5 of [43]) that finding connected components of
a graph has a linear time (in the number of nodes and edges
of Gf ) algorithm, based on which the algorithm to test the
condition in Theorem 1 can be easily constructed without
increasing the order of the computational complexity.

Note that rate 1/2 is the highest for all non-degenerate
settings as each vertex v has at least one unqualified edge
and the size of v cannot be smaller than the secret size,
i.e., N ≥ L and R = L/(2N) ≤ 1/2. As the half-rate
feasibility condition is fully settled, we proceed to scenarios
where rate 1/2 is not achievable. Interestingly, the simplest
such instance is that in Fig. 4. This 6-node CDS instance is the
simplest in the sense that for any 5-node non-degenerate CDS
instance, half-rate feasibility condition is satisfied (because
with only 5 nodes, there are not sufficient edges to produce an
internal qualified edge). Our second main result is the linear
capacity characterization of the CDS instance in Fig. 4, stated
in Theorem 2.

Theorem 2: The linear capacity of the CDS instance shown
in Fig. 4 is 2/5.

The achievable scheme is shown in Fig. 4, where the secret
has L = 4 bits, S = (s1, s2, s3, s4), and the noise has
LZ = 9 independent uniform bits, Z = (z0, z1, · · · , z8). Each
signal has N = 5 bits and is shown in Fig. 4. Note that
along the qualified path (A1, B1, A2, B2, A3, B3), every two
connected vertices share 4 noise bits in a consecutive manner,
i.e., A1 uses z0, z1, z2, z3, z4, and B1 uses z1, z2, z3, z4, z5 etc.
The secret bits are assigned such that for any unqualified edge,

the same noise bits are combined with the same secret bits
(e.g., see the blue circles with the same shape in Fig. 4. For
the unqualified edge {B1, A3}, both vertices use z4, z5 so that
the same signal bits s4 + z4, z5 are present).

The rate achieved is R = L/(2N) = 2/5. Both correctness
and security constraints are easy to verify. For example, con-
sider the qualified edge {B1, A2}. Considering the part of the
signal that uses the same noise z2, z3, z4, z5, we may recover
(s1 + s2, s2 + s3, s3 + s4, s4), from which we can decode
S = (s1, s2, s3, s4). Consider the unqualified edge {A2, B3}.
As distinct independent noise bits z2, z3, z4, z7, z8, z0 will not
reveal anything and the common noise bits z5, z6 carry the
same secret bits, security is guaranteed.

The converse proof for all linear schemes is presented
in Section V. We give an intuitive explanation of the idea
here. A finer argument of the contradiction in Example 2
is required. For this explanation, let us assume the noise
space of any two vertices from a qualified edge share exactly
L dimensions in common (relaxation of this assumption is
deferred to the full proof in Section V). That is, the noise
spaces of A1 and B1 share L dimensions (this space is denoted
as γ1), and B1 and A2 share L dimensions (denote this space
as γ2). Now how many dimensions do A1, B1, A2 have in
common? γ1 and γ2 are two subspaces of the noise space
of B1 such that dim(γ1 ∩ γ2) ≥ dim(γ1) + dim(γ2)−N =
2L − N . Proceeding with this argument along the qualified
path (A1, B1, A2, B2, A3, B3), we find that the noise spaces
of A1, B1, A2, B2, A3, B3 must share 5L − 4N dimensions.
We argue that such a common overlap cannot exist, so 5L −
4N ≤ 0 and Rlinear = L/(2N) ≤ 2/5. To set up the
proof by contradiction, let us assume that all 6 noise spaces
share a common dimension (denoted as γ). As the path
(B2, A1, B3, A2) is unqualified, the signal space of γ must
fully overlap as otherwise information about the secret will be
revealed. This means that in the noise overlap of {A2, B2},
some signal is overlapped and does not contribute useful
information of the secret. As the noise space of A2, B2 shares
exactly L dimensions and in the overlap γ is useless, we can-
not decode the L-symbol secret from {A2, B2}, arriving
at the contradiction that {A2, B2} is a qualified edge. The
intersections of more than 2 spaces have no correspondence
to entropy terms such that the above linear argument may not
hold in the information theoretic sense (i.e., non-linear codes
might achieve a higher rate). Note that the achievable scheme
in Fig. 4 is designed following the overlap insights provided
by the linear converse idea.

IV. PROOF OF THEOREM 1

A. Only If Part

Consider any non-degenerate CDS instance, described by
the characteristic graph Gf (V, E). We show that if the
half-rate feasibility condition in Theorem 1 is violated, then
rate 1/2 is not achievable. To set up the proof by contradiction,
let us assume that R = limL→∞ L

2N = 1/2 is achievable, i.e.,
N = L + o(L). As a result, each signal that is connected to a
qualified edge and the noise used in such a signal must have
entropy L + o(L). This result is stated in Lemma 1.
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Lemma 1 (Signal and Noise Size): When R = 1/2, for any
signal v ∈ V such that there exists u ∈ V such that {v, u} is
a qualified edge, we have

H(v) = H(v|S) = L + o(L). (6)
Proof: First, consider the “≤” direction.

H(v|S) ≤ H(v) ≤ N = L + o(L). (7)

Second, consider the “≥” direction. As the CDS instance is
non-degenerate, for any vertex w, there exists a vertex w� such
that {w, w�} is unqualified. From the security constraint (4),
we have

I(w, w�; S) = 0 ⇒ I(w; S) = 0 (8)

(w can by any vertex) ⇒ I(v; S) = I(u; S) = 0. (9)

Consider now the qualified edge {v, u}. From the correctness
constraint (3), we have

H(S|v, u) = 0

⇒ L
(1)
= H(S) = I(v, u; S)

(9)
= I(v; S|u)

≤ H(v)
(9)
= H(v|S). (10)

The proof is thus complete.
Next, we consider any qualified edge and show that the

noise appeared in both end vertices of the qualified edge has
joint entropy L + o(L), roughly the same as the entropy of
the noise appeared in each vertex by itself. In other words, the
noise must fully align.

Lemma 2 (Noise Alignment for Qualified Edge): When
R = 1/2, for any qualified edge {v, u},

H(v, u|S) = L + o(L). (11)
Proof: On the one hand, we have

H(v, u|S) = H(v, u, S) − H(S)
(3)
= H(v, u) − H(S) (12)
(1)

≤ H(v) + H(u)−L
(6)
= L + L−L + o(L) = L + o(L). (13)

On the other hand, we have

H(v, u|S) ≥ H(v|S)
(6)
= L + o(L). (14)

The proof is now complete.
In the following lemma, we generalize the noise alignment

phenomenon from qualified edges to (any induced subgraph
of) qualified components.

Lemma 3 (Noise Alignment for Qualified Component):
When R = 1/2, for any qualified component Q with vertex
set VQ ⊂ V , we have

∀Vq ⊂ VQ, H(Vq|S) = H(VQ|S) = L + o(L). (15)
Proof: We first prove the “≥” direction.

H(VQ|S) ≥ H(Vq|S) ≥ H(v|S)

for any v ∈ Vq
(6)
= L + o(L). (16)

Second, we prove the “≤” direction and complete the proof.
Denote VQ = {v1, v2, · · · , vQ}. Start with any qualified edge

{vi1 , vi2}, i1, i2 ∈ {1, 2, · · · , Q} in the qualified component
Q. As Q is a qualified component, there must exist a vertex
vi3 ∈ VQ and a vertex from vi1 , vi2 (suppose it is vi2 without
loss of generality) such that {vi2 , vi3} is a qualified edge. From
the sub-modularity property of entropy functions, we have

H(vi1 , vi2 |S) + H(vi2 , vi3 |S)
≥ H(vi1 , vi2 , vi3 |S) + H(vi2 |S) (17)

(6)(11)
=⇒ L + L ≥ H(vi1 , vi2 , vi3 |S) + L + o(L) (18)
(16)⇒ H(vi1 , vi2 , vi3 |S) ≤ L + o(L). (19)

Then similarly, as Q is a qualified component, there must exist
a vertex vi4 ∈ VQ such that {v, vi4} is a qualified edge, where
v is one vertex from vi1 , vi2 , vi3 . With a similar proof as above,
we have

H(vi1 , vi2 , vi3 , vi4 |S) ≤ L + o(L) ⇒ · · ·
⇒ H(Vq|S) ≤ H(VQ|S) ≤ L + o(L). (20)

We now proceed to the signal alignment phenomenon.
We show that within a qualified component, any two vertices
v, u that form an unqualified edge must produce exactly the
same signal, i.e., the joint entropy of v, u is L + o(L), the
same as that of any individual v or u.

Lemma 4 (Signal Alignment for Unqualified Edge Within
Qualified Component): When R = 1/2, for any unqualified
edge {v, u} that is within a qualified component Q, we have

H(v, u) = L + o(L). (21)
Proof: Note that both end vertices of the unqualified edge

{v, u} belong to the vertex set of the qualified component Q.
Combining the security constraint (4) and (15), we have

H(v, u)
(4)
= H(v, u|S)

(15)
= L + o(L). (22)

In the following lemma, we generalize the signal alignment
phenomenon from unqualified edges to unqualified paths.

Lemma 5 (Signal Alignment for Unqualified Path
Within Qualified Component): When R = 1/2, for
any unqualified path within a qualified component Q,
({v1, v2}, {v2, v3}, · · · , {vP−1, vP }), we have

H(v1, vP ) ≤ L + o(L). (23)
Proof: Equipped with what has been established, the

proof follows from a simple recursive application of the
sub-modularity property of entropy functions.

H(v1, v2) + H(v2, v3) + · · ·H(vP−1, vP )
≥ H(v1, v2, · · · , vP )+H(v2)+H(v3) + · · · + H(vP−1)

(21)(6)⇒ (P − 1)L ≥ H(v1, vP ) + (P − 2)L + o(L)
⇒ H(v1, vP ) ≤ L + o(L). (24)

After establishing the above lemmas, we are ready to
present where is the contradiction. As the half-rate fea-
sibility condition is violated, there must exist an internal
qualified edge (denoted as {v1, vP }) in an unqualified path
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({v1, v2}, {v2, v3}, · · · , {vP−1, vP }) and the unqualified path
is within a qualified component Q. From the correctness
constraint (3) of the qualified edge {v1, vP }, we have

L + o(L)
(23)

≥ H(v1, vP )
(3)
= H(v1, vP , S)

= H(S) + H(v1, vP |S)
(1)(11)

= L + L + o(L). (25)

So normalizing (25) by L and letting L approach infinity,
we have 1 ≥ 2, and the contradiction is arrived. The proof
of the only if part is thus complete.

Remark 2: The above proof is based on assuming that R =
1/2 and then arguing by contradiction. We may bound the
terms appeared more carefully and obtain a stronger bound
on R, R ≤ R, where R is strictly smaller than 1/2, i.e.,
R = 1/2− δ for a positive constant δ (that is only a function
of f and in particular, it does not depend on L).

B. If Part

We show that if the half-rate feasibility condition in Theo-
rem 1 is satisfied, then the CDS capacity is 1/2. We first prove
that R ≤ 1/2 and then show that R = 1/2 is achievable.

The proof of R ≤ 1/2 is as follows. Consider any CDS
instance that contains at least one qualified edge {v, u};
otherwise all edges are unqualified, the problem is meaningless
as the secret is never disclosed. Further, the CDS instance is
non-degenerate, so there exists an unqualified edge {u, w}.
From the security constraint (4), we have

I(u, w; S) = 0 ⇒ I(u; S) = 0. (26)

From the correctness constraint (3), we have

L
(1)
= H(S)

(3)
= I(S; v, u)

(26)
= I(S; v|u)≤H(v) ≤ N (27)

⇒ R = L/(2N) ≤ 1/2. (28)

We now present the coding scheme that achieves rate 1/2.
The scheme is a generalization of that presented in Example 1.

Consider any non-degenerate CDS instance, described by
the characteristic graph Gf (V, E). Suppose Gf (V, E) has M
qualified components. A single vertex that is not connected to
any qualified edge is a (trivial) qualified component. Suppose
within the mth, m ∈ {1, 2, · · · , M} qualified component,
there are Um unqualified components. Choose p as a prime
number that is no fewer than max(U1, U2, · · · , UM ). The
secret S contains L = 1 symbol from the finite field Fp,
denoted as S = (s) and the noise Z contains LZ = M
symbols from Fp, denoted as Z = (z1, z2, · · · , zM ). Note that
z1, · · · , zM are i.i.d. uniform symbols over Fp.

The signals are assigned as follows. Consider the mth

qualified component Qm. We set

any signal v in the ith, i ∈ {1, 2, · · · , Um} unqualified

component within Qm as s + izm. (29)

To complete the proof of the achievable scheme, we show
that the scheme is both correct and secure. Consider the
correctness constraint (3) first. A qualified edge must belong to

one qualified component. As the half-rate feasibility condition
in Theorem 1 is satisfied, there is no internal qualified edge,
i.e., any qualified edge must belong to different unquali-
fied components within a qualified component. Consider any
qualified edge {v, u} that is from qualified component Qm

and within Qm, suppose v belongs to the ith unqualified
component and u belongs to the jth unqualified component.
Note that j is not equal to i. From (29), we have

v = s + izm, u = s + jzm (30)

⇒ H(S|v, u) = H(s|s + izm, s + jzm)
j �=i
= H(s|s, zm) = 0 (31)

so that the scheme is always correct.
Next consider the security constraint (4). Consider any

unqualified edge {v, u}. We have the following two cases.

1) {v, u} is from the same qualified component, say Qm.
Note that any unqualified edge must belong to the
same unqualified component within Qm, say the ith

unqualified component. From (29), we have

v = u = s + izm (32)

⇒ H(S|v, u) = H(s|s + izm)
= H(s, s + izm) − H(s + izm)
= 1 = H(S) (33)

so that security is guaranteed.
2) {v, u} is from different qualified components. Suppose v

is from Qm and u is from Qm′ , where m 
= m�. Further
assume that v belongs to the ith unqualified component
in Qm, and u belongs to the jth unqualified component
in Qm′ . From (29), we have

v = s + izm, u = s + jzm′ (34)

⇒ H(S|v, u) = H(s|s + izm, s + jzm′) (35)

= H(s, s + izm, s + jzm′)
−H(s + izm, s + jzm′) (36)

= H(s, zm, zm′)
−H(s + izm, s + jzm′) (37)

≥ H(s, zm, zm′) − 2 = 1 = H(S) (38)

so that H(S|v, u) = H(S) and security is guaranteed.

Randomness Cost Reduction

The above scheme uses M noise symbols in total. We show
that 2 noise symbols are sufficient, i.e., we save M − 2 noise
symbols and the randomness rate is improved from RZ =
1/M to RZ = 1/2. This reduction is made possible by the
following simple observation - each unqualified edge only
involves two vertices and each vertex only contains 1 noise
symbol, so we only need to guarantee these two noise symbols
appeared (if different) are linearly independent and for this
purpose, two base noise symbols are sufficient as all other
noise symbols can be generic linear combinations of these
two noise symbols. The detailed proof is presented next.
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Choose p as a prime number such that p >
max(U1, U2, · · · , UM , M − 2). The remaining proof is the
same as that above, except that z1, z2. · · · , zM are linear
combinations of two base independent uniform symbols z1, z2

(instead of being mutually independent).

z3 = z1 + z2, z4 = z1 + 2z2, · · · , zM = z1 + (M − 2)z2.

(39)

The correctness constraint is not influenced as only the noise
assignment is changed. The security constraint continues to
hold as we may easily verify that every step in (32) - (38)
goes through after we set (39).

Remark 3: While the characteristic graph of a CDS
instance is bipartite, a closer inspection of the proof of both the
only if part and the if part reveals that the bipartite property
is not used in the proof. Therefore Theorem 1 holds also for
non-bipartite characteristic graphs.

V. PROOF OF THEOREM 2: LINEAR CONVERSE

We show that for the CDS instance in Fig. 4, the rate for all
linear schemes cannot be higher than 2/5. For a linear scheme,
the signal v is a linear function of the secret S ∈ F

L×1
p and

the noise Z ∈ F
LZ×1
p . All secret and noise symbols are i.i.d.

and uniform. v = FvS +HvZ , where Fv is an N ×L matrix
over Fp, and Hv is an N × LZ matrix over Fp.

We first establish two general properties that hold for all
linear schemes. The first property states that for any qualified
edge, the overlap of the noise spaces cannot be fewer than L
dimensions. This property is stated in Lemma 6.

Lemma 6 (Noise Alignment): For any linear scheme and
for any qualified edge {v, u},

dim(rowspan(Hv) ∩ rowspan(Hu)) ≥ L. (40)
Proof: For any non-degenerate setting, we know from (26)

that any vertex must be independent of the secret.

0 = I(S; v) = I(S;FvS + HvZ)
⇒ 0 = I(S;Fv(J , :)S + Hv(J , :)Z) (41)

where J is an arbitrary subset of {1, 2, · · · , N} and for a
matrix A, we use A(J , :) to denote the sub-matrix of A
formed by rows in the index set J . In words, (41) means
that for linear schemes the secret space must be fully covered
by the noise space.

Denote dim(rowspan(Hv) ∩ rowspan(Hu)) by α. As Hv

and Hu overlap in α dimensions, we may assume without
loss of generality (by a change of basis operation) that the
first α rows of Hu and Hv are the same, i.e., Hv(1 : α, :) =
Hu(1 : α, :) � Hα. Further, we have that

The row vectors of Hα, Hv(α + 1 : N, :) and

Hu(α + 1 : N, :) are linearly independent. (42)

To simplify the notation, we define

Fv(1 : α, :) � Fv1 ,Fv(α + 1, N, :) � Fv2 ,

Hv(α + 1, N, :) � Hv2 . (43)

For the qualified edge {v, u}, the correctness constraint (3)
requires that

L
(1)
= H(S)
= I(S; v, u) (44)

= I(S;Fv1S + HαZ,Fu1S + HαZ,

Fv2S + Hv2Z,Fu2S + Hu2Z) (45)

= I(S; (Fv1 − Fu1)S,Fu1S + HαZ,

Fv2S + Hv2Z,Fu2S + Hu2Z) (46)

= I(S;Fu1S + HαZ,Fv2S + Hv2Z,Fu2S + Hu2Z)
+I(S; (Fv1 − Fu1)S|Fu1S + HαZ, · · ·

Fv2S + Hv2Z,Fu2S + Hu2Z) (47)

≤ H((Fv1 − Fu1)S) (48)

≤ α (49)

where (48) follows from the property that the first term of (47)
is zero (proved in the following), and the last step follows from
the fact that (Fv1 − Fu1)S has at most α symbols.

To complete the proof of α ≥ L, we show that I(S;Fu1S+
HαZ,Fv2S + Hv2Z,Fu2S + Hu2Z) = 0.

I(S;Fu1S + HαZ,Fv2S + Hv2Z,Fu2S + Hu2Z)
= H(Fu1S + HαZ,Fv2S + Hv2Z,Fu2S + Hu2Z)

− H(Fu1S + HαZ,Fv2S + Hv2Z, · · ·
Fu2S + Hu2Z|S) (50)

≤ H(Fu1S + HαZ) + H(Fv2S + Hv2Z)
+ H(Fu2S + Hu2Z)
− H(HαZ,Hv2Z,Hu2Z)

(41)(42)
= H(HαZ) + H(Hv2Z) + H(Hu2Z)

−H(HαZ) − H(Hv2Z) − H(Hu2Z) = 0. (51)

As mutual information is non-negative, the proof of Lemma 6
is now complete.

The second property states that for any unqualified edge,
within the noise overlapping space, the signal space must fully
overlap. This property is stated in Lemma 7.

Lemma 7 (Signal Alignment): For any linear scheme and
for any unqualified edge {v, u},

∀J ⊂ {1, 2, · · · , N},
Hv(J , :) = Hu(J , :) ⇒ Fv(J , :) = Fu(J , :). (52)

Proof: For the unqualified edge {v, u}, the security con-
straint (4) imposes that

0 = I(S; v, u)
= I(S;FvS + HvZ,FuS + HuZ)
≥ I(S;Fv(J , :)S + Hv(J , :)Z,

Fu(J , :)S + Hu(J , :)Z) (53)

≥ I(S; (Fv(J , :) − Fu(J , :))S
+ (Hv(J , :) − Hu(J , :))Z). (54)

Now suppose. Hv(J , :) = Hu(J , :). Plugging this condition
into the equality above, we have

0 ≥ I(S; (Fv(J , :) − Fu(J , :))S)
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⇒ Fv(J , :) = Fu(J , :) (55)

and the proof is complete.
Equipped with the above two lemmas, we are ready to

consider the CDS instance in Fig. 4. We first consider the
qualified path P = ({A1, B1}, {B1, A2}, {A2, B2}, {B2, A3},
{A3, B3}) and see what is the dimension of the common
overlap for the noise spaces of A1, B1, A2, B2, A3, B3. For
any given linear scheme, we find the noise overlap of every
qualified edge in P and simplify the notation as follows.

dim(rowspan(Hv) ∩ rowspan(Hu)) � αvu,

e.g., dim(rowspan(HA1) ∩ rowspan(HB1)) = αA1B1 (56)

and we identify 5 constants αA1B1 , αB1A2 , αA2B2 , αB2A3 ,
αA3B3 . Similarly, we denote

dim(rowspan(Hv) ∩ rowspan(Hu) ∩ rowspan(Hw))
= αvuw , etc. (57)

and wish to characterize αA1B1A2B2A3B3 , i.e., the overlap of
6 noise spaces. Consider αA1B1A2 .

αA1B1A2

= dim
(
rowspan(HA1) ∩ rowspan(HB1) ∩ rowspan(HA2)

)

= dim
(
(rowspan(HA1) ∩ rowspan(HB1)) ∩ · · ·

(rowspan(HB1) ∩ rowspan(HA2))
)

(58)

≥ dim
(
(rowspan(HA1) ∩ rowspan(HB1))

)

+ dim
(
(rowspan(HB1) ∩ rowspan(HA2))

)

− dim(rowspan(HB1)) (59)

= αA1B1 + αB1A2−N (60)

where (59) follows from the fact that both the overlap of the
row span of HA1 , HB1 and the overlap of the row span of
HB1 , HA2 are subspaces of HB1 , and within a vector space of
dimension α, two subspaces of dimension α1, α2 must overlap
in a space of dimension at least α1 + α2 − α. (60) is due
to the fact that we may assume without loss of generality
dim(rowspan(HB1)) = N , i.e., the noise space has full rank.
This is argued as follows. Suppose the matrix HB1 does not
have full row rank, i.e., there exists a row of HB1 that is a
linear combination of other rows, say HB1(1, :). From (41),
we know that B1 is independent of S, so the precoding
vector of the secret FB1(1, :) must also be the same linear
combination of other rows of FB1 . In other words, the first
row of the signal B1 is a deterministic function of the other
rows of B1 and contributes no entropy to B1 (thus can be
eliminated without loss). So we may only consider achievable
schemes so that for any signal, the precoding matrix for the
noise has full rank,8 N .

We proceed similarly to the overlap of 4 noise spaces,
αA1B1A2B2 . Interpreting this overlap as the overlap of two
spaces, i.e., the row span of HA1 ,HB1 ,HA2 and the row space

8The noise precoding matrix has size N×LZ , where N ≤ LZ . Note that if
otherwise N > LZ , then the rows of the noise cannot be linearly independent,
and we have a similar situation where some row is a linear combination of
other rows and we can follow the same line to argue that this row of signal
is redundant.

of HA2 ,HB2 , within one space, i.e., the row space of HA2 ,
we have

αA1B1A2B2 ≥ αA1B1A2 + αA2B2−N (61)
(60)

≥ αA1B1 + αB1A2 + αA2B2 − 2N (62)

Similarly,

αA1B1A2B2A3

≥ αA1B1 + αB1A2 + αA2B2 + αB2A3 − 3N (63)

αA1B1A2B2A3B3

≥ αA1B1 + αB1A2 + αA2B2 + αB2A3 + αA3B3 − 4N

� α∗. (64)

In other words, the 6 noise spaces overlap in a space of
dimension at least α∗ so that we may assume without loss
of generality that the first α∗ rows of the noise precoding
matrix of A1, B1, A2, B2, A3, B3 are the same.

HA1(1 : α∗, :) = HB1(1 : α∗, :) = HA2(1 : α∗, :)
= HB2(1 : α∗, :) = HA3(1 : α∗, :) = HB3(1 : α∗, :). (65)

We next consider the unqualified path Pu = ({B2, A1},
{A1, B3}, {B3, A2}), where every vertex belongs to the qual-
ified path P considered above. The overlap of the 6 noise
spaces must be a subspace of the overlap of the noise space
of any unqualified edge. Applying Lemma 7, i.e., (52) to the
3 unqualified edges in Pu, we have

HB2(1 : α∗, :) = HA1(1 : α∗, :)
⇒ FB2(1 : α∗, :) = FA1(1 : α∗, :) (66)

HA1(1 : α∗, :) = HB3(1 : α∗, :)
⇒ FA1(1 : α∗, :) = FB3(1 : α∗, :) (67)

HB3(1 : α∗, :) = HA2(1 : α∗, :)
⇒ FB3(1 : α∗, :) = FA2(1 : α∗, :) (68)

⇒ HB2(1 : α∗, :) = HA2(1 : α∗, :),
FB2(1 : α∗, :) = FA2(1 : α∗, :). (69)

The final step is to consider the internal qualified edge
{A2, B2}, where we have the noise and signal alignment
constraint (69). The correctness constraint (3) requires that

L
(1)
= H(S) = I(S; A2, B2). (70)

Following the proof of (48), we have

L ≤ H((FA2(1 : αA2B2 , :) − FB2(1 : αA2B2 , :))S)
(71)

(69)
= H((FA2(α

∗ + 1 : αA2B2 , :)
−FB2(α

∗ + 1 : αA2B2 , :))S) (72)

≤ αA2B2 − α∗ (73)
(64)
= αA2B2 − (αA1B1 + αB1A2 + αA2B2

+ αB2A3 + αA3B3 − 4N) (74)

= 4N − (αA1B1 + αB1A2 + αB2A3 + αA3B3) (75)
(40)

≤ 4N − 4L (76)

⇒ R = L/(2N) ≤ 4N/5× 1/(2N) = 2/5. (77)

The linear converse proof is thus complete.
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Remark 4: The information theoretic capacity of the CDS
instance in Fig. 4 is an interesting open problem, which might
be challenging. While the linear capacity is characterized in
Theorem 2 to be 2/5, the best information theoretic con-
verse with all Shannon type information inequalities [44] is
5/12, found by computer programs9 [45], [46]. Therefore,
if the linear scheme of Theorem 2 is information theoreti-
cally optimal, then we need non-Shannon type information
inequalities to establish the converse; if the best converse
with only Shannon-type information inequalities is information
theoretically optimal, then we need non-linear codes to achieve
it. Therefore, for the CDS instance in Fig. 4 with only
6 nodes and defined by only 8 variables, either non-linear
codes are necessary for achievability schemes or non-Shannon
inequalities are necessary for converse arguments; further it
is possible that both are required to establish the capacity.

VI. CONCLUSION

The conditional disclosure of secrets problem is studied
from an information theoretic capacity perspective. A noise
and signal alignment approach is used to identify all best case
scenarios where the capacity is the highest, and the linear
capacity of the scenario that minimally violates the best case
criterion. In the context of secret sharing, a matroid approach is
used to characterize extremal rate scenarios called ideal secret
sharing [47]. In principle, the matroid view of [47] can be
applied to our setting (with some modification to account for
sets of nodes that have no correctness or security constraints)
to produce the same necessary and sufficient condition for
highest extremal rate. But we find our alignment view more
intuitive and more importantly, beyond extremal rate scenarios,
our approach can be refined to provide an explicit tighter
converse, which is presented in Theorem 2 for one instance
and further generalized to arbitrary instances in our follow-up
work [48]. A number of interesting related questions remain
open, among which a few are mentioned below. The achievable
scheme of Theorem 1 uses scalar codes (the secret has only
1 symbol) while if block codes are used, the field size required
can be reduced and the tradeoff between block-length and
field size is an interesting problem. As another example,
while the best case scenarios are fully characterized, we know
very little about the worst case scenarios, i.e., for which
problem instances, the capacity is small and how small can
it be? It is desirable to establish capacity approximations and
exact capacity results for various classes of problem instances
(e.g., in terms of the characteristic graphs). Along this line,
achievable rates of conditional disclosure of secrets have been
studied in [23], [29] under the title of ‘amortization’ (typical
in computer science community), where it is shown that rate
of 1/6 is always achievable for any f in our three user
setting [29]. Therefore, compared to the best rate scenarios
of capacity 1/2 studied in this work, at most the rate is
reduced by a factor of 3 for general f . In a follow-up
work, we have characterized the linear capacity of a class of

9This bound will also hold under vanishing error and/or leakage because the
computer aided proofs are based on a finite number of linear combinations
of Shannon type information inequalities (sub-modularity inequalities) so that
the o(L) terms will disappear after normalizing by L and letting L → ∞.

graphs [48]. We have focused exclusively on the metric of
capacity in this work, while other metrics are also interesting,
e.g., the capacity region, the maximum randomness rate and
the randomness constrained capacity. Extensions to include a
larger number of users (beyond 2 users holding the secret)
and more secrets (beyond a single secret) look fertile. To sum
up, this work represents an interesting initial step towards
using signal overlap analysis and tools in information theory
to understand the fundamental limits of multi-user primitives
in cryptography, for which the potential remains promising
while the topic is widely under-explored.

APPENDIX

We show that the capacity, C, defined as the supremum of
achievable rates R = L

2N , is equal to the limit of the supremum
of R when L → ∞.

Note that C = supL R = supL
L

2N . Then by the definition
of supremum, for any � > 0, we can choose L so that L

2N >
C − �, i.e., N < L

2(C−�) . Any CDS scheme of secret size L
and signal size N can be applied when the secret size is an
integer multiple of L, say qL for some integer q (by repeating
the scheme q times), and the signal size is qN . Now consider
any secret size L� = qL + r, where 0 ≤ r < L, we have a
scheme of signal size N � = (q + 1)N (we can append zeros
to the secret to make its length (q + 1)L). Then

R =
L�

2N � =
qL + r

2(q + 1)N
>

qL + r

(q + 1)L
(C − �) → C

as q → ∞ (78)

where we apply N < L
2(C−�) . So as q → ∞ and the secret

size L� → ∞, we have that R → C.
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