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On the Linear Capacity of Conditional
Disclosure of Secrets

Zhou Li , Member, IEEE, and Hua Sun , Member, IEEE

Abstract— Conditional disclosure of secrets (CDS) is the prob-
lem of disclosing as efficiently as possible, one secret from Alice
and Bob to Carol if and only if the inputs at Alice and Bob
satisfy some function. The information theoretic capacity of CDS
is the maximum number of bits of the secret that can be securely
disclosed per bit of total communication from Alice and Bob
to Carol. All CDS instances, where the capacity is the highest
and is equal to 1/2, are recently characterized through a noise
and signal alignment approach and are described using a graph
representation of the function. In this work, we go beyond the
best case scenarios and further develop the alignment approach
to characterize the linear capacity of a class of CDS instances
to be (ρ − 1)/(2ρ), where ρ is a newly introduced and highly
specific covering parameter of the graph representation of the
function.

Index Terms— Conditional disclosure of secrets, linear capac-
ity, noise and signal alignment.

I. INTRODUCTION

THE conditional disclosure of secrets (CDS) problem is a
classical cryptographic primitive with rich connections to

many other primitives such as symmetric private information
retrieval [2] and secret sharing [3], [4]. The goal of the CDS
problem is to find the most efficient way for Alice and Bob to
disclose a common secret to Carol if and only if the inputs at
Alice and Bob satisfy some function f (see Fig. 1). The CDS
problem was initially studied in the setting where the secret
is one bit long, and the cost of a CDS scheme is measured
by the worst case total amount of communication over all
functions f , typically as order functions of the input size [2],
[5], [6], [7], [8], [9]. That is, the focus is on the scaling law
of the communication complexity as the input size grows to
infinity. What is pursued in this work is the traditional Shannon
theoretic formulation, where the secret size is allowed to be
arbitrarily large, and the communication rate is the number of
bits of the secret that can be securely disclosed per bit of total
communication. The aim is to characterize the maximum rate,
termed the capacity of CDS, for a fixed function f .
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Fig. 1. 1). Alice and Bob (with secret S, noise variable Z, respective inputs
x, y) wish to disclose the secret S to Carol if and only if f(x, y) = 1 for
a binary function f , through signals Ax, By . 2) An example of f(x, y) in
graph representation. From pair of nodes connected by a solid black edge
(i.e., f(x, y) = 1), Carol can decode S; from pair of nodes connected by
a dashed red edge (i.e., f(x, y) = 0), Carol learns nothing about S in the
information theoretic sense.

A. Motivation and Related Work

The CDS problem is introduced in the first paper that ini-
tiates the study of the classical symmetric private information
retrieval problem [2] and is used as an auxiliary primitive to
thwart unauthorized queries (which can be seen by viewing
x, y as the queries sent to Alice and Bob, and if and only if
the query is legal, i.e., f(x, y) = 1, the answers from Alice and
Bob will reveal the secret S). Ever since, CDS has been widely
studied in computer science and cryptography, as an interesting
problem by itself [3], [4], [5], [6], [7], [8], [9]. Furthermore,
the CDS problem is now recognized as a prominent open
problem in information theoretic cryptography [10].

The broad interest in CDS also comes from its application
to practical systems. One may equivalently think of CDS as a
secure storage problem over graphs [11], [12]. For example,
the CDS instance in Fig. 1.2 may represent a storage system
with 8 servers (where each node is a server) that is used to
store the data S securely (accessible by authorized pairs of
servers) and only from a pair of servers connected by a solid
back edge, one may decode S. As the graph (i.e., the function
f ) may have arbitrary topology, it can be used to model a
wide class of data access patterns (from here we can also see
the connection to access structure in secret sharing).

Shannon Theoretic Formulation: What differentiates our
Shannon theoretic formulation from the information theoretic
cryptography formulation is mainly the following two aspects.
First, we are interested in the regime where the secret size
may approach infinity (which is typical and classical for rate
definition in information theory) while previous cryptography
mostly fixes the secret to be 1 bit. The large data regime

0090-6778 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of North Texas. Downloaded on January 15,2024 at 04:16:48 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-4070-3985
https://orcid.org/0000-0001-8777-7987


LI AND SUN: ON THE LINEAR CAPACITY OF CONDITIONAL DISCLOSURE OF SECRETS 7219

is also practical in current information age and complements
existing studies. Second, we consider each fixed function f
as we are looking for the exact capacity (so that solving all
functions at once is formidable) while previous cryptography
work aims at universal approximation results (i.e., targeting
at most challenging f for worst case analysis) so that there
protocols are strong as they apply to all functions while
converses results (optimality) are hard to obtain.

B. Our Approach and Results

In [13], we obtain a complete characterization for all func-
tions f where the CDS capacity is the highest, and is equal to
1/2. In describing this result, we find it convenient to represent
the function f by a bipartite graph, where each node denotes
a possible signal for certain input and two types (colors) of
edges are used to denote whether f is 1 or 0 (see Fig. 1.2 for
a concrete example). We will use this graph representation of
functions f throughout this work. The feasibility condition for
capacity 1/2 is then stated in terms of the graphic properties
of f . Furthermore, this result is obtained using a novel noise
and signal alignment approach, which guides the proof of
both (information theoretic) impossibility claims and (linear)
protocol designs.

Beyond the best rate scenarios, the simplest uncovered case
is also considered in [13] (see Theorem 2), where the linear
capacity1 has been found and this is our starting point. Our
goal in this work is to further develop the alignment approach
to characterize the linear capacity of a larger class of CDS
instances. As our first main result (see Theorem 1), we obtain
a general converse bound for linear CDS schemes, which
applies to any CDS instance, is parameterized by a covering
parameter ρ of the graph representation of f , and is equal to
(ρ − 1)/(2ρ). As our second main result (see Theorem 2),
we show that the above converse bound is achievable for a
class of graphs, i.e., CDS instances, through a vector linear
code based achievable scheme with matching rate. While we
find that the converse bound appears to be achievable for
more graphs (by verifying a number of examples), an explicit
condition of a larger class and a universal code design that
applies generally remain elusive. As our final result, we show
through an example that the above converse bound is not tight
in general and we establish the linear capacity for that example
(see Theorem 3). Interestingly, all results are obtained through
a more refined view of the alignment approach.

Notation: The notation |A| is used to denote the cardinality
of a set A. The space spanned of the rows of a matrix A is
denoted as R(A). For linear spaces A,B, d(A) represents its
dimension and A∩B denotes the intersection space. The rank
of a matrix A is denoted as r(A), which is equal to d(R(A)).
The notation (A;B) denotes the row stack of matrices A and
B. For integers i, j where i < j, a vector (ai; ai+1; · · · ; aj)
is abbreviated as a[i:j].

1It turns out that the linear capacity, i.e., the highest rate achievable by linear
schemes (so non-linear schemes are excluded) [14], [15], does not match the
best converse bound produced by only Shannon information inequalities, i.e.,
sub-modularity of entropy functions [13], which points to the possible gap
between linear capacity and capacity and is an interesting open problem.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a binary function f(x, y), where (x, y) is from
some set I ⊂ {1, 2, · · · , xmax} × {1, 2, · · · , ymax} and its
characteristic undirected bipartite graph Gf = (V,E), where
the node set V = {A1, · · · , Axmax , B1, · · · , Bymax} and the
edge set E is comprised of the unordered pairs {Ax, By} such
that (x, y) ∈ I. The edges have two types: if f(x, y) = 1,
{Ax, By} is a solid black edge and is referred to as a qualified
edge; if f(x, y) = 0, {Ax, By} is a dashed red edge and is
referred to as an unqualified edge (see Fig. 1.2 for an example).

The scalar x (y) denotes the input available only to Alice
(Bob) and Ax (By) denotes the signal sent from Alice (Bob) to
Carol for securely disclosing the secret S, which is comprised
of L independent and identically distributed (i.i.d.) uniform
symbols from a finite field Fp. In addition to the secret S, Alice
and Bob also hold an independent common noise variable Z
(to assist with the secure disclosure task) that is comprised of
LZ i.i.d. uniform symbols from Fp. In p-ary units,

H(S) = L, H(Z) = LZ ,

H(S, Z) = H(S) + H(Z) = L + LZ . (1)

Each signal Ax (By) is assumed to be comprised of N
symbols from Fp and must be determined by information
available to Alice (Bob).

H(Ax, By|S, Z) = 0. (2)

The disclosure task is said to be successful if the following
conditions are satisfied. From a qualified edge, Carol can
recover S with no error; from an unqualified edge, Carol must
learn nothing about S.

Definition 1 (Correctness and Security): For all (x, y) ∈
I,

[Correctness] H(S|Ax, By) = 0, if f(x, y) = 1; (3)
[Security] H(S|Ax, By) = H(S), otherwise f(x, y) = 0.

(4)

The collection of the mappings from x, y, S, Z to Ax, By

as specified above is called a CDS scheme.
The CDS rate2 R characterizes how many symbols of the

secret are securely disclosed per symbol of total communica-
tion and is defined as follows.

R =
L

2N
. (5)

A rate R is said to be achievable if there exists a CDS
scheme, for which the correctness and security constraints
(3), (4) are satisfied and the rate is greater than or equal to
R. The supremum of (asymptotic) achievable rates is called
the capacity of CDS, C. Note that L is allowed to approach
infinity, although our code construction will have finite block-
length, i.e., L is a finite constant.

In this work, we focus mainly on the metric of capacity
C and allow as much noise as needed, i.e., the randomness

2In this work, we focus exclusively on the symmetric rate where the signals
from Alice and Bob are assumed to have the same size while leaving the
generalizations to asymmetric rate and rate region as an interesting open
research direction for future study.
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size LZ is unconstrained (as an elemental setting while noting
that the randomness cost of CDS is an interesting problem by
itself).

A. Graph Definitions

We will use some graphic notions of Gf = (V,E) to state
our results, which are defined as follows. Without loss of
generality, we assume that for any node v ∈ V , there exists
some node u ∈ V such that {u, v} ∈ E is an unqualified edge
(otherwise, for any v that is connected to only qualified edges,
we can set v to be the secret S and then eliminate v and its
edges).

Definition 2 (Qualified/Unqualified Path/Component):
A sequence of distinct connecting qualified (unqualified)
edges is called a qualified (unqualified) path. A qualified
(unqualified) connected component is a maximal induced
subgraph of Gf such that any two nodes in the subgraph are
connected by a qualified (unqualified) path.

For an example of an unqualified path, see P =
{{A1, B2}, {B2, A3}, {A3, B1}} in Fig. 1.2. As the graph
in Fig. 1.2 except node B4 is connected by qualified edges,
it (i.e., the whole graph excluding node B4 and edge {A4, B4})
is a qualified component.

Definition 3 (Internal Qualified Edge): A qualified edge
that connects two nodes in an unqualified path is called an
internal qualified edge.

For example, in Fig. 1.2, the edge e = {A1, B1} is an
internal qualified edge that connects the two nodes A1, B1 in
the unqualified path P = {{A1, B2}, {B2, A3}, {A3, B1}}.

Definition 4 (Connected Edge Cover): Consider an inter-
nal qualified edge e in an unqualified path P and the node
set of P is denoted as VP ⊂ V . A connected edge cover of
VP is a set of connected3 qualified edges M ⊂ E such that
each node in VP is covered by at least one qualified edge
in M and e ∈ M . The size of a connected edge cover for
(e, P ) is the number of edges in M and is denoted as ρ(e, P ).
If no such M exists, then ρ(e, P ) is defined as +∞. Further,
ρ ≜ mine,P ρ(e, P ).

For example, in Fig. 1.2, consider the internal quali-
fied edge e = {A1, B1} in the unqualified path P =
{{A1, B2}, {B2, A3}, {A3, B1}}, then the nodes in P are
VP = {A1, B2, A3, B1} and a connected edge cover of VP is
M = {{A4, B1}, {A4, B2}, {A4, B3}, {A1, B1}, {A3, B3}}.
In this case, ρ(e, P ) = 5 as M contains 5 edges and we can
verify that the minimum value of ρ(e, P ) over all internal
qualified edges and their associated unqualified path pairs
(e, P ) is ρ = 5.

It can be verified that in general, ρ can be any integer that
is at least 5. Also note that as ρ is defined to be the minimum
over all e, P , so the connected edge cover M that attains the
value of ρ corresponds to one that has the minimal cardinality.

B. Linear Feasibility

We characterize the feasibility condition of a linear CDS
scheme.

3That is, any two nodes in M are connected by a qualified path.

Linear Scheme: For a feasible linear CDS scheme, each
signal (equivalently, each node v ∈ V )

v = FvS + HvZ, Fv ∈ FN×L
p ,Hv ∈ FN×LZ

p (6)

is specified by two precoding matrices, Fv for the secret
S ∈ FL×1

p and Hv for4 the noise Z ∈ FLZ×1
p such that the

following properties are satisfied.
• Consider any edge {v, u} and identify the overlap of their

noise spaces, i.e., the row space of Hv and Hu. That is,
find matrices Pv and Pu such that5

PvHv = PuHu,

r(Pv) = r(Pu) = d(R(Hv) ∩R(Hu)), (7)

then the secret spaces satisfy

[Correctness] r(PvFv −PuFu) = L,

if {u, v} is qualified; (8)
[Security]6 PvFv = PuFu,

otherwise {u, v} is unqualified. (9)

The correctness constraint (8) and the security constraint
(9) for linear schemes imply the entropic versions (3), (4).
For correctness, note that Pvv − Puu = (PvFv − PuFu)S,
so S can be decoded with no error if PvFv −PuFu has full
rank. For security, note that PvHv,PuHu contains all the
overlaps so that the remaining vectors are orthogonal. That is,

(Hv;Hu) invertible←→ (PvHv;QvHv;QuHu) (10)

where Qv,Qu are chosen so that R(PvHv), R(QvHv),
R(QuHu) are linearly independent (e.g., R(QvHv) may be
set as the orthogonal complement of R(PvHv) within R(Hv)
and Qu is similar). Then we have

I(S; v, u)
(7)(9)
= I(S;PvFvS + PvHvZ,QvFvS

+ QvHvZ,QuFuS + QuHuZ) (11a)
(1)
= H(PvFvS + PvHvZ,

QvFvS + QvHvZ,QuFuS + QuHuZ)
− H(PvHvZ,QvHvZ,QuHuZ) (11b)
≤ r(PvHv;QvHv;QuHu)
− r(PvHv;QvHv;QuHu) = 0 (11c)

where (11a) follows from the fact that PvFvS + PvHvZ =
PuFuS + PuHuZ (see (7), (9)) and linear transformation
to identify the overlap is invertible (see (10)). In (11c), the
first term follows from counting the number of variables and
the property that uniform distribution maximizes entropy, and
the second term follows from the fact the symbols in Z

4Without loss of generality, we assume that Hv has full row rank, i.e.,
rank(Hv) = N , because each v is assumed to connect to at least an
unqualified edge so that I(v; S) = 0, then the linearly dependent rows of
Hv in v must be linearly dependent as well (thus redundant).

5The overlap is found through matrices Pv ,Pu as multiplication from
the left preserves the row space and the size of Pv ,Pu is set to match the
dimension of the overlap.

6As a straightforward corollary, note that the security constraint applies to
subspaces of the overlapping noise spaces. That is, when {u, v} is unqualified,
for all matrices P̄v , P̄u where P̄vHv = P̄uHu, we have P̄vFv = P̄uFu.
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Fig. 2. A CDS instance and the vector linear achievable scheme of rate
R = 2/5.

are i.i.d. and uniform. Conversely, any feasible linear scheme
must satisfy (8), (9). Such a linear feasibility framework has
appeared in related problems, e.g., index coding [16] and
secure groupcast [17].

To facilitate later use, we summarize some useful properties
of feasible linear schemes in the following lemma. A detailed
proof can be found in Lemma 6 and Lemma 7 of [13].

Lemma 1: For any linear scheme as defined above and any
edge {v, u}, we have

[Noise Align] dim(rowspan(Hv) ∩ rowspan(Hu)) ≥ L,

if {u, v} is qualified; (12)
[Signal Align] PvFv = PuFu, if {u, v} is unqualified.

(13)

The intuition of the lemma is as follows. (12) follows from
the correctness constraint (8), which requires the overlap of the
noise spaces to have at least L dimensions as decoding is only
possible over the overlapping space (so referred to as ‘noise
alignment’) and other spaces are covered by independent noise
variables. (13) follows from the security constraint (9), which
says that over the overlapping noise space, the secret space
must also be fully overlapping (so referred to as ‘signal
alignment’ since both noise and secret fully align in this
space) as otherwise the unqualified edge can reveal some
linear combination of the secret symbols, violating the security
constraint.

In the remainder of this paper, we use (8) and (9) to verify
the correctness and security of a linear scheme. To illustrate
how it works, let us consider again the CDS instance in
Fig. 1.2 (reproduced in Fig. 2). We show that rate R = 2/5 is
achievable, through presenting a vector linear scheme with
L = 4, N = 5. That is, the secret has L = 4 symbols over
F3 (S = s[1:4]), and each signal has N = 5 symbols over
F3. The assignment of the signals is given in Fig. 2. Suppose
Z = z[1:9], where each zi is uniform and i.i.d. over F3.

Let us verify that the above scheme is correct and secure.
For simplicity, we do not write out explicitly the precoding
matrices Fv and Hv for a signal v as the dimension is
relatively large. Instead, we will directly find the overlap by
inspection. Consider qualified edge {A3, B3}. A3, B3 both
contain (z1 + z2; z4; z5; z8) (noise overlaps) and can then
obtain 4 equations of the secret symbols, (−s1 + s2; s4; s3 +
s4; s1), which can recover S = s[1:4]. Other cases of qualified
edges can be verified similarly. Consider the unqualified edge
{A3, B2}. (z1 + z2; z5) lies in the overlap of the noise
spaces and the secret symbols projecting to this space are
both (s1 + s2; s3 + s4), thus no information is leaked. Other

unqualified edges follow similarly. The rate achieved is thus
L/(2N) = 4/10 = 2/5.

III. RESULTS

A. Linear CDS Converse

Our first result is a general converse bound of linear CDS
schemes, parameterized by the minimum connected edge cover
number of internal qualified edges, ρ and stated in Theorem 1.

Theorem 1: For any CDS instance, the following converse
bound holds for all linear schemes.

R linear ≤
ρ− 1
2ρ

. (14)

Remark 1: When ρ = +∞, we have that for any internal
qualified edge e, there is no set of connected edges that can
cover all nodes in the unqualified path containing e (refer to
Definition 4). This is equivalent to that there is no internal
qualified edge within any qualified component, which reduces
to the feasibility condition of capacity 1/2 from Theorem 1
of [13].

The proof of Theorem 1 is presented in Section V-A.
To illustrate the idea, let us consider the CDS instance in

Fig. 2. We may verify that ρ = 5 (see the explanation below
Definition 3). Then Theorem 1 indicates that R linear ≤ (ρ−
1)/(2ρ) = 2/5. As rate 2/5 is linearly achievable (see Fig. 2),
the linear capacity of this CDS instance is 2/5.

The intuition of the linear converse is as follows. (12) in
Lemma 1 gives a lower bound on the dimension of the pairwise
noise overlap of the two nodes in a qualified edge. We will
start from this pairwise overlap to obtain a lower bound on the
dimension of the overlap of all nodes in M , i.e., R(HA4) ∩
R(HB1) ∩R(HB2) ∩R(HB3) ∩R(HA1) ∩R(HA3), which
is the overlap of all pairwise overlaps of the edges in M ,
i.e., (R(HA4) ∩R(HB1)) ∩ · · · ∩ (R(HA3) ∩R(HB3)). For
example, consider the first two edges in M .

d
(
R(HA4) ∩R(HB1) ∩R(HB2)

)
= d

(
(R(HA4) ∩R(HB1)) ∩ (R(HA4) ∩R(HB2))

)
≥ d

(
R(HA4) ∩R(HB1)

)
+ d

(
R(HA4) ∩R(HB2)

)
− d

(
R(HA4)

)
(15)

(12)

≥ L + L−N

where (15) follows from the sub-modularity of linear rank
functions and the direct sum (the space spanned by the union
of the two sets of vectors) of the two pairwise overlaps is con-
tained in R(HA4) as each pairwise overlap involves R(HA4).
The last step follows from the pairwise overlap constraint
(12) and the fact that the rank of HA4 is N . We have now
transformed the pairwise overlap of dimension L to 3-wise
overlap of 2L−N , where a term of L−N is added. Next as the
edges are connected, we may apply sub-modularity repeatedly
and find the overlap of all noise spaces in M by including one
connected edge at one time, whose dimension turns out to be
no less than L+(ρ−1)(L−N) = 5L−4N , i.e., the L−N term
is added ρ−1 times (from pairwise overlap to ρ-wise overlap).
Then by (13) in Lemma 1, we know that such noise overlap
leads to signal overlap for all nodes VP = {A1, B2, A3, B1}
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Fig. 3. A CDS instance where each qualified component is either a path
or a cycle. For each qualified component, an internal qualified edge e is put
in a blue circle and the nodes VP in the unqualified path P are put in red
circles. Then the connected edge cover M is the qualified path that connects
to all nodes in VP . For the left qualified component, ρ(e, P ) = 6 (the path
from A1 to A4); for the right qualified component, ρ(e, P ) = 7 (the path
from B9 to A7). The unqualified edges connecting two nodes from different
qualified components are not drawn and can be arbitrary.

in the unqualified path P , in particular including the two nodes
A1, B1 in the internal qualified edge e. As overlapping signal
contributes no information for decoding, such overlap shall
not exist (when the noise overlap of A1, B1 is exactly L
in (12) and this will be relaxed in the general proof), i.e.,
ρL− (ρ− 1)N ≤ 0, and R linear = L/(2N) ≤ (ρ− 1)/(2ρ).

B. Linear Capacity of a Class of CDS Instances

Next, we proceed to our second result, which shows that
the linear converse in Theorem 1 is tight for a class of CDS
instances and is stated in Theorem 2.

Theorem 2: For any CDS instance where the qualified
edges in each qualified component form either a path or a
cycle,7 the linear capacity is C linear = (ρ− 1)/(2ρ).

Note that Theorem 2 only places constraints on the structure
of qualified edges and works for any possible configuration of
unqualified edges.

The proof of Theorem 2 is presented in Section V-B.
We give an example here to illustrate the idea. Consider

the CDS instance in Fig. 3 and we show that the linear
capacity is C linear = 5/12. Theorem 2 can be applied as
the instance contains two qualified components, where the
qualified edges form a path in one qualified component and
form a cycle in the other qualified component. ρ = 6, because
for the left qualified component, there is an internal qualified
edge e = {A1, B1} (see the blue circle) in unqualified path
P = {{A1, B2}, {B2, A4}, {A4, B1}} (see the red circles),
which is then covered by a qualified path with 6 edges
M = {{A1, B1}, {B1, A2}, {A2, B2}, {B2, A3}, {A3, B3},

7A cycle is a path where the first node is the same as the last node. If the
qualified edges form either a path or a cycle, equivalently, we have that each
node is connected to at most two qualified edges.

Fig. 4. A linear capacity achieving scheme for the left qualified component.

{B3, A4}}. It can be verified that this M has the minimum
cardinality, so ρ = 6. Then the converse bound follows from
Theorem 1.

We now consider the achievable scheme. We will consider
each qualified component one by one and use independent
noise variables. Let us start from the left qualified component
(a qualified path from A1 to B4), where the assignment of
each signal is given in Fig. 4.

The uniform and i.i.d. noise variables are assigned sequen-
tially to the nodes in the path following a sliding window
manner, where the first node A1 uses z0, z1, · · · , z5 ≜ z[0:5],
the second node uses z[1:6], and so on (every two consecutive
nodes share L = 5 common noise variables). Note that this
noise assignment does not depend on the structure of the
unqualified edges (which is a key property that simplifies the
scheme design). The secret symbols s[1:5] are assigned cyclicly
to the noise variables, i.e., s[1:5] are assigned to z[1:5], z[6:10]

etc. (i.e., sj is assigned to z5B+j for any integer B). The
coefficients of sj are the only left and most important part.
To this end, focus on each zi in an arbitrary order and consider
only the nodes that contain zi. For example, consider z6, which
appears in 6 nodes B1, A2, B2, A3, B3, A4 and consider the
subgraph induced by these 6 nodes. For the induced subgraph,
consider each unqualified component sequentially (any order
will work and one node that connects to no unqualified
edge is a trivial unqualified component) and assign the same
signal to each node in the unqualified component. So here
first consider the unqualified path {{B1, A4}, {A4, B2}} and
assign s1 + z6 to B1, A4, B2; second consider the unqualified
path {A2, B3} and assign 2s1 + z6 to A2, B3; lastly consider
A3 and assign 3s1 + z6 to A3. All other zi can be treated in
the same manner (essentially for each zi, we apply the scheme
from Theorem 1 of [13]). This completes the description of
the scheme.

The security and correctness of the scheme follow from the
assignment in a straightforward manner. For security, note that
for each unqualified edge, the signal for overlapping noise
is set to be the same so that the security constraint (9) is
satisfied. For correctness, we note that in the qualified path,
every two consecutive nodes are connected by a qualified edge
and share L noise symbols. For each shared noise symbol, the
secret symbols have different coefficients by noting that the
connected edge cover number ρ > ρ− 1 and each zi appears
in consecutive ρ− 1 edges.

After completing the left qualified component, we proceed
to the right component (a qualified cycle from A5 to B10 and
back to A5), whose assignment is given in Fig. 5.
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Fig. 5. A linear capacity achieving scheme for the right qualified component.

The assignment for a cycle is similar to that of a path
and we only highlight the differences here. To cope with the
fact that the first and last node is the same for a cycle, the
sliding window based noise assignment needs to wrap back
as well (see the z′[1:5] symbols in Fig. 5). Also, the secrets
associated with nodes near the front and end need to be coded
and generic (one linear combination of secret symbols s[1:5]

is denoted by li in Fig. 5) so that when combined with any
blocks of si, all secret symbols can be decoded as long as
the collective number is sufficient. For example, consider the
qualified edge {A10, B9}, where we need to recover S = s[1:5]

from (s1, s2, l1, l2, l3). We will use Cauchy matrix to realize li
over a sufficiently large field. The other elements for the cycle
case are the same as those for a path, i.e., consider each zi

sequentially and set each unqualified component to have the
same signal that contains zi in the induced subgraph. Details
are deferred to the general proof.

Lastly, we consider the unqualified edges connecting two
nodes from different qualified components, which are not
drawn in Fig. 3. The presence of any number of such unqual-
ified edges will not change the result - for the converse, ρ
is not influenced; for the achievability, security is preserved
as independent noises are used (i.e., zi, z

′
i in Fig. 4 and

Fig. 5, respectively) for different qualified components. The
rate achieved is R = L/(2N) = 5/12 as the secret has
L = 5 symbols and each signal has N = 6 symbols.

C. Converse (ρ− 1)/(2ρ) Is Not Tight

The techniques from Theorem 1 and Theorem 2 are not
sufficient in general. Our third result is the linear capacity
characterization of a CDS instance in Fig. 6 that goes beyond
previous theorems.

Theorem 3: The linear capacity of the CDS instance in
Fig. 6 is C linear = 7/18.

The proof of Theorem 3 is presented in Section V-C.
The converse from Theorem 1 is not tight as ρ = 5 and
the converse bound is R linear ≤ 2/5, which is strictly
larger than 7/18, the linear capacity. The converse proof of
R linear ≤ 7/18 requires a highly non-trivial analysis of the
noise and space spaces involved such that it goes well beyond
the techniques from Theorem 1 and does not appear to admit
a simple explanation (so we are not yet able to generalize

Fig. 6. A CDS instance whose linear capacity is 7/18. The converse bound
from Theorem 1 is not tight.

Fig. 7. A CDS instance whose linear capacity is open. The best known
converse bound is from Theorem 1 and is equal to 2/5.

it further). Once the converse bound is found, the achievable
scheme follows by its guidance and falls in the general linear
feasibility framework presented in Section II-B.

IV. CONCLUSION

In this work, we take a Shannon theoretic perspective at the
canonical conditional disclosure of secrets problem to seek
capacity characterizations where the secret size is allowed
to approach infinity while most cryptography work focuses
on the scaling of communication cost with the input size8

[2], [5], [6], [7], [8], [9]. This Shannon theoretic perspective
follows the footsteps of recent attempts in the information
theory community on other cryptographic primitives [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28]. Towards this end,
we further develop the noise and signal alignment approach,
which is a variation of interference alignment originally stud-
ied in wireless communication networks [15], [29], [30] and
is introduced in [13], to characterize the linear capacity of a
class of CDS instances, which go beyond the highest capacity
scenarios found in [13]. Along the line, we identify a general

8One exception is recent work [18], where the amortization formulation
essentially considers the same rate metric as our work. The difference
is that we focus on each CDS instance and pursue exact linear capacity
characterizations (so impossibility claims included) while [18] aims at worst
case rate approximation for all CDS instances.
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linear converse bound (see Theorem 1) and a linear feasibility
framework that facilitates the design of linear schemes once
the target rate value is fixed (see Section II-B). However, these
results are not sufficient to fully understand the linear capacity
of CDS in general. We conclude by giving an intriguing CDS
instance whose linear capacity is open (see Fig. 7). Note
that this instance is only slightly changed from the solved
instance in Fig. 2. A general achievable scheme that works
for all functions and has competitive rate performance is also
missing, which comprises an interesting open problem.

V. APPENDIX

A. Proof of Theorem 1

The proof of Theorem 1 follows similarly from that of the
CDS instance in Fig. 2 considered in the previous section.
We first simplify a notation that will be frequently used. For
nodes v1, · · · , vi, denote the dimension of the overlap of their
noise spaces as αv1···vi

, i.e.,

αv1···vi
≜ d(R(Hv1) ∩ · · · ∩ R(Hvi

)). (16)

Consider any CDS instance Gf (V,E), where ρ ̸= +∞ and
focus on an internal qualified edge e in an unqualified path
P such that ρ(e, P ) = ρ. Then the connected edge cover
M for nodes VP in P contains ρ edges and ρ + 1 nodes,
denoted as VM = {v1, v2, · · · , vρ+1} ⊂ V . Note that such
e, P,M are guaranteed to exist as ρ ̸= +∞ and according to
the definition of ρ, the connected edge cover M attains the
minimal cardinality so that M is a spanning tree of the nodes
VM .

Start with the internal qualified edge e in M , say e =
{vi1 , vi2} ⊂M, i1, i2 ∈ {1, 2, · · · , ρ+1}. As M is connected,
there must exist a node vi3 ∈ VM , i3 /∈ {i1, i2} and a node
u1 ∈ {vi1 , vi2} such that {u1, vi3} is a qualified edge. Then
from sub-modularity, we have

αvi1vi2vi3
≥ αvi1vi2

+ αu1vi3
−N. (17)

Then we proceed similarly to find vi4 ∈ VM , i4 /∈
{i1, i2, i3} such that {u2, vi4} is a qualified edge, where
u2 ∈ {vi1 , vi2 , vi3}. Again from sub-modularity, we have

αvi1vi2vi3vi4
≥ αvi1vi2vi3

+ αu2vi4
−N

(17)

≥ αvi1vi2
+ αu1vi3

+ αu2vi4
− 2N. (18)

Continue this procedure, i.e., we include one node vij
∈

VM , ij /∈ {i1, · · · , ij−1}, j ∈ {5, · · · , ρ + 1} at one time such
that {uj−2, vij} ∈ M and uj−2 ∈ {vi1 , · · · , vij−1}. Then we
have

αvi1vi2 ···viρ+1
≥ αvi1 ···viρ

+ αuρ−1viρ+1
−N

≥ αvi1vi2
+ αu1vi3

+ αu2vi4
+ · · ·

+ αuρ−1viρ+1
− (ρ− 1)N. (19)

Note that i1, · · · , iρ+1 are distinct so that VM =
{v1, · · · , vρ+1} = {vi1 , · · · , viρ+1}.

As the ρ + 1 noise spaces have an overlap of dimen-
sion αvi1vi2 ···viρ+1

, there exist ρ + 1 projection matrices
P∩vi1

, · · · ,P∩viρ+1
of rank αvi1vi2 ···viρ+1

each such that

P∩vi1
Hvi1

= P∩vi2
Hvi2

= · · · = P∩viρ+1
Hviρ+1

. (20)

Next, switch focus to the unqualified path P . Con-
sider the nodes VP ⊂ VM and denote VP =
{vi1 , vj1 , vj2 , · · · , vj|VP |−2 , vi2} ⊂ {vi1 , vi2 , · · · , viρ+1} =
VM such that {vi1 , vj1}, {vj1 , vj2}, · · · , {vj|VP |−2 , vi2} are
unqualified edges. By (13), i.e., the signal alignment constraint
from Lemma 1, and (20), we have

P∩vi1
Fvi1

= P∩vj1
Fvj1

= · · · = P∩vj|VP |−2
Fvj|VP |−2

= P∩vi2
Fvi2

⇒ P∩vi1
Fvi1

= P∩vi2
Fvi2

. (21)

Finally, consider the internal qualified edge e = {vi1 , vi2}
and identify the noise overlap through matrices Pvi1

,Pvi2
that

have rank αvi1 ,vi2
, i.e., Pvi1

Hvi1
= Pvi2

Hvi2
. Noting that

R(P∩vi1
) is a subspace of R(Pvi1

), we set

P∩vi1
= Pvi1

(1 : αvi1vi2 ···viρ+1
, :),

P∩vi2
= Pvi2

(1 : αvi1vi2 ···viρ+1
, :) (22)

without loss of generality, i.e., the first αvi1vi2 ···viρ+1
rows of

Pvi1
are P∩vi1

. Then from the correctness constraint (8) for
qualified edge e = {vi1 , vi2}, we have

L
(8)
= r

(
Pvi1

Fvi1
−Pvi2

Fvi2

)
(23a)

(21)(22)
= r

(
Pvi1

(αvi1vi2 ···viρ+1
+ 1 : αv1v2 , :)Fvi1

−Pvi2
(αvi1vi2 ···viρ+1

+ 1 : αv1v2 , :)Fvi2

)
(23b)

≤ αvi1vi2
− αvi1vi2 ···viρ+1

(23c)
(19)

≤ αvi1vi2
−

(
αvi1vi2

+ αu1vi3
+ αu2vi4

+ · · ·

+ αuρ−1viρ+1
− (ρ− 1)N

)
(23d)

=(ρ− 1)N

−
(
αu1vi3

+ αu2vi4
+ · · ·+ αuρ−1viρ+1

)
(23e)

(12)

≤ (ρ− 1)N − (ρ− 1)L (23f)
⇒ ρL ≤ (ρ− 1)N
⇒ R linear = L/(2N) ≤ (ρ− 1)/(2ρ). (23g)

The proof of the linear converse bound in Theorem 1 is thus
complete.

B. Proof of Theorem 2

In this section, we present a vector linear CDS scheme that
achieves rate (ρ−1)/(2ρ) as long as each qualified component
of the CDS instance is either a path or a cycle. Recall that
ρ is the minimum connected edge cover number defined in
Definition 4. Specifically, we set L = ρ − 1, i.e., each secret
has L symbols S = (s1, · · · , sρ−1) ≜ s[1:ρ−1] from Fp and
N = ρ, i.e., each signal (node) v has N symbols from Fp.
We assume that p is a prime number that is no smaller than
2ρ− 2.

To prepare for the achievable scheme, we first define L =
ρ−1 generic linear combinations l[1:ρ−1] of the secret symbols.

(l1; · · · ; lρ−1)(ρ−1)×1

= C(ρ−1)×(ρ−1) × (s1; · · · , sρ−1)(ρ−1)×1
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C(ρ−1)×(ρ−1)(i, j) =
1

xi − yj
, i, j ∈ {1, · · · , ρ− 1} (24)

where xi, yj are distinct elements from Fp (the existence is
guaranteed by the fact that the field size p is no smaller than
2ρ − 2), so C(ρ−1)×(ρ−1) is a Cauchy matrix whose every
square sub-matrix has full rank [31].

Consider any CDS instance Gf (V,E) such that the mini-
mum connected edge cover number for any internal qualified
edge is ρ. Suppose the instance contains Q qualified com-
ponents, where each qualified component is either a path
or a cycle of qualified edges. Denote the node set of the
q-th qualified component by V q, q ∈ {1, · · · , Q} such that
V = V 1 ∪ · · · ∪ V Q. For each qualified component, we will
use independent uniform i.i.d. noise symbols from Fp, denoted
as zq = (zq

0 , zq
1 , zq

2 , · · · ). The exact number of noise symbols
used in each zq will be specified when we give the scheme and
is indicated by the subscript. So Z = (z1, · · · , zQ). We are
now ready to specify the signal design.

1) Consider each qualified component sequentially. If the
q-th qualified component is a path, go to 2; otherwise
the q-th qualified component is a cycle, go to 3.

2) The nodes V q form a qualified path. Denote V q =
{vq

1, · · · , v
q
|V q|}. Suppose {vq

1, v
q
2}, {v

q
2, v

q
3}, · · · ,

{vq
|V q|−1, v

q
|V q|} are qualified edges, i.e., we interpret

vq
1 as the first node and vq

|V q| as the end node of the
path.

a) Assign the noise variables in a sequential manner
as follows.

vq
1 = (zq

0 , zq
1 , · · · , zq

ρ−1), v
q
2 = (zq

1 , zq
2 , · · · , zq

ρ),

· · · , vq
|V q| = (zq

|V q|−1, · · · , z
q
|V q|+ρ−2).

(25)

b) We now describe how to the include the secret
symbols to each node. Consider the nodes that
contain each noise symbol zq

1 , · · · , zq
|V q|+ρ−2

sequentially (zq
0 will not be used) and the induced

subgraph formed by these nodes. Note that each
noise symbol zq

j , j ∈ {1, · · · , |V q|+ρ−2} appears
at no more than ρ nodes and denote the induced
subgraph by Gq

j ⊂ Gf . Suppose Gq
j contains

Kq
j unqualified components,9 each of which is

considered sequentially as follows.

For each node vq
i in the k-th unqualified

component of Gq
j , k ∈ {1, · · · , Kq

j },
j ∈ {1, · · · , |V q|+ ρ− 2}, replace zq

j by

k × sj mod (ρ−1) + zq
j . (26)

Note that in sj mod (ρ−1), the subscript is
defined over {1, · · · , ρ− 1} as secret symbols are
s1, · · · , sρ−1, i.e., {1}, · · · , {ρ− 1} are the repre-
sentative of the equivalent classes of the modulo
ρ− 1 function. The signal assignment is complete
for the path case.

9A node that connects to no unqualified edge is a trivial unqualified
component. As there are at most ρ nodes in Gq

j , we have that Kq
j ≤ ρ.

3) The nodes V q form a qualified cycle. Denote V q =
{vq

1, · · · , v
q
|V q|}, and suppose {vq

1, v
q
2}, {v

q
2, v

q
3}, · · · ,

{vq
|V q|−1, v

q
|V q|}, {v

q
|V q|, v

q
1} are qualified edges.

a) Assign the noise variables in the following cyclic
manner.

vq
1 =(zq

1 , zq
2 , · · · , zq

ρ), vq
2

= (zq
2 , zq

3 , · · · , zq
ρ+1), · · · ,

vq
|V q|−1 = (zq

|Vq|−1, z
q
|Vq|, z

q
1 , · · · , zq

ρ−2),

vq
|V q| = (zq

|Vq|, z
q
1 , · · · , zq

ρ−1).

(27)

b) We now describe how to the include the secret
symbols to each node. Consider the nodes that con-
tain each noise symbol zq

1 , · · · , zq
|V q| sequentially

and the induced subgraph formed by these nodes.
Note that each noise symbol zq

j , j ∈ {1, · · · , |V q|}
appears at ρ nodes and denote the induced sub-
graph by Gq

j ⊂ Gf . Suppose Gq
j contains Kq

j

unqualified components, each of which is consid-
ered sequentially as follows.

For each node vq
i in the k-th unqualified

component of Gq
j , k ∈ {1, · · · , Kq

j },
if j ∈ {1, · · · , ρ− 1}, replace zq

j by k × lj + zq
j ;

otherwise j ∈ {ρ, · · · , |Vq|}, replace zq
j by

k × sj mod (ρ−1) + zq
j . (28)

Note that similar as above, j mod (ρ − 1) is
defined over {1, · · · , ρ−1}. The signal assignment
is complete for the cycle case.

After describing the signal design for all nodes, we proceed
to show that the scheme is correct and secure.

First, we prove that the correctness constraint (8) is satisfied.
All qualified edges belong to some qualified component, so it
suffices to consider each qualified component. We have two
cases.
• The first case is when the qualified component is a path.

From the noise assignment (25), we know that the two
nodes u, v in any qualified edge share L = ρ − 1 noise
symbols with consecutive subscripts. Further, according
to the signal assignment (26), these L consecutive noise
symbols are each mixed with one distinct secret symbol
from the L symbols in S. In addition, each shared secret
symbol si, i ∈ {1, · · · , L} in v and u is multiplied by
different coefficients k (see (26)). We prove this claim by
contradiction, i.e., suppose that the coefficients k are the
same. Then due to the signal assignment (26), e = {u, v}
must be an internal qualified edge in an unqualified path
P , and we can find a connected edge cover M for the
nodes in P and all nodes in M share one same noise
symbol. Recall from Definition 4 that M contains ρ(e, P )
edges and ρ(e, P ) ≥ ρ. As a result, M contains at least
ρ+1 nodes and these nodes share one same noise symbol,
which is not possible because from the noise assignment
(25), each noise symbol only appears at ρ nodes at most.
Thus the coefficients for the L secret symbols in v, u are
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Fig. 8. A linear capacity achieving scheme with rate 7/18. li is a generic
linear combination of s1, · · · , s7.

all distinct and from {v, u} we can recover S with no
error.

• The second case is when the qualified component is a
cycle, whose proof is similar to the path case. Similarly
from the noise assignment (27), any two nodes u, v in
a qualified edge share L = ρ − 1 noise symbols with
cyclicly consecutive subscripts. Further, according to the
signal assignment (28), these L noise symbols are each
mixed with either one distinct secret symbol si from the L
symbols in S or one generic linear combination lj . With
a similar reasoning as above (due to the definition of ρ
and each noise appears at ρ nodes), the multiplicative
coefficients k for si, lj are distinct. As lj are from a
Cauchy matrix (see (24)), whose every square sub-matrix
has full rank, we conclude that from {v, u} we can obtain
L equations of form si, lj thus recover S with no error.

Second, we prove that the security constraint (9) is satisfied.
We have two cases for an unqualified edge.
• The first case is when the two nodes u, v of the

unqualified edge are from the same qualified component.
Security is guaranteed because in the signal assignment
(26), (28), when the noise space overlaps, the same signal
equation is assigned, i.e., signal alignment is ensured and
(9) holds.

• The second case is when the two nodes u, v of the unqual-
ified edge are from two different qualified components.
As the noise symbols zq, zq′ are independent for distinct
qualified components, the noise spaces of u, v have no
overlap and (9) trivially holds.

The proof of Theorem 2 is now complete.

C. Proof of Theorem 3

We show that the linear capacity of the CDS instance in
Fig. 6 is 7/18. The achievable scheme is given in Fig. 8. The
secret symbols s[1:7] are from F13 and l[1:5] are defined as
follows.

(l1; · · · ; l5)5×1 = C5×7 × (s1; · · · , s7)7×1

C5×7(i, j) =
1

xi − yj
,

i ∈ {1, · · · , 5}, j ∈ {1, · · · , 7} (29)

where xi, yj are distinct elements from F13 so that C5×7

is a Cauchy matrix whose every square sub-matrix has full
rank. The correctness and security constraints (8) (9) are
straightforward to verify.

Next we provide the converse proof. Recall that αv1···vJ

denotes the dimension of the overlap of the row span of the
noise precoding matrices of v1, · · · , vJ and for each node, the
rank of the noise precoding matrix is N (see Footnote 2).

We first give an upper bound for αA2,A3 , where the
proof is similar to that of Theorem 1. Consider nodes
A2, A3, B3, A4, B4. To identify their noise overlap, we may
find 5 matrices P∩A2

, P∩A3
, P∩B3

, P∩A4
, P∩B4

of rank
αA2A3B3A4B4 each so that

P∩A2
HA2 = P∩A3

HA3 = P∩B3
HB3

= P∩A4
HA4 = P∩B4

HB4 . (30)

Further, {{A3, B4}, {B4, A2}, {A2, B3}} is an unqualified
path. From (13) and (30), we have

P∩A3
FA3 = P∩B4

FB4 = P∩A2
FA2 = P∩B3

FB3

⇒ P∩A3
FA3 = P∩B3

FB3 . (31)

Consider now qualified edge {A3, B3} and identify the
noise overlap through PA3 ,PB3 of rank αA3B3 so that
PA3HA3 = PB3HB3 . As R(P∩A3

) is a subspace of R(PA3),
without loss of generality we set

P∩A3
= PA3(1 : αA2A3B3A4B4 , :),

P∩B3
= PB3(1 : αA2A3B3A4B4 , :). (32)

From the correctness constraint (8), we have

L
(8)
= r (PA3FA3 −PB3FB3) (33a)
(31)(32)

= r (PA3(αA2A3B3A4B4 + 1 : αA3B3 , :)FA3

−PB3(αA2A3B3A4B4 + 1 : αA3B3 , :)FB3) (33b)
≤ αA3B3 − αA2A3B3A4B4 (33c)

≤ αA3B3 − (αA2A3 + αA3B3

+ αB3A4 + αA4B4 − 3N) (33d)
= 3N − (αA2A3 + αB3A4 + αA4B4) (33e)
⇒ αA2A3 ≤ 3N − (αB3A4 + αA4B4)−L (33f)

where (33d) follows from sub-modularity and we have
obtained the desired upper bound for αA2A3 .

We are now ready for the final step, which is a
similar chain of arguments as above. Consider 6 nodes
A1, B1, A2, B2, A3, B3 and identify their noise overlap
through matrices P∩∩A1

, P∩∩B1
, P∩∩A2

, P∩∩B2
, P∩∩A3

, P∩∩B3
of rank

αA1B1A2B2A3B3 each.

P∩∩A1
HA1 = P∩∩B1

HB1 = P∩∩A2
HA2 = P∩∩B2

HB2

= P∩∩A3
HA3 = P∩∩B3

HB3 ⇒ P∩∩A2
FA2 = P∩∩B2

FB2

(34)

where the last step follows from the unqualified path
{{A2, B3}, {B3, A1}, {A1, B2}} and (13).

Consider qualified edge {A2, B2} and identify the noise
overlap through PA2 ,PB2 of rank αA2B2 so that PA2HA2 =
PB2HB2 . Then we have

R(P∩∩A2
) ⊂ R(PA2), R(P∩∩B2

) ⊂ R(PB2) (35a)
⇒ L

(8)
= r(PA2FA2 −PB2FB2) (35b)
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(34)(35a)

≤ αA2B2 − αA1B1A2B2A3B3 (35c)
≤ αA2B2 − (αA1B1A2B2A3 + αA3B3 −N) (35d)

≤ αA2B2 − (αA1B1A2A3 + αA2B2A3

− αA2A3 + αA3B3 −N) (35e)
(33f)

≤ αA2B2 −
((

αA1B1 + αB1A2 + αA3B1 − 2N
)

+
(
αA2B2 + αB2A3 −N

)
−

(
3N

− (αB3A4 + αA4B4)−L
)

+ αA3B3 −N
)

(35f)

= 7N−L− (αA1B1 + αB1A2 + αA3B1

+ αB2A3 + αB3A4 + αA4B4 + αA3B3) (35g)
(12)

≤ 7N − 8L (35h)
⇒ R linear = L/(2N) ≤ 7/18 (35i)

where sub-modularity is repeatedly applied in (35d), (35e),
(35f); in (35g), {v, u} is a qualified edge in every αvu term,
so (12) can be applied to obtain (35h). The converse proof and
thus the linear capacity proof of Theorem 3 is complete.
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