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Abstract— The main result of this paper is that an orthogonal
access scheme, such as time division multiple access achieves the
all-unicast degrees of freedom (DoF) region of the topological
interference management problem if and only if the network
topology graph is chordal bipartite, i.e., every cycle that can
contain a chord, does contain a chord. The all-unicast DoF
region includes the DoF region for any arbitrary choice of a
unicast message set, so e.g., the results of Maleki and Jafar
on the optimality of orthogonal access for the sum-DoF of
one-dimensional convex networks are recovered as a special case.
The result is also established for the corresponding topological
representation of the index coding problem.

Index Terms— Capacity, degrees of freedom (DoF), index
coding, time division multiple access (TDMA), topological inter-
ference management (TIM).

I. INTRODUCTION

THE topological interference management problem (TIM),
introduced in [1], studies the degrees of freedom (DoF)

of partially connected one-hop wireless networks with no
channel state information at the transmitters except the net-
work topology. As a generalization of the classical optimal
frequency reuse question, and for its use of robust interference
alignment schemes, TIM is of much practical interest. It is also
of great theoretical interest because of an essential equivalence
between TIM and the index coding problem, established in [1].
The index coding problem is one of the most intriguing
open problems in network information theory due to its rich
connections to various other prominent problems ranging from
distributed storage [2], [3], caching [4] and general instances
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of network coding [5], [6] to hat-guessing problems [7] in
recreational mathematics.

On the surface these problems seem very simple. However,
in spite of various graph-theoretic [8], random coding [9],
rate-distortion [10], as well as interference alignment [11]
approaches that have been brought to bear upon it, the index
coding problem, and by association the TIM problem, remain
open. The difficulty is evident in recent results for index
coding that prove the necessity, in general, of non-linear
coding schemes for achievability arguments [5], [11], [12],
and of non-Shannon information inequalities for con-
verses [13]–[15], neither of which are well understood.
As such, much of the recent progress on these problems has
come about from a divide and conquer approach aimed at
identifying broad classes of solvable instances of the problem.
For example, [8], [16] identify all instances where it is optimal
to serve only one user at a time. All half-rate feasible instances
are identified in [11] and [13]. All instances for which the
alignment graph has no cycles or no forks are solved in [1]
and this class is further generalized to include instances for
which the alignment graph has no overlapping cycles in [14].
All instances with 5 or fewer messages are solved in [9], all
single uniprior instances are solved in [17], and all instances
where each source has non-trivial communication capacity to
at most two of the destinations are solved in [10].

Continuing with the divide and conquer strategy, a problem
of great interest from both theoretical and practical perspec-
tives, is to identify those instances where the simplest achiev-
able schemes are also optimal. Such an approach has been
quite successful recently in wireless interference networks
where much progress has been made in identifying settings
where the simple scheme of treating interference as noise is
(in a generalized DoF sense) optimal [18]. For TIM, perhaps
the simplest scheme is an orthogonal access scheme, such
as TDMA. The corresponding scheme for index coding is
graph coloring, i.e., simultaneous scheduling of only those
messages that do not interfere with each other. Remarkably,
in recent work by [19], TDMA and graph coloring are shown
to achieve the sum-DoF and sum-capacity of a fairly broad
class of TIM and index coding problems, respectively. Based
on the constraints on the topology and message sets, this class
is known as one-dimensional convex networks. This is our
starting point.
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Fig. 1. A one-dimensional convex network instance of TIM [19, Fig. 2].
Each solid black edge indicates an independent desired message, each dashed
red edge indicates no desired message, and the absence of an edge indicates
‘out-of-range’. All edges together comprise the bipartite network topology
graph.

A. One-Dimensional Convex Networks [19]
For the TIM problem, [19] shows that orthogonal access

(such as time division multiple access — TDMA) achieves
the sum-DoF of a one-dimensional cellular network (all nodes
placed on a straight line) that satisfies (i) source convexity,
(ii) destination convexity, and (iii) message convexity.
An example of such a network (with 19 messages) is shown
in Fig. 1. The convexity assumptions are motivated by the
observation that signals are stronger and communication is
more likely to occur between nodes that are physically closer
to each other than between nodes that are farther apart. For
example, since Source S1 is heard by Destination D4, it must
also be heard by destinations that are closer to it than D4,
e.g., destinations D1, D2, D3. This is referred to as source
convexity. Destination convexity is similarly defined. Further,
if Source S1 has a desired message for Destination D2, it must
have a desired message for Destination D1 because D1 is
closer to S1 than D2. This is denoted as the message convexity
assumption. Under these three assumptions, [19] shows that
TDMA is optimal in terms of sum-DoF. For example, since
the network in Fig. 1 satisfies these assumptions, an orthogonal
scheduling scheme that schedules messages only between non-
interfering source-destination pairs S1 → D1, S3 → D5,
S5 → D7, S6 → D10 and S8 → D14, achieves the optimal
sum-DoF value (5 in this case).

The TIM result corresponds directly to an index coding
result due to the remarkable association between the two
problems identified in [1], such that there is a TIM instance
associated with each index coding instance and vice versa
(see Fig. 2). Corresponding instances of both problems are
jointly described by a bipartite topology graph with sources
on one side, destinations on the other, and edges representing
the presence of a non-trivial communication channel whose
communication capacity is not zero (TIM) or infinity (index
coding). Reference [1] shows that (expressed in normalized
units) the capacity region of any instance of the index coding
problem acts as an outer bound on the DoF region of the
corresponding instance of the TIM problem, and furthermore,
the two are equivalent when restricted to linear schemes over
the same field.

B. Beyond One-Dimensional Convex Networks
On the one hand, the optimality of TDMA for the physically

motivated and fairly broad class of topologies represented
by one-dimensional convex networks is surprising because
it is known that simple schemes such as TDMA or CDMA
(cf. (fractional) coloring and (partition) multicast) can be

Fig. 2. (a) An instance of the TIM problem (edges constitute the bipartite
network topology graph) and (b) the corresponding instance of the index
coding problem. Red links (solid and dashed) have infinite capacity. Solid
red links form the antidote graph, which is the complement of the network
topology graph.

severely sub-optimal in general. For example, there exist
instances of TIM (index coding) with K messages where
optimal schemes involving interference alignment achieve a
sum-DoF (sum-capacity) value that is a factor of (1/3 +
o(1))K 1/4 higher than the best achievable through TDMA or
CDMA [1], [13].

On the other hand, however, the result is limited by the
assumption of a one-dimensional placement of nodes and the
convexity constraints. For instance, even for physically moti-
vated TIM topologies that satisfy all the convexity constraints,
it is shown in [19] that going from one-dimensional settings
to the much more realistic two-dimensional placements of
sources and destinations, one immediately runs into examples
where TDMA is no longer optimal1 and interference alignment
solutions significantly outperform conventional baselines. The
convexity assumptions are also not applicable to heteroge-
neous networks, where a user may hear a distant high power
base station, but still not be able to hear a closer but lower
power base station. Moreover, beyond the TIM context, for
the index coding problem in general, the one-dimensional
node placements or convexity constraints are of little physical
significance. Last but not the least, the focus on sum-DoF
(capacity) is restrictive as well.

This brings us to the motivation of this work, which is
to go beyond these limitations, to answer the question —
what is the fundamental topological structure that determines
the optimality of TDMA (fractional coloring) for the TIM
(index coding) problem, making other sophisticated schemes
redundant?

C. Summary of Contribution
The main contribution of this work,2 as highlighted in the

title, is to show that TDMA (fractional coloring) achieves the
all-unicast DoF (capacity) region of the TIM (index coding)
problem if and only if the network topology graph is chordal
bipartite, i.e., any cycle that can contain a chord, contains
a chord.3 Note that network topology graphs are always

1Fig. 2 is such an example. It corresponds to a 2 dimensional convex
network (see [1]) with optimal sum-DoF value of 8/3, achieved by interference
alignment, whereas orthogonal schemes cannot achieve more than 2 DoF.

2Frequently in this paper, we will use a compact notation where we merge
corresponding statements for TIM and index coding by using parantheses for
the respective alternatives.

3Note that chords are only defined for cycles, so e.g., tree topologies are
also chordal bipartite graphs.



YI et al.: TDMA IS OPTIMAL FOR ALL-UNICAST DoF REGION OF TIM 2067

Fig. 3. A 5-message TIM instance (left), and its conflict graph (right). See
Section II for details.

bipartite, and for such graphs, cycles of length 4 cannot have
a chord. So a chordal bipartite graph is one in which any cycle
of length 6 or more (such cycles are called long cycles) must
contain a chord. For example, consider the network topology
graph in Fig. 3, it is chordal bipartite because it only contains
one long cycle (formed by nodes S1, D2, S3, D3, S5, D4), and
this cycle has a chord (the edge connecting S1 and D3).
Note that for a chordal bipartite graph, it is acceptable for
a long cycle to have some chords missing (e.g., in Fig. 3,
the chord connecting nodes D2 and S5 is not present in the
only long cycle), provided it does not have all its chords
missing. Furthermore, whether or not a network is chordal
bipartite is easy to check (polynomial time) [20].

The all-unicast setting is defined as a setting where we
have an independent unicast message between each source
and each destination, i.e., all possible unicast messages are
considered.4 A unicast message is one that originates at only
one source and is desired by only one destination. Charac-
terizing the all-unicast DoF (capacity) region automatically
characterizes the DoF (capacity) region for any arbitrary subset
of unicast messages, as well as other traditional metrics such as
symmetric or sum DoF (capacity). So, when TDMA achieves
the all-unicast DoF region, it achieves the DoF region of any
arbitrary subset of messages as well. For example, consider
again Fig. 3. Since the network topology graph is chordal
bipartite, our result implies that TDMA achieves the all-unicast
DoF region and therefore also the DoF region of arbitrary
subset of messages (e.g., the interference channel message
setting, where each Source Si , i ∈ {1, 2, · · · , 5} has an
independent message only for its corresponding Destination
Di , i ∈ {1, 2, · · · , 5}.)

While not restricted to the one-dimensional convex topolo-
gies studied in [19], chordal bipartite networks do include them
as a special case. Since convex message sets are included in
all-unicasts, and the DoF region includes sum-DoF, the results
of [19] are recovered as a special case of our result. Within the
context of one-dimensional networks, our result generalizes
the results of [19] — it shows that for one-dimensional place-
ment of sources and destinations, if the network satisfies either
source convexity or destination convexity (without requiring
both, turns out either assumption is sufficient (not necessary)
to imply a chordal bipartite topology), then for any arbitrary
unicast message set (without requiring message convexity),

4A message between a source and a destination that are topologically not
connected can only have rate zero, so such messages may be ignored without
loss of generality.

Fig. 4. A 7-message TIM instance (left) and its conflict graph (right).
See Section II for details.

the entire DoF region (without restriction to only sum-DoF)
is achieved by TDMA. For the setting illustrated in Fig. 1
(note that the topology is chordal bipartite), the result shows
that the entire DoF (capacity) region for the 19 messages
(as well as any other set of unicast messages possible in
this setting) is achieved by TDMA (fractional coloring). Other
examples that further highlight the generality of this result are
presented in Fig. 3 (does not satisfy destination convexity)
and Fig. 4 (does not satisfy source or destination convexity)
where also the network topology graph is chordal bipartite and
TDMA (fractional coloring) is optimal for the DoF (capacity)
region under all possible unicast message sets. On the other
hand, Fig. 2 is an example where the topology is not chordal
bipartite, and so TDMA (fractional coloring) schemes cannot
achieve the DoF (capacity) region (as indeed is shown in [1]).

So to answer the question that motivates this work —
chordal bipartite network topology is the fundamental topo-
logical structure that determines the optimality of TDMA
(fractional coloring), making all other sophisticated schemes
unnecessary.

II. SYSTEM MODEL

Corresponding instances of TIM and index coding prob-
lems, each with M sources and N destinations, are simultane-
ously specified by a topology matrix T and a message set M.
T is an N × M matrix with elements t j i ∈ {0, 1}. If there
exists a non-trivial channel from Source i to Destination j ,
i.e., a channel whose capacity is not zero (TIM) or infinity
(index coding) then t j i = 1, otherwise t j i = 0. Since
communication is non-trivial only if the channel capacity is
not zero or infinity, the set of messages M is a subset of
M � {W ji : t j i = 1, i ∈ {1, . . . , M}, j ∈ {1, . . . , N}},
with W ji representing an independent unicast message that
originates at Source i and is intended for Destination j .
If M = M, the setting is called the all-unicast setting.
Corresponding instances of TIM and index coding share the
same topology matrix T and the same message set M. The
remaining description for each problem is provided next.

A. Topological Interference Management Problem (TIM)
An arbitrary instance of the TIM problem [1] is represented

as a partially connected network with M sources, labeled S1,
S2, . . . , SM , and N destinations, labeled D1, D2, . . . , DN . All
sources and destinations are equipped with a single antenna
each. The received signal for Destination D j at time instant t
is:

Y j (t) =
M∑

i=1

t j i h j i(t)Xi (t) + Z j (t) (1)
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where Xi (t) is the transmitted signal from Source Si . All trans-
mitted signals are subject to a power constraint P . Z j (t) is
the Gaussian noise with zero-mean and unit-variance at
Destination D j , h j i (t) is the channel coefficient between
Source Si and Destination D j . The topology matrix T =
[t j i ]N×M is known by all sources and destinations. Only the
channel coefficients of those links over which the desired mes-
sages are received are assumed to be known by destinations.
The channel coefficients and network topology are assumed
to be fixed throughout the duration of communication. The
relaxation to time-varying channels will be discussed in
Section VI-B.

Let us define two graphs for the TIM problem.
Definition 1: Given the TIM problem with M sources and

N destinations, topology matrix T , and message set M ⊆ M,
define the following two graphs:

• Network Topology Graph: An undirected bipartite
graph with sources on one side, destinations on the other,
and an edge between Si and D j whenever t j i = 1.

• Message Conflict Graph: An undirected graph where
each message W ji ∈ M is a vertex, and edges exist
between two vertices if and only if the two messages
conflict with each other. Two messages W ji , W j ′i ′ conflict
if (t j ′i , t j i ′) �= (0, 0), i.e., they originate from the same
source (i = i ′), or are intended for the same destination
( j = j ′), or if the source of one message interferes with
the destination of the other message.

Note that the network topology graph depends only on
network connectivity, regardless of the message demand. The
message conflict graph depends on both the network con-
nectivity and the message demand. A connection between a
source Si and a destination D j is a desired link if a desired
message exists from Si to D j , and an interfering link other-
wise. If we take all all messages M into account and construct
the message conflict graph H, then for a specific message set
M ⊆ M, the corresponding message conflict graph is the
induced subgraph H[M]. (See definitions in Section III-A).
The message conflict graph indicates the conflict between two
messages, but it loses some information of conflicting source
and destination.

For TIM we use DoF region as our figure of merit. Common
terms such as the coding scheme, achievable rate tuple (R̄ j i :
W ji ∈ M), capacity region C are used in the standard Shannon
theoretic sense. Unfamiliar readers can refer to [1] for details.

Definition 2 (DoF Region [1]):

DM =
{

(d j i : W ji ∈ M) ∈ R
|M|
+ :

d j i = lim
P→∞

R̄ j i

log P
, s.t. (R̄ j i : W ji ∈ M) ∈ C

}
. (2)

B. Index Coding Problem (IC)

The index coding problem consists of M sources, labeled
S1, S2, . . . , SM , N destinations, labeled D1, D2, . . . , DN and
two additional nodes B1, B2, that are connected by a unit
capacity edge from B1 to B2. There is an infinite capacity link

from every source to B1, and from B2 to every destination.
We also have infinite capacity links between sources and desti-
nations identified by the antidote matrix A = [a j i ]N×M , where
a j i = 1 means that Source Si is connected to Destination D j

through an infinite capacity link, and a j i = 0 otherwise. The
antidote matrix A is simply the complement of the topology
matrix T and is obtained as A = [1]N×M − T , where [1]N×M

denotes the N × M matrix with all entries equal to 1.
Define these graphs for the index coding problem.
Definition 3: Given the index coding problem with M

sources and N destinations, antidote matrix A, and message
set M ⊆ M, define the following graphs:

• Antidote Graph: A directed bipartite graph with sources
on one side, and destinations on the other, and an arc
(i.e., directed edge) from Si to D j whenever a j i = 1.

• Side Information Digraph5: A directed graph where
each message W ji ∈ M is a vertex, and there exists
an arc (i.e., directed edge) from W ji to W j ′i ′ if a j ′i = 1.

• Network Topology Graph: An undirected bipartite
graph with sources on one side, destinations on the other,
and an edge between Si and D j whenever a j i = 0.

• Message Conflict Graph: An undirected graph where
each message W ji ∈ M is a vertex, and edges exist
between two vertices if and only if the two messages
conflict with each other. Two messages W ji , W j ′i ′ conflict
if (a j ′i , a j i ′) �= (1, 1), i.e., they originate from the same
source (i = i ′), or are intended for the same destination
( j = j ′), or if one source is not connected to the other
destination through an infinite capacity link.

Note that given the topology matrix T and the message
set M, corresponding instances of TIM and index coding
have the same network topology graph and the same message
conflict graph.

Coding schemes, achievable rate tuple (R ji : W ji ∈ M)
and capacity region are used in the standard Shannon theoretic
sense.

C. Relationship Between TIM and Index Coding
As shown in [1], for corresponding instances of the TIM

problem and the index coding problem, described by the same
topology matrix T and message set M, the index coding
capacity region is an outer bound on the TIM DoF region,
and the two are equivalent under linear solutions [1]. Fig. 2
shows an example.

III. BACKGROUND AND KEY DEFINITIONS

A. Background

In what follows, some of the most basic definitions per-
taining to graph theory and polyhedral combinatorics are now
recalled, for the readers who are not familiar with these two
fields [21], [22].

Throughout this paper, we consider simple graphs, which
are unweighted, containing no loops for a single vertex or mul-
tiple edges between two vertices.

5Note here that we adopt the more intuitive representation driven by the
interference management perspective, such that the side information digraphs
have arcs with directions opposite to what was originally used in [8].
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A subgraph of G = (V, E) containing a subset of vertices S
(S ⊆ V) is said to be an induced subgraph, denoted by G[S],
if for any pair of vertices u and v in S, uv is an edge of G[S]
if and only if uv is an edge of G. Note that a subgraph is not
sufficiently an induced subgraph.

The chromatic number of G, denoted by χ(G), is the
smallest number of colors that can be assigned to the vertices
of G, such that no two adjacent vertices have the same color.
Such an assignment method is referred to ordinary graph
coloring. A graph G is said to be n : m-colorable if each
vertex in G can be assigned a set of m distinct colors in
which the colors are drawn from a palette of n colors, such
that any adjacent vertices have no colors in common. This
coloring method is also referred to as fractional coloring,
which is a generalization of ordinary (non-fractional) graph
coloring. Specifically, fractional coloring is a relaxation of
non-fractional coloring with respect to linear programming
formulations. Alternatively, fractional coloring schemes can
be seen as extensions of non-fractional coloring schemes by
allowing time sharing among them.

A clique is a subgraph of a graph G such that any two
vertices in this subgraph are adjacent. The size of a clique
is the number of vertices. A maximum clique is the clique
with the maximum possible size in G. The clique number
of G, denoted by ω(G), is the number of vertices in the
maximum clique. χ(G) ≥ ω(G) for any undirected graph.
The independent set of a graph G is a set of vertices such
that any two vertices are not adjacent. The independent set
number, denoted by α(G), is the cardinality of the largest
independent set.

A perfect graph is a graph G in which the chromatic number
of every induced subgraph H of G equals the clique number
of this subgraph, i.e., χ(H) = ω(H). A chordless cycle is a
cycle with no edges between any non-consecutive vertices. The
length of a cycle is the number of vertices in this cycle. A hole
is a chordless cycle with five or more vertices, and an antihole
is the complement of a hole. The complement of a graph, is
another graph containing the same vertices set, but an edge
in one graph if and only if it is not in the complement. The
underlying undirected graph of a directed graph is obtained
by ignoring the direction in the directed graph. An undirected
graph is perfect if and only if it contains neither odd holes nor
odd antiholes as induced subgraphs. The odd hole is a hole
with odd length, and the odd antihole is its complement.

A graph is chordal (or triangulated) if there is no induced
subgraph with chordless cycles of length greater than three,
i.e., every cycle with length greater than three has a chord.
A graph is weakly chordal (or weakly triangulated) if it is
hole-free and antihole-free in its induced subgraphs. Both
chordal and weakly chordal graphs are subclasses of perfect
graphs.

A graph is chordal bipartite if it is an undirected bipartite
graph and there is no induced subgraph with chordless cycles
of length greater than four, i.e., every cycle of length at least
six has a chord. The chordal bipartite graph is both bipartite
and chordal, and hence weakly chordal. For a graph G, if G is
weakly chordal, then G2

e is also weakly chordal [27], and hence
perfect.

Fig. 5. The graph G (left), its line graph Ge (center), and the squared of its
line graph G2

e (right).

Given a graph G, the line graph of G is another graph,
denoted by Ge, such that each vertex of Ge represents an edge
of G, and any two vertices in Ge are adjacent if and only if
their corresponding edges in G have an endpoint in common.
The square of a graph G, denoted by G2, is another graph that
has the same set of vertices in G, but in which two vertices are
adjacent when their distance in G is at most 2. The distance
between two vertices is the number of edges in a shortest path
connecting them. Graphical illustrations are presented in Fig. 5
to show the relation among G, its line graph Ge, and the square
of its line graph G2

e . Specifically, the vertex labeled i j in
the line graph Ge corresponds to the edge between vertices
i and j in G.

In a directed graph (digraph), a set of vertices forms a
di-clique if, for any two vertices u and v, there is an arc from
u to v and an arc from v to u. Clique covering is to partition
the digraph into di-cliques such that all vertices are covered
at least once. A chordless directed cycle (di-cycle) refers to
the induced sub-digraph with n nodes {v0, v1, · · · , vn−1} and
arcs {(v0, v1), (v1, v2), · · · , (vn−2, vn−1), (vn−1, v0)}, beyond
which there do not exist any other arcs. A directed graph
(or subgraph) is acyclic if it does not contain any di-cycles.

Given a clique in a graph, the clique inequality refers to the
inequality ∑

j∈Q

x j ≤ 1,

where Q is the set of vertices in the clique, and the variable x j

corresponds to the vertex j ∈ Q. Given an n-vertex graph G
and the collection of all cliques Q(G), the polytope defined
by the clique inequalities is

P = {(x1, x2, · · · , xn) ∈ R
+
n :

∑

j∈Q

x j ≤ 1,∀Q ∈ Q(G)}

where Q refers to any cliques, including each single vertex
and any two adjacent vertices. It is clear that 0 ≤ x j ≤ 1
for all j ∈ {1, . . . , n} in the polytope P , and that some of
the clique inequalities are redundant. The corner points of the
polytope are also known as the vertices or the extreme points.

B. Key Definitions

Definition 4 (All-Unicast): The all-unicast setting means
that from each Source Si there is an independent message W ji

to each Destination D j if t j i = 1 (a j i = 0), i.e., if there exists
a non-trivial channel between them. Note that this includes
arbitrary message sets as special cases, by setting the rates
of some messages to zero.

Definition 5 (Cycle): A cycle is a set of vertices and edges
that form a closed loop. The length of a cycle is the number
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of vertices in this cycle. A cycle of length 6 or more is called
a long cycle.

Definition 6 (Chord): A chord is an edge that connects two
non-adjacent vertices of a cycle.

Definition 7 (Chordal Bipartite Network): A TIM (index
coding) instance is referred to as a chordal bipartite network
if its network topology graph does not contain a chordless
long cycle. Chordal bipartite networks are exactly the graph
class of chordal bipartite graphs in graph theory.

Note that the network topology graph is always bipartite,
and cannot contain odd length cycles. These graphs are simple,
so there are no multiple edges and thus no length-2 cycles.
In addition, because a source (destination) is not connected to
any other sources (destinations), it is not possible for a length-4
cycle to contain a chord in the network topology graphs. Thus
the chordal bipartite property in the network topology graph
can be interpreted as – any cycle that can contain a chord,
must contain a chord.

Remark 1: Chordal bipartite networks include some spe-
cial network topology graphs, such as forests and trees,
convex/biconvex bipartite graphs, bipartite permutation
graphs, bipartite distance hereditary graphs, and difference
graphs [21].

Definition 8 (TDMA [19]): TDMA refers to a time-slotted
transmission scheme with time sharing across time slots,
such that in each time slot it schedules messages Wo for
transmission simultaneously only if they are non-interfering
(orthogonal), i.e., t j ′i = t j i ′ = 0 for TIM (a j ′i = a j i ′ = 1 for
index coding), ∀ W ji , W j ′i ′ ∈ Wo, i �= i ′, j �= j ′.

TDMA is also known as orthogonal access and link schedul-
ing. The duration of each time slot can be varying to facilitate
time sharing across time slots. In the message conflict graph,
two adjacent vertices (messages) are interfering, and should
be scheduled orthogonally in different slots. If we associate
each slot with a different color, TDMA can be done using
vertex coloring on the message conflict graphs, where two
adjacent vertices (messages) should be assigned different
colors. Associating the slots with a number of different colors,
we generalize it to fractional coloring (see Section III-A). As a
result, TDMA is also referred to as fractional coloring on the
conflict graphs under the index coding context.

Definition 9 (Set of Cliques of Conflict Graph (Q)):
A clique Q of the message conflict graph is a set of vertices
(messages) such that any two are adjacent. The set of all
cliques of the message conflict graph is denoted as Q.

In the rest of this paper, we identify the optimality of
TDMA (fractional coloring) through the structural property
of the bipartite network topology graphs, and characterize the
DoF (capacity) region via vertex coloring on the undirected
message conflict graphs.

IV. MAIN RESULT

Our main result for the TIM setting is stated in the following
theorem.

Theorem 1: TDMA achieves the all-unicast DoF region of
the TIM problem if and only if the network topology is chordal
bipartite. For chordal bipartite networks, the DoF region of
the TIM problem is characterized through the cliques Q ∈ Q

of the message conflict graph, as follows:

∀ Q ∈ Q,
∑

W ji∈Q d j i ≤ 1

where d j i is the DoF of the message W ji .
Proof: See Section V-B. �

Remark 2: There are various characterizations of the struc-
tural properties for chordal bipartite graphs in terms of perfect
elimination orderings, hypergraphs and adjacency matrices
[23, Ch. 9]. Particularly, it has been shown that, for a graph
with n vertices and m edges, the determination whether it is
chordal bipartite or not can be made in time O(min(n2, (n +
m) log n)) [23, Ch. 9], [24].

Remark 3: The DoF region as specified above is comprised
of clique inequalities corresponding to all possible cliques
in the message conflict graph. There may be exponentially
many cliques, many of them redundant because they are
contained within larger cliques. Therefore, the representation
may be simplified by restricting Q to be the set of maximal
cliques. A maximal clique is the clique with the maximum
possible number of vertices (messages). Any induced subgraph
of a maximal clique is still a clique. Such a simplification
is valid because the inequality associated with the maximal
clique implies all other inequalities of the cliques with smaller
size. The Bron-Kerbosch algorithm is an efficient method to
enumerate all maximal cliques in an undirected graph [25].
It guarantees linear-time complexity with respect to the num-
ber of cliques. It has been shown that its worst-case running
time is O(3n/3), which matches the maximum possible number
of maximal cliques in all n-vertex graphs, as there are at most
3n/3 maximal cliques [26].

Next we illustrate this result through some examples.
Example 1: Consider the one-dimensional TIM network

instance with message Wii from Si to Di as shown
in Fig. 3, where convexity applies to the sources only. Note
here that we only consider a subset of messages M =
{W11, W22, W33, W44, W55} rather than the all-unicast setting,
so we construct the message conflict graph only with respect
to M. Because the network topology graph is chordal bipar-
tite, Theorem 1 applies and TDMA achieves the DoF region.
Note that the 6-vertex cycle S1 − D2 − S3 − D3 − S5 − D4 − S1
is not chordless, because it indeed contains a chord S1 − D3.
Considering all sets of conflicting messages, i.e., all cliques of
the conflict graph shown in Fig. 3, and removing the redundant
ones, we have the DoF region

D =

⎧
⎪⎪⎨

⎪⎪⎩
(d11, . . . , d55) ∈ R

5+
∣∣∣∣

d11 + d22 + d33 ≤ 1
d11 + d44 ≤ 1
d33 + d55 ≤ 1
d44 + d55 ≤ 1

⎫
⎪⎪⎬

⎪⎪⎭

As said, this DoF region can be simply obtained by listing all
the maximal cliques, i.e., the message sets {W11, W22, W33},
{W11, W44}, {W33, W55}, and {W44, W55}.

Example 2: Consider the TIM instance in Fig. 4, with mes-
sage set M = {W13, W24, W31, W45, W52, W55, W73} (which
is a subset of the all-unicast message set). Since the network
is chordal bipartite, Theorem 1 applies and we have the
DoF region by listing all the inequalities associated with the



YI et al.: TDMA IS OPTIMAL FOR ALL-UNICAST DoF REGION OF TIM 2071

maximal cliques, where the constraints of smaller cliques are
automatically implied.

D =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dM ∈ R
7+

∣∣∣∣

d24 + d31 ≤ 1
d31 + d13 + d73 ≤ 1
d13 + d45 + d73 ≤ 1
d45 + d55 + d73 ≤ 1
d52 + d45 + d55 ≤ 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Additionally, we are able to show (proof relegated to
Section VI-A) that one-dimensional TIM instances with either
source convexity or destination convexity (not necessarily
both) are chordal bipartite. Thus, the optimality of TDMA
shown in [19] for one-dimensional convex networks, applies
with either source or destination convexity, to any arbitrary
unicast message set, and to the entire DoF region.

Clique covering on the side information digraph is one of
the most basic coding schemes in the index coding problem.
Since the messages in the di-clique of the side information
digraph form an independent set in the (undirected) message
conflict graph, the (fractional) clique covering on the side
information digraph is equivalent to vertex (fractional) col-
oring on the undirected message conflict graph [8]. As such,
we conclude this section by translating the result for TIM to
the index coding setting, as stated in the following theorem.

Theorem 2: Fractional coloring achieves the all-unicast
capacity region of the index coding problem associated with a
network topology graph if and only if the network topology is
chordal bipartite. For chordal bipartite networks, the capacity
region of the index coding problem is the set of rate tuples
comprised of R j i in R

+ that satisfy the following constraints:

∀ Q ∈ Q,
∑

W ji∈Q R ji ≤ 1

where R j i is the rate of the message W ji .
Proof: See Section V-B. �

We note that this theorem characterizes the capacity region
for a class of index coding problems with all possible message
settings, for which the commonly studied broadcast rate in the
multiple-unicast setting (see definitions in e.g., [8]) is a special
case.

V. PROOFS

A. Preliminaries

Consider the undirected network topology graph G, which is
bipartite, its line graph Ge, and the square of its line graph G2

e .
Interestingly, G2

e is the message conflict graph corresponding
to the network topology graph G. We state this as the following
lemma, which establishes the connection between the network
topology and the message conflict graph. This connection is
one of the most crucial elements of the paper, by which the
structure of network topology can be transferred to the conflict
graphs. By doing so, the achievability and the converse could
be bridged through the message conflict graphs. The proof is
presented in Section V-C.

Lemma 1: For any network topology graph G, the square
of its line graph, G2

e , is its message conflict graph.
Next, we carry over the chordal bipartite property of G to

the perfect-graph property of G2
e . G is a chordal bipartite graph

(see [21, Ch. 12.4]), thus weakly chordal [27]. It is proved

in [27] that if G is weakly chordal, then G2
e is also weakly

chordal. As weakly chordal graphs are subclass of perfect
graphs (see [22, Ch. 66.5d]), G2

e is perfect. We state this crucial
result as the following lemma.

Lemma 2: If G is chordal bipartite, then G2
e is perfect.

Remark 4: When a subset of messages is considered,
we have an induced subgraph of G2

e as the message conflict
graph. Let M be the message set of interest. The message
conflict graph with respect to the message set M can be
represented by the induced subgraph G2

e [M]. The chordal
bipartite, weakly chordal, and perfect properties are also
inherited by the induced subgraphs [21].

Given a perfect graph, we have the following property from
polyhedral combinatorics.

Lemma 3 (From [28], [22, Ch. 65]): If H is a perfect
graph, the polytope defined by its clique inequalities has
integral corner points, i.e., the coordinates of all corner points
are integer-valued.

Let us also recall the definition of a Demand
Graph [1], [16] in both TIM and index coding problems.

Definition 10 (Demand Graph): The demand graph is a
directed bipartite graph with messages on one side and
destinations on the other, with a directed edge from a message
to a destination if and only if this message is intended for this
destination, and with a directed edge from a destination to
a message if and only if the source from which this message
originates is not connected to the destination in the network
topology graph.

Lemma 4 (From [1], [8], [16]): For index coding,
the sum-capacity of a set of messages that form an
acyclic demand graph is upper bounded by 1.

For a chordal bipartite network, an acyclic demand graph
connects to a clique in G2

e , as stated in the following lemma.
The proof is presented in Section V-D.

Lemma 5: If G is chordal bipartite, then for each clique
in G2

e , the associated messages form an acyclic demand graph.

B. Proofs of Theorem 1 and Theorem 2
As Theorem 1 and Theorem 2 have similar forms,

we present their proofs simultaneously.
1) Sufficiency: We prove that if a network is chordal bipar-

tite, then TDMA (fractional coloring) achieves the all-unicast
DoF (capacity) region.

First consider the outer bound. It suffices to prove the outer
bound of the index coding problem (Theorem 2) because
the capacity region of an index coding instance is an outer
bound on the DoF region for the associated TIM instance [1].
Therefore the outer bound of the TIM problem (Theorem 1)
is implied by that of the index coding problem.

We now prove the outer bound of the index coding problem.
As Lemma 5 shows that each clique in G2

e corresponds to an
acyclic demand graph, and by Lemma 4 the sum capacity
of associated messages in an acyclic demand graph is upper
bounded by 1, we obtain the following outer bounds.

∀ Q ∈ Q,
∑

W ji∈Q R ji ≤ 1,

As mentioned in Section III-A, the above inequalities are
called the clique inequalities [22].
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Next we proceed to the achievability. It suffices to prove
the achievability for the TIM problem (Theorem 1) because
any achievable DoF tuple of a TIM instance translates to
the same achievable rate tuple of the associated index coding
instance [1]. Therefore the achievability of the index coding
problem (Theorem 2) is implied by that of the TIM problem.
We now prove the achievability of the TIM problem.

We show that the following outer bound DoF region is
achievable by TDMA.

∀ Q ∈ Q,
∑

W ji∈Q d j i ≤ 1

To this end, we show that the outer bound region has integral
corner points, meaning that each coordinate of the DoF tuples
of the corner points is either 0 or 1. Note that the linear
clique inequalities together with nonnegative constraints of
the DoF tuple yield a convex polytope. The corner points
of this polytope have integral (especially binary-valued) coor-
dinates. If we treat the coordinate value 0 as switch-off of
the corresponding message, and 1 as switch-on, each corner
point corresponds to an on-off setting of messages. From the
definition of the message conflict graph it follows that the
switched-on messages belong to a set of orthogonal messages,
such that they can be scheduled simultaneously over one time
slot. Moreover, since each corner point of the outer bound
region can be achieved by one shot scheduling, time sharing
between these corner points can achieve the whole region, and
the overall scheme is TDMA.

We are left to prove that the outer bound region has integral
corner points. Since G2

e is a perfect graph, by Lemma 3, it is
known that the DoF region (polytope) defined by the clique
inequalities has integral corner points.

The sufficiency proof is complete.
2) Necessity: The necessity proofs for Theorem 1 and

Theorem 2 are identical, i.e., we only need to show that there
exists at least one unicast message setting for which TDMA
(fractional coloring) is suboptimal, when the network topology
is not chordal bipartite. Specifically, we want to show that if a
network is not chordal bipartite (contains chordless cycles with
length 2n, n = 3, 4, . . .), then TDMA (fractional coloring)
does not achieve the DoF (capacity) region for at least one
message setting. Let us start with the TIM setting (Theorem 1).

Suppose now the network topology graph contains a chord-
less cycle with 2n vertices, which consist of n distinct source
nodes, labeled S′

1, . . . , S′
n and n distinct destination nodes,

labeled D′
1, . . . , D′

n . We consider the sub-network induced
by these nodes. As the cycle is chordless, the sub-network
topology is cyclic where each Source S′

i , i ∈ {1, . . . , n} is
connected to two destinations D′

i−1, D′
i and each Destination

D′
i is connected to two sources S′

i , S′
i+1 (source/destination

indices are interpreted modulo-n, i.e., n + 1 = 1, 0 = n).
An example with n = 4 is shown in Fig. 2. To prove the
desired claim, it suffices to find a DoF tuple that is achievable,
thus inside the DoF region, but cannot be achieved by TDMA.

We consider the cases where n is odd or even separately.
When n is odd, we consider the interference channel

message setting, i.e., there are n desired messages in the
sub-network, one each from Source S′

i to Destination D′
i .

As each destination only suffers interference from one

non-desired source, CDMA (i.e., multicast) can achieve DoF
tuple (1/2, 1/2, . . . , 1/2) with n elements [1]. This is because
over two channel uses, each destination sees two independent
linear equations in the two symbols (one desired and one
interfering) that it is able to hear, from which it can resolve
both. However, when n is odd, TDMA can achieve sum DoF
at most (n − 1)/2, which is strictly less than n/2, so that
TDMA is unable to achieve this DoF tuple. This is due to the
structure of the message conflict graph for odd cycles.

When n is even, we consider the all-unicast message
setting and the DoF tuple (1/3, 1/3, . . . , 1/3) with 2n ele-
ments, which is achievable by interference alignment [1],
but not by TDMA. TDMA cannot schedule more than n/2
(which is strictly less than 2n/3) messages at the same time,
e.g., if we schedule the message from S′

i to D′
i , then messages

from S′
i to D′

i−1 and from S′
i+1 to D′

i cannot be scheduled.
This is because they are either originated from the same
source or intended for the same destination, and therefore form
a clique in the message conflict graph. Because of the conflicts
between them, if we schedule one of these three messages,
we cannot simultaneously schedule the other two messages.
Therefore, according to the message conflict graph, at most
n/2 messages in total can be scheduled in one single time
slot. Thus, TDMA is again sub-optimal.

This completes the necessity proof for the TIM setting
(Theorem 1). We now consider the necessity proof for the
index coding setting (Theorem 2). The same proof applies by
noting that the above cases only use linear schemes and index
coding and TIM are equivalent under linear schemes [1].

Remark 5: The prerequisite of the necessity is under the
all-unicast setting, where all messages are taken into account.
There exist some topologies that are not chordal bipartite, and
TDMA still achieve the DoF region for a particular subset of
messages. This does not contradict the necessity.

Remark 6: From the DoF region, it is not hard to verify
that symmetric DoF value is given by 1/χ(G2

e ), where χ(G2
e )

is the chromatic number of G2
e , and sum DoF value is given

by the independence set number of G2
e , i.e., α(G2

e ).

C. Proof of Lemma 1
First, G2

e and the message conflict graph of G have the same
vertex set. In the message conflict graph, there is a vertex for
each message in G. In G2

e , there is a vertex for each edge
in G and in the all-unicast message setting, each edge in G
corresponds to a message. Thus the claim follows.

Second, we prove G2
e and the message conflict graph of G

have the same edge set. In the message conflict graph, two
messages (vertices) W ji , W j ′i ′ are connected if and only if
they originate from the same source (i = i ′), or are intended
for the same destination ( j = j ′), or one source interferes with
the other destination (a j ′i = 0(t j ′i = 1) or a j i ′ = 0(t j i ′ = 1)).
When i = i ′ or j = j ′, the two edges representing W ji , W j ′i ′
in G share a common vertex such that these two messages
(vertices) are connected in Ge (have distance 1, thus connected
in G2

e ). When a j ′i = 0(t j ′i = 1) or a j i ′ = 0(t j i ′ = 1), the two
edges representing messages W ji , W j ′i ′ in G both connect to
the edge representing message W j ′i or W ji ′ such that these two
messages (vertices) are both connected to message (vertex)
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W j ′i or W ji ′ in Ge (have distance 2, thus connected in G2
e ).

Conversely, whenever an edge exists between two messages
(vertices) in G2

e (have distance 1 or 2 in Ge), the messages
conflict in G (thus connected in the message conflict graph).
Then we have the desired claim.

Therefore, G2
e is the message conflict graph of G. Note

that this result holds regardless of whether G is chordal
bipartite or not.

D. Proof of Lemma 5

We show that if a set of messages forms a clique in G2
e

(they mutually conflict), the demand graph formed by these
messages and their desired destinations must be acyclic, given
G is chordal bipartite. To set up a proof by contradiction,
suppose a set of messages forms a clique in G2

e and there
exists a directed cycle (di-cycle) in the induced demand graph
comprised of these messages and their desired destinations.
Let Gc be the shortest such di-cycle. Gc must be a chordless
di-cycle because if Gc contains a chord, then the chord splits
Gc into two cycles. One of the two cycles is a di-cycle and it
is shorter than Gc, contradicting the assumption that Gc is the
shortest. The length of Gc is denoted as k.

We argue that Gc cannot contain vertices corresponding
to two or more messages that originate at the same source
node. To see this, let us assume the opposite, that Gc contains
vertices corresponding to two messages (denoted as W ′

i , W ′
j )

that originate from the same source (denoted as S∗). Since
Gc is a di-cycle, there must be an arc from a destination
in Gc (say D′

l ) to W ′
i . From the definition of the demand

graph, we know that D′
l is not connected to S∗ in the network

topology graph. Since W ′
j also originates at S∗, there must be

an arc from D′
l to W ′

j in the demand graph as well. Thus,
we have two outgoing arcs in Gc from D′

l , to W ′
i and W ′

j .

But this is not possible because a node in a chordless di-cycle
cannot have two outgoing arcs. Therefore, we have proved
that Gc cannot contain vertices corresponding to two or more
messages that originate at the same source node. Similarly,
Gc cannot contain vertices corresponding to two or more
messages that are intended for the same destination node.

Next we proceed to show the contradiction, that the demand
graph formed by a set of messages that forms a clique in G2

e
can not contain a di-cycle. First, because the demand graph is
bipartite, k must be even such that k = 2n, n ∈ N.

Second, n �= 1 because such a length-2 di-cycle in the
demand graph means that a destination wants a message and
is not connected to the source that emits the message in the
network topology graph, which is not possible.

Third, n �= 2, because otherwise Gc contains two messages,
W ′

i , W ′
j (which originate at sources S′

i and S′
j ), and their

desired destinations, D′
i , D′

j , respectively, such that in the
network topology graph D′

i is not connected to S′
j , and

D′
j is not connected to S′

i . Therefore, messages W ′
i , W ′

j do
not conflict. This contradicts the assumption that these two
messages form a clique in G2

e .
Finally, we consider n = 3, 4, . . . . Since the sources from

which the messages originate are distinct, let us replace each
message node in Gc with the source node at which it originates.

With this substitution, Gc is made up of n sources, denoted
as S′

1, · · · , S′
n and n destinations, denoted as D′

1, · · · , D′
n .

Without loss of generality, let us assume that in this chordless
di-cycle, there is an arc from S′

i to D′
i , i ∈ {1, · · · , n} and

an arc from D′
i to S′

i+1, where the indices are interpreted
modulo-n. As the di-cycle is chordless, it contains only these
2n arcs. Now compare Gc with the (undirected) network topol-
ogy graph (denoted as G∗) induced by sources S′

1, · · · , S′
n and

destinations D′
1, · · · , D′

n . In G∗, direct links (edges between S′
i

and D′
i ) remain and cross links are the complements of those

in Gc, i.e., D′
i is connected to S′

i+2, S′
i+3, · · · , S′

i+N−1. This
is because there is an arc from Destination D′

i to message
W ′

j , j �= i in the demand graph if and only if D′
i is not

connected to Source S′
j that emits W ′

j in G∗. G∗ contains a
cycle of length 6, S′

1 − D′
1 − S′

3 − D′
n − S′

2 − D′
2 − S′

1. This
cycle is chordless because D′

1 is not connected to S′
2; D′

n is
not connected to S′

1; and D′
2 is not connected to S′

3 in the
network topology graph. This contradicts the assumption that
the overall network topology graph G (which contains G∗ as a
subgraph) does not contain chordless cycles with length 6 or
more.

Therefore, for chordal bipartite networks G, whenever we
have a clique in G2

e , the associated messages form an acyclic
demand graph. The proof is complete.

Remark 7: Note that a clique in G2
e may not correspond to

an acyclic demand graph if G is not chordal bipartite. For
a counterexample, consider a cyclic network with 3 sources,
labeled S′

1, S′
2, S′

3 and 3 destinations, labeled D′
1, D′

2, D′
3.

In the network topology graph, S′
1 is connected to D′

3, D′
1, S′

2
is connected to D′

1, D′
2, and S′

3 is connected to D′
2, D′

3. The
network topology graph is not chordal bipartite as all ver-
tices form a length-6 chordless cycle. Consider the messages
W ′

11, W ′
22, W ′

33. They mutually conflict and form a clique in G2
e .

But the demand graph formed by them is not acyclic, and the
sum DoF is not upper bounded by 1. In fact, CDMA can
achieve DoF 1/2 per message [1], as each receiver overhears
one interference in addition to its desired signal.

VI. DISCUSSION

A. One-Dimensional Convex Networks
In a one-dimensional network, the source and destination

nodes are placed along a straight line. We define the relation
a < b between two nodes to indicate that node a is “to the
left of” node b.

Definition 11 (Source Convexity): Source convexity refers
to the property that if a source (say Si ) can be heard by
two destination nodes (say D j , Dk), then it must also be
heard by all other destination nodes that are in between,
i.e., (D j < Dl < Dk) AND (tki = t j i = 1) ⇒ tli = 1.

Definition 12 (Destination Convexity): Destination convex-
ity refers to the property that if a destination (say Di ) can
hear two source nodes (say S j , Sk), then it must also hear all
other source nodes that are in between, i.e., (Sj < Sl < Sk)
AND (ti j = tik = 1) ⇒ til = 1.

Corollary 1: One-dimensional network topology graphs
with either source convexity or destination convexity (not nec-
essarily both) are chordal bipartite, and thus TDMA achieves
the all-unicast DoF region of these TIM instances.
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Proof: We only need to prove that one-dimensional net-
work topology is chordal bipartite, by which the optimality of
TDMA follows straightforwardly due to Theorem 1. Since the
name of source or destination is entirely cosmetic, we consider
a one-dimensional TIM instance with only source convexity,
without loss of generality. Similar proof applies to cases with
only destination convexity as well.

To set up a proof by contradiction, suppose the TIM
instance is not chordal bipartite, i.e., its network topology
graph contains a chordless cycle with length 2n, n = 3, 4, . . .,
which corresponds to a cyclic sub-network with n distinct
sources, labeled S′

1, . . . , S′
n and n distinct destinations, labeled

D′
1, . . . , D′

n . Source S′
i , i ∈ {1, . . . , n} is connected to two

destinations D′
i−1, D′

i and Destination D′
i is connected to

two sources S′
i , S′

i+1 (source/destination indices are interpreted
modulo-n, i.e., n + 1 = 1, 0 = n). As the cycle is chordless,
each source is connected to only two destinations. Further,
because of source convexity, the destinations that are con-
nected to the same source must be consecutive. For example,
as S′

2 is connected to only D′
1 and D′

2, there cannot be any
destination in the interval between D′

1 and D′
2. Similarly,

there is no destination in between D′
i and D′

i+1, such that
the order of the destinations in one straight line must appear
as D′

1 < D′
2 < · · · < D′

n or D′
1 > D′

2 > · · · > D′
n .

In both cases, D′
1 and D′

n are not consecutive. We arrive at a
contradiction. �

B. Coherence Time

We show that Theorem 1 holds regardless of channel
coherence time. We assume that the network topology remains
unchanged during the period of communication regardless
of channel coherence time. Channel coefficient values may
change even as the topology remains fixed. Coherence time
refers to the change in channel coefficient values. The channel
coefficient values can change with every channel use or remain
fixed for arbitrary intervals as long as the network topology is
unchanged.

Corollary 2: TDMA achieves the all-unicast DoF region of
the TIM problem if and only if the network is chordal bipartite,
regardless of channel coherence time.

Proof: We now do not require the channel coefficients
h j i (t) to be constant. Instead, h j i(t) can vary in an arbitrary
manner as long as the values are bounded away from zero and
infinity, i.e., there is no requirement on the channel coherence
time. Bounding the coefficients away from zero and infinity
maintains a fixed network topology during the entire period
of communication.

1) Sufficiency: We prove that if a TIM network is chordal
bipartite, then TDMA achieves the all-unicast DoF region,
regardless of channel coherence time.

The outer bounds provided in Section V-B hold regardless
of channel coherence time. Also, TDMA scheme applies to
both constant and time-varying channel setting, such that the
achievability proof in Section V-B is not affected. Hence
sufficiency is proved.

2) Necessity: We prove that if a TIM network is not chordal
bipartite, then TDMA does not achieve the all-unicast DoF
region, regardless of channel coherence time.

We follow the proof in Section V-B. Suppose the network
topology graph is not chordal bipartite, such that it contains
a chordless length-2n cycle, n = 3, 4, . . .. Such a chordless
cycle corresponds to a cyclic sub-network. We show that
TDMA can not achieve the DoF region for such a cyclic sub-
network (and therefore the all-unicast DoF region).

We also consider the cases where n is odd or even
separately.

When n is odd, we use the same interference channel
message setting and consider DoF tuple (1/2, 1/2, . . . , 1/2).
As CDMA can be applied to time-varying channels, the DoF
tuple is still achievable, regardless of channel coherence time.
However, TDMA can not schedule more than (n − 1)/2
messages over one time slot, and is therefore unable to achieve
this DoF tuple.

When n is even, we still consider the all-unicast message
setting. In this case, the DoF tuple (1/3, 1/3, . . . , 1/3) does
not work as the interference alignment scheme used to achieve
this tuple requires the channels to be constant for 3 sym-
bol periods [1]. Instead, we consider the sum-DoF value.
As shown in Section V-B, TDMA can not achieve more
than n/2 sum-DoF. However, the scheme in [29] can achieve
(n + 1)/2 sum-DoF, regardless of channel coherence time.
See [29, Fig. 9] for a pictorial illustration for n = 4 case. Thus,
TDMA is again sub-optimal, regardless of channel coherence
time. This completes the necessity proof. �

VII. CONCLUSION

We show that the necessary and sufficient condition for
TDMA (fractional coloring) to achieve the all-unicast DoF
(capacity) region of TIM (index coding) is that the network
topology should be chordal bipartite. The absence/presence
of chordless cycles prevents/creates opportunities for more
sophisticated achievable schemes. Among other interesting
observations, we note that for chordal bipartite networks while
fractional coloring is needed to achieve the capacity region,
the conventional (non-fractional) coloring suffices to achieve
all the corner points, i.e., the extreme points of the capacity
region polytope. Finally, in the TIM context, the main results
hold regardless of channel coherence time. Potential directions
for future work include exploring optimality of TDMA for
other variants of TIM such as multilevel TIM [30], cellular
TIM [31], MIMO TIM [32], TIM with transmitter coopera-
tion [33], with decoded message passing [34], with alternating
connectivity [35]–[37], with reconfigurable antennas [38], and
under constrained coherence patterns [39]–[41].
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