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Abstract— We consider the problem of cache-aided Multiuser
Private Information Retrieval (MuPIR) which is an extension of
the single-user cache-aided PIR problem to the case of multiple
users. In cache-aided MuPIR, each of the Ku cache-equipped
users wishes to privately retrieve a message out of K messages
from N databases each having access to the entire message
library. Demand privacy requires that any individual database
learns nothing about the demands of all users. The users are
connected to each database via an error-free shared-link. In
this paper, we aim to characterize the optimal trade-off between
user cache memory and communication load for such systems.
First, we propose a novel approach of cache-aided interference
alignment (CIA), for the MuPIR problem with K = 2 messages,
Ku = 2 users and N ≥ 2 databases. The CIA approach is
optimal when the cache placement is uncoded. For general cache
placement, the CIA approach is optimal when N = 2 and 3
verified by the computer-aided converse approach. Second, for
the general case, we propose a product design (PD) which
incorporates the PIR code into the linear caching code. The
product design is shown to be order optimal within a multi-
plicative factor of 8 and is exactly optimal in the high memory
regime.

Index Terms— Private information retrieval, coded caching,
interference alignment, multiuser.

I. INTRODUCTION

INTRODUCED by Chor et al. in [3], the problem of
private information retrieval (PIR) seeks efficient ways
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for a user to retrieve a desired message from N databases,
each holding a library of K messages, while keeping the
desired message’s identity private from each database. Sun
and Jafar (SJ) recently characterized the capacity of the PIR
problem with non-colluding databases [4], [5]. Coded caching
was originally proposed by Maddah-Ali and Niesen (MAN)
in [6] for a shared-link caching network consisting of a server,
which is connected to Ku users through a noiseless broadcast
channel and has access to a library of K equal-length files.
Each user can cache M files and requests one file. The MAN
scheme proposed a combinatorial cache placement design
so that during the delivery phase, each transmitted coded
message is simultaneously useful to multiple users such that
the communication load can be significantly reduced. Under
the constraint of uncoded cache placement and for worst-case
load, the MAN scheme was proved to be optimal when the
number of files is no less than the number of users [7] and
order optimal within a factor of two in general [8].

The combination of privacy and caching, sometimes referred
to as side information, has gained significant attentions
recently. Two different privacy models are commonly con-
sidered. First, in [9]–[17], the user-against-database privacy
model was studied where individual databases are prevented
from learning the single user’s demand. The author in [9] stud-
ied the case where a single cache-aided user is connected to a
set of N replicated databases and showed that memory-sharing
between the memory-load1 pairs (0, 1 + 1

N + · · · + 1
NK−1 )

and (K, 0) (i.e., split the messages and cache memories
proportionally and then implement two PIR schemes on the
two independent parts of the messages) is actually optimal if
the databases are aware of the users’ cached content. However,
if the databases are unaware of the user’s cached content, then
there is a multiplicative “unawareness gain” in capacity in
terms of the user memory as shown in [10], [11]. Different
from [9]–[11] where the cache can be arbitrary functions
of the messages, the user’s cache is restricted to be in the
form of M full messages in [12]–[18]. Along this line, two
models are usually studied, referred to as PIR-SI (PIR with
non-private side information) where the cached messages are
not known by the databases but the privacy of the cache
needs not to be preserved, and PIR-PSI (PIR with private
side information) where the joint privacy of both the desired
message and the cache needs to be preserved. For PIR-SI
with a single database (N = 1), the capacity is shown

1The capacity of PIR is defined as the inverse of the minimum load.

0090-6778 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of North Texas. Downloaded on September 15,2021 at 22:18:02 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6341-7730
https://orcid.org/0000-0003-4671-3287
https://orcid.org/0000-0002-7970-2245
https://orcid.org/0000-0002-7749-1333
https://orcid.org/0000-0001-8777-7987


ZHANG et al.: ON FUNDAMENTAL LIMITS OF CACHE-AIDED MuPIR 5829

to be
⌈

K
M+1

⌉−1

[12]. For the case of multiple databases

(N ≥ 2), [12] provided an achievable scheme achieving the
load 1 + 1

N + . . . + 1

N
� K

M+1�−1
, which was later shown to

be optimal in [18]. For PIR-PSI with a single database, [12]
showed that the capacity is (K − M)−1, implying that the
impact of private side information is equivalent to reducing
the message library size by M . This effect is also seen in [19]
which showed that the capacity of PIR-PSI with arbitrary
number of databases is

(
1 + 1

N + . . . + 1
NK−M−1

)−1
. Second,

the authors in [20]–[23] considered the user-against-user
privacy model where users are prevented from learning each
other’s demands. The authors in [20] first formulated the coded
caching with private demands problem where a shared-link
caching network with demand privacy, i.e., any user cannot
learn anything about the demands of other users, was consid-
ered. The goal is to design efficient delivery schemes such that
the communication load is minimized while preserving such
privacy. Order optimal schemes were proposed based on the
concept of virtual user.

This paper formulates the problem of cache-aided Multiuser
PIR (MuPIR), where each of the Ku cache-equipped users
aims to retrieve a message from N distributed non-colluding
databases while preventing any one of them from gaining
knowledge about the user demands given that the cached
content of the users are known to the databases.2 The con-
tribution of this paper includes: First, based on the novel
idea of cache-aided interference alignment (CIA), we construct
cache placement and private delivery schemes achieving the
memory-load pairs

(
N−1
2N , N+1

N

)
and

( 2(N−1)
2N−1 , N+1

2N−1

)
for the

case of K = 2 messages, Ku = 2 users and N ≥ 2 databases.
Different from the existing cache-aided interference alignment
schemes in [26]–[28] which were designed for the cache-aided
interference channels, the purpose of our proposed private
delivery scheme is to let each server send symmetric messages
(in order to preserve user demand privacy), each of which con-
tains some uncached and undesired symbols (i.e., interference)
for each user. The proposed CIA approach effectively aligns
these interference for each user and thus facilitates correct
decoding. We prove that the proposed scheme is optimal under
the constraint of uncoded cache placement. Computer-aided
investigation given in [29] also shows that the proposed
schemes are optimal for general cache placement when N = 2
and 3. Second, for general system parameters K, Ku and
N , we propose a Product Design (PD) which incorporates
the SJ scheme [5] into the MAN coded caching scheme [6].
Interestingly, the load of the proposed design is the product
of the loads achieved by these two schemes and is optimal
within a factor of 8. Moreover, PD is exactly optimal in the
high memory regime. Finally, we characterize the optimal
memory-load trade-off for the case of K = Ku = N = 2
where the users demand distinct messages. It is shown that

2Note that the virtual user strategy and the strategy based on scalar linear
function retrieval for coded caching with private demands [20], [24], [25]
were designed based on the fact that the user caches are not transparent to
each other (but transparent to the single server). However, such an approach
which relies on the unawareness of cache to achieve demand privacy cannot
be used in the considered MuPIR problem because the databases are aware
of the user caches.

Fig. 1. Cache-aided MuPIR system with N replicated databases, K
independent messages and Ku cache-equipped users. The users are connected
to each DB via an error-free shared-link broadcast channel.

under the constraint of the distinct demands, the optimal load
can be strictly smaller than the case with general demands.

The paper is organized as follows. In Section II, we give
a formal description of the problem setup. The main results
are given in Section III. In Section IV, we present the
proposed CIA based schemes and in Section V, we present
the product design for general system parameters. We discuss
some interesting observations for the case of distinct demands
in Section VI. Finally, we conclude this paper and provide
several future directions in Section VII.

Notation Convention: Z
+ denotes the non-negative inte-

ger set. [n] Δ= {1, 2, . . . , n}, [m : n] Δ= {m, m + 1, . . . , n}
and (m : n) Δ= (m, m + 1, . . . , n) for some m ≤ n. For two

sets A and B, the difference set is defined as A\B Δ= {x ∈
A : x /∈ B}. For an index set I, denote AI

Δ= {Ai : i ∈ I}.
If I = [m : n], we write A[m:n] as Am:n for simplicity. For an

index vector I = (i1, . . . , in), denote AI
Δ= (Ai1 , . . . , Ain).

Let 0n
Δ= (0, . . . , 0) and 1n

Δ= (1, . . . , 1) with length n.
In denotes the identity matrix of order n. For a matrix A,
A(i, :) and A(:, j) denote the i-th row and j-th column of A
respectively. AT represents the transpose of A. Operations are
on the binary field.

II. PROBLEM FORMULATION

We consider a system with Ku users, each aiming to pri-
vately retrieve a message from N ≥ 2 replicated non-colluding
databases (DBs). Each DB stores K independent messages,
denoted by W1, . . . , WK , each of which is uniformly distrib-
uted over

[
2L

]
. Each user is equipped with a cache memory

of size ML(0 ≤ M ≤ K) bits. Let the random variables
Z1, . . . , ZKu denote the cached content of the users. The
system operates in two phases, a cache placement phase
followed by a private delivery phase. In the cache placement
phase, the users fill up their cache memory without the
knowledge of their future demands. The cached content of
each user is a function of W1:K and is assumed to be known
to all DBs. In the private delivery phase, each user k ∈ [Ku]
wishes to retrieve a message Wθk

where θk ∈ [K]. Let

θ
Δ= (θ1, . . . , θKu) be the demand vector which represents the

demands of the users. We assume that θ follows an arbitrary
distribution with full support over [K]Ku . Depending on θ
and Z1, . . . , ZKu , the users cooperatively generate N queries
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Q
[θ]
1 , . . . , Q

[θ]
N , and then send the n-th query Q

[θ]
n to DB n.

Upon receiving the query, DB n responds with an answer A
[θ]
n

broadcasted to all users. The answer A
[θ]
n is a deterministic

function of Q
[θ]
n , W1:K and Z1:Ku , which written in terms of

conditional entropy, is

H
(
A[θ]

n

∣∣Q[θ]
n , W1:K , Z1:Ku

)
= 0, ∀n ∈ [N ]. (1)

After collecting all the answers from the DBs, the users can
correctly recover their desired messages with the help of their
cached information, i.e.,

H
(
Wθk

∣∣Q[θ]
1:N , A

[θ]
1:N , Zk

)
= 0, ∀k ∈ [Ku]. (2)

To preserve the privacy with respect to the DBs, it is
required that3

I
(
θ; Q[θ]

n , A[θ]
n , W1:K , Z1:Ku

)
= 0, ∀n ∈ [N ]. (3)

Let D denote the total number of bits broadcasted from
the DBs, then the load of the cache-aided MuPIR problem is
defined as4

R
Δ=

D

L
=

∑N
n=1 H

(
A

[θ]
n

)
L

. (4)

From the privacy constraint (3), the load can also be written
as R = 1

L

∑N
n=1 H

(
A

[θi]
n

)
, ∀i ∈

[
KKu

]
where θi represents

the i-th realization of all the KKu possible realizations of the
demand vector. This is because the load R should not depend
on the user demands θ otherwise it leaks information about
the user demands to the DBs and (3) will be violated.

A memory-load pair (M, R) is said to be achievable if
there exists a MuPIR scheme satisfying the decodability
constraint (2) and the privacy constraint (3). The goal of the
MuPIR problem is to design the cache placement and the
corresponding private delivery phases such that the load is
minimized. For any 0 ≤ M ≤ K , let R�(M) denote the
minimal achievable load. In addition, if the users directly cache
a subset of the library bits, the placement phase is said to be
uncoded. We denote the minimum achievable load under the
constraint of uncoded cache placement by R�

uncoded(M). Note
that any converse bound R′(M) on the worst-case load for the
(K, Ku) coded caching problem without considering demand
privacy formulated in [6] is also a converse bound on R�(M),
i.e., R�(M) = 1

L

∑N
n=1 H(A[θ�]

n ) ≥ R′(M). Similarly, any
converse bound R′′(M) on the worst-case caching load under
the constraint of uncoded cache placement is also a converse
on R�

uncoded(M), i.e., R�
uncoded(M) ≥ R′′(M).

III. MAIN RESULTS

First, we consider the MuPIR problem with K = Ku = 2
and N ≥ 2. In this case, we propose a novel cache-aided
interference alignment (CIA) based scheme (see Section IV)
and the corresponding achievable load is given in Theorem 1.

3The privacy constraint (3) can be equivalently written as
I
�
θ; Q

[θ]
n , W1:K , Z1:K

�
= 0, ∀n ∈ [N ] since the answer A

[θ]
n is a

deterministic function of Q
[θ]
n and W1:K .

4Note that in the literature of PIR, R denotes the retrieval rate, which
is the number of useful bits per bit of download in the single-user case.
Our definition of load is consistent with the caching literature, representing
the (normalized) number of bits transmitted through the shared-link.

Theorem 1: For the cache-aided MuPIR problem with
K = 2 messages, Ku = 2 users and N ≥ 2 DBs, the following
load is achievable

RCIA(M) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(1 − M), 0 ≤ M ≤ N − 1
2N

(N + 1) (3 − 2M)
2N + 1

,
N − 1
2N

≤ M

≤ 2(N − 1)
2N − 1(

1 − M

2

)(
1 +

1
N

)
,

2(N − 1)
2N − 1

≤ M ≤ 2

(5)

Proof: The proof of Theorem 1 is provided in
Section IV, where we present the CIA based approach achiev-
ing the memory-load pairs

(
N−1
2N , N+1

N

)
and

( 2(N−1)
2N−1 , N+1

2N−1

)
.

Together with the two trivial pairs (0, 2) and (2, 0), we obtain
four corner points. By the memory-sharing among these corner
points, the load in Theorem 1 can be achieved.

Remark 1: The computer-aided approach given in [29]
shows that the achievability result in Theorem 1 is optimal
when N = 2, 3. For N ≥ 4, the converse remains open.
In addition, the achieved load by the CIA based scheme is
better than applying twice the single-user cache-aided PIR
of [9] for each user, which yields a load of (2−M)

(
1 + 1

N

)
≥

RCIA(M), ∀M ∈ [0, 2].
Corollary 1: The load RCIA(M) in Theorem 1 is optimal

when M ∈
[
0, N−1

2N

]
∪
[ 2(N−1)

2N−1 , 2
]
.

Proof: When M ≤ N−1
2N , RCIA(M) = 2(1 − M)

coincides with the coded caching converse [6] and there-
fore is optimal. When M ≥ 2(N−1)

2N−1 , RCIA(M) =(
1 − M

2

) (
1 + 1

N

)
coincides with the converse bound

Rsingle =
(
1 − M

K

) (
1 + 1

N + · · · + 1
NK−1

)
for the single-user

cache-aided PIR in [9]. Since increasing the number of users
Ku cannot decrease the load, the achieved load in Theorem 1
is optimal.

Corollary 2: For the cache-aided MuPIR problem with
K = 2 messages, Ku = 2 users and N ≥ 2 DBs, the optimal
memory-load trade-off under uncoded cache placement is
characterized as

R�
uncoded(M)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 − 3
2
M, 0 ≤ M

≤ 2(N − 1)
2N − 1(

1 − M

2

)(
1 +

1
N

)
,

2(N − 1)
2N − 1

≤ M ≤ 2

(6)

Proof: For achievability, the corner points in Corollary 2
are the memory-load pairs (0, 2),

( 2(N−1)
2N−1 , N+1

2N−1

)
, and (2, 0),

which can be achieved by the same scheme as Theorem 1.
It can be seen in Section IV that the achievable schemes
for these corner points are uncoded, and by memory-sharing,
the load of Corollary 2 can be achieved.

Under the assumption of uncoded cache placement,
as shown in Section II, the converse bound for the shared-link
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coded caching problem without privacy constraint in [30],
[31] is also a converse for our considered cache-aided MuPIR
problem. When 0 ≤ M ≤ 1, it was proved that R�

uncoded(M) ≥
2− 3

2M. In addition, by the single-user cache-aided PIR con-
verse in [9], we have R�

uncoded(M) ≥
(
1 − M

2

) (
1 + 1

N

)
. Since

the achievability and converse match, the optimal trade-off in
Corollary 2 is characterized.

For general K, Ku and N , we propose an achievable scheme
called Product Design (PD). The corresponding achievable
load is given by the following theorem.

Theorem 2: The proposed product design achieves the load
of RPD(M) = min

{
K − M, R̂(M)

}
in which

R̂(M) =
Ku − t

t + 1

(
1 +

1
N

+ · · · + 1
NK−1

)
, (7)

where t
Δ= KuM

K ∈ [1 : Ku]. When M = 0, the load

R0
Δ= min

{
KuRMPIR(K, Ku, N)−1, K

}
is achievable if

Ku < K , where RMPIR(K, Ku, N) represents the achievable
sum rate in [32] for the Multi-message PIR (MPIR) problem
with K messages, N DBs and the user desires Ku messages.
For non-integer values of t, the lower convex envelope the
integer points (0, R0),

(
tK
Ku

, RPD(M)
)
, t ∈ [1 : Ku] are

achievable. Moreover, RPD(M)
R�(M) ≤ 8.

Proof:
Achievability: See Section V for the schemes to achieve

R̂(M). The load K − M can be achieved by letting each
user store the same M

K fraction of all messages and then
downloading the remaining 1− M

K fraction of all messages in
the delivery phase, achieving the load K

(
1 − M

K

)
= K −M .

Each user can recover all the K messages including the
desired one. Since the above delivery does not depend on
θ, it is private. When K > Ku and M = 0, i.e., the users
do not have any cache, the considered cache-aided MuPIR
problem reduces to the MPIR problem, where a superuser
requests Ku out K messages without leaking the identities
the desired messages. The MPIR scheme proposed in [32]
achieving the load R0, can be used to improve PD based on the
observation that a joint retrieval of multiple messages is better
than repeating the single-message retrieval multiple times.
Therefore, the MPIR scheme of [32] can be used when M = 0
to achieve the load R0 = KuRMPIR(K, Ku, N)−1, which
is strictly better than repeating the single-message retrieval
scheme Ku times by plugging t = 0 into (7).

Converse: We use the converse bound in [33] on the
worst-case load for coded caching without privacy constraint,
denoted by Rcaching(M). As shown in Section II, Rcaching(M)
is also a converse bound for the considered MuPIR problem.
In addition, it was proved in [33] that Rcaching(M) is no less
than the lower convex envelope of 1

4 min
{

Ku−t
t+1 , K

(
1− M

K

)}
where t ∈ [Ku]. Hence, we have

RPD(M)
R�(M)

≤ RPD(M)
Rcaching(M)

≤ 4 ·
(

1 +
1
N

+ · · · + 1
NK−1

)
≤ 8, (8)

which is due to RPD(M) = min
{
K
(
1 − M

K

)
, R̂(M)

}
and

1 + 1
N + · · · + 1

NK−1 ≤ 2, ∀N ≥ 2.

Corollary 3: The proposed product design is optimal when
M ∈

[
(Ku−1)

Ku
K, K

]
.

Proof: When K ≥ Ku and M = K(Ku−1)
Ku

, (7) becomes

R̂(M) = 1
Ku

(
1 + · · · + 1

NK−1

)
. On the other hand, the author

in [9] showed that when Ku = 1, the optimal single-user
cache-aided PIR load is equal to

(
1 − M

K

) (
1 + · · · + 1

NK−1

)
,

which also equals (7) when M = K(Ku−1)
Ku

. By

the memory-sharing between
(K(Ku−1)

Ku
, R̂

(K(Ku−1)
Ku

))
and

(K, 0), we conclude that PD is optimal when (Ku−1)
Ku

K ≤
M ≤ K .

Numerical Evaluation: In Fig. 2, we consider the MuPIR
systems with K = Ku = 2, where N = 2 in Fig. 2a and
N = 3 in Fig. 2b respectively. We compare the proposed
CIA based scheme in Theorem 1, the optimal scheme under
uncoded cache placement in Corollary 6, the product design
in Theorem 2, and the computer-aided converse in [29].
In addition, it will be clarified in Theorem 3 that for the
case K = Ku = N = 2, if the users demand distinct
messages, the optimal memory-load trade-off is R�

d(M) given
in (43). In Fig. 2a, there are two non-trivial corner points
(1/4, 3/2) and (2/3, 1) associated with the CIA based scheme
in Theorem 1. It can be seen that in the case of general
demands, the CIA based scheme outperforms both the optimal
scheme under uncoded cache placement in Corollary 2 and
the product design in Theorem 2. When 1/4 ≤ M ≤ 2,
RCIA(M) coincides with the computer-aided converse [29]
and hence is optimal. It also can be seen that a lower load
can be achieved when users only have distinct demands.
Fig. 2b shows the case when N = 3 in which RCIA(M)
is optimal when 1/3 ≤ M ≤ 2 by the computer-aided
converse. In Fig. 3, we compare the load of the product design
with the best-known caching bound provided in [8] when
K = Ku = 6, N = 2. More specifically, Theorem 2 of [8]
gives the caching converse as a lower convex envelope of
the set of memory-load pairs

{(
7−�

s , s−1
2 + �(�−1)

2s

)
: ∀s ∈

[1 : 6], ∀� ∈ [1 : s]
}
∪ {(0, 6)}. Since RPD(1) lies above

the line segment connecting the memory-load pairs (0, 6) and
(2, RPD(2)), we can use memory-sharing to achieve a better
load for M = 1.

IV. PROOF OF THEOREM 1: DESCRIPTION

OF THE CIA SCHEME

In this section, we prove Theorem 1. For the cache-aided
MuPIR problem with K = 2 messages, Ku = 2 users
and N ≥ 2 DBs, we first show the achievability of the
memory-load pairs

(
N−1
2N , N+1

N

)
and

( 2(N−1)
2N−1 , N+1

2N−1

)
using

the proposed CIA scheme. Note that when M = 0, we let any
one of the DBs broadcast the two messages to the users, so the
memory-load pair (0, 2) is achievable. When M = 2, we let
both users store the two messages in the placement phase and
there is no need for the DBs to transmit anything, implying that
(2, 0) is achievable. By the memory-sharing between the above
four corner points, the load of Theorem 1 can be achieved.
For each of the above two non-trivial corner points, we first
describe the general achievable schemes for arbitrary number
of DBs and then present an example to highlight the design
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Fig. 2. An illustration of the achievable load R of the MuPIR system with
K = Ku = 2. (a) N = 2. Both the CIA scheme (RCIA) and the optimal
scheme under distinct demands (R�

d(M)) have four corner pints; Both the
optimal scheme under uncoded cache placement (R�

uncoded) and the product
design (RPD) have three corner points; (b) N = 3. RCIA has four corner
points. R�

uncoded and RPD have three corner points.

Fig. 3. The load of the product design compared to the best-known caching
bound [8] for K = Ku = 6, N = 2.

intuition. Computer-aided investigation [29] shows that the
achievable load in Theorem 1 is optimal when N = 2 and 3.
For general values of N , the converse remains open.

A. Achievability of
(

N−1
2N , N+1

N

)
Let W1 = A and W2 = B denote the two messages, each

consisting of L = 2N bits, i.e., A = (A1, . . . , A2N ), B =
(B1, . . . , B2N ). The proposed scheme is described as follows.

1) Cache Placement: Each user stores N − 1 linear combi-
nations of the message bits in its cache (therefore M = N−1

2N ),
i.e.,

Z1 =
{
α1,jA

T
(1:N) + β1,jB

T
(1:N) : j ∈ [N − 1]

}
, (9a)

Z2 =
{
α2,jA

T
(N+1:2N) + β2,jB

T
(N+1:2N) : j ∈ [N − 1]

}
,

(9b)

in which the linear combination coefficients αi,j , βi,j ∈
F

1×N
2 \{0N}, ∀i ∈ [2], ∀j ∈ [N − 1] are cho-

sen such that rank ([αi,1; . . . ; αi,N−1]) = N − 1 and
rank([βi,1; . . . ; βi,N−1]) = N − 1, ∀i ∈ [2]. WLOG,
we choose the coefficients to be [αi,1; . . . ; αi,N−1] =
[βi,1; . . . ; βi,N−1] =

[
IN−1,0T

N−1

]
, ∀i ∈ [2]. Recall that

A(1:N)
Δ= (A1, . . . , AN ) and other notations follow simi-

larly. Furthermore, let Zi,j denote the j-th linear combina-
tion in Zi, i.e., Z1,j = α1,jA

T
(1:N) + β1,jB

T
(1:N), Z2,j =

α2,jA
T
(N+1:2N) + β2,jB

T
(N+1:2N), ∀j ∈ [N − 1], ∀i ∈ [2].

2) Private Delivery: In this phase, the two users down-
load an answer from each DB according to their demands
(θ1, θ2). The answers are in the form of random lin-
ear combinations of certain message bits. In particular,
the answer of DB n ∈ [N − 1] consists of two ran-

dom linear combinations, i.e., A
[θ]
n

Δ=
(
A

[θ]
n,1, A

[θ]
n,2

)
where

A
[θ]
n,1 = un,1A

T
(1:N) + vn,1B

T
(1:N), A

[θ]
n,2 = un,2A

T
(N+1:2N) +

vn,2B
T
(N+1:2N). The answer of DB N consists of four random

linear combinations, i.e., A
[θ]
n

Δ=
(
A

[θ]
N,1, A

[θ]
N,2, A

[θ]
N,3, A

[θ]
N,4

)
where A

[θ]
N,1 = g1A

T
(1:N), A

[θ]
N,2 = g2B

T
(1:N), A

[θ]
N,3 =

g3A
T
(N+1:2N) and A

[θ]
N,4 = g4B

T
(N+1:2N). The coefficient

vectors g1,g2,g3,g4,un,j ,vn,j ∈ F
1×N
2 , ∀n ∈ [N − 1], ∀j ∈

[2] used in the answers are subject to design according to the
user demands. Therefore, 2N + 2 linear combinations will be
downloaded in total in the delivery phase. The answers can be
written as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
[θ]
1,1

A
[θ]
1,2

...

A
[θ]
N−1,1

A
[θ]
N−1,2

A
[θ]
N,1

A
[θ]
N,2

A
[θ]
N,3

A
[θ]
N,4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,1 0N v1,1 0N

0N u1,2 0N v1,2

...
...

...
...

uN−1,1 0N vN−1,1 0N

0N uN−1,2 0N vN−1,2

g1 0N 0N 0N

0N 0N g2 0N

0N g3 0N 0N

0N 0N 0N g4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎣
AT

(1:N)

AT
(N+1:2N)

BT
(1:N)

BT
(N+1:2N)

⎤⎥⎥⎥⎥⎥⎦. (10)
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We next show how the linear coefficients can be designed
using the idea of CIA such that the users can correctly
recover their desired messages. Due to space limit, we will
only consider (θ1, θ2) = (1, 2) and (1, 1). Other cases work
similarly and are omitted here.

For (θ1, θ2) = (1, 2), i.e., user 1 and 2 demand messages
A and B respectively, the following six N -by-N coefficient
matrices should be full-rank:

Full-rank condition: the following matrices are full-rank,⎡⎢⎢⎢⎣
α1,1

...
α1,N−1

g1

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
β2,1

...
β2,N−1

g4

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
u1,2

...
uN−1,2

g3

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
v1,1

...
vN−1,1

g2

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

For correct decoding of (θ1, θ2) = (1, 2)

,

⎡⎢⎢⎢⎣
α2,1

...
α2,N−1

g3

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
β1,1

...
β1,N−1

g2

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

For privacy

. (11)

Note that only the first four coefficient matrices being
full-rank in (11) is mandatory for the decoding of
the demands (θ1, θ2) = (1, 2). The two extra matri-
ces [α2,1; . . . ; α2,N−1;g3] and

[
β1,1; . . . ; β1,N−1;g2

]
being

full-rank is mandatory for the decoding of other user demands.
The reason that we require the two extra matrices to be
full-rank for (θ1, θ2) = (1, 2) is that, if the two matrices
are not full-rank here (the DBs can check this since the
users’ cache coefficients α2,n, β1,n, ∀n ∈ [N − 1] are known
to the DBs), then DB 2 can know that the actual demands
being requested are (θ1, θ2) = (1, 2) since correct decoding
is impossible for any demands other than (1, 2). In fact,
to preserve privacy, any full-rank coefficient matrix consisting
of the linear coefficients of one DB and the cache coefficients
which are necessary for the correct decoding of one demand
vector (θ1, θ2) must be full-rank for all possible demands
(θ1, θ2) ∈ [2]2. This multi-purpose full-rank requirement holds
for all user demands. The required alignment is

Alignment condition: g1 = un,1, ∀n ∈ [N − 1], (12a)

g4 = vn,2, ∀n ∈ [N − 1]. (12b)

We next show that with the above full-rank and alignment
conditions, the two users can correctly recover the messages
A and B respectively.

Due to the alignment condition of (12b), we have A
[(1,2)]
N,4 =

g4B
T
(N+1:2N) = vn,2B

T
(N+1:2N), ∀n ∈ [N − 1], i.e., the

message bits B(N+1:2N) are aligned among the linear com-

binations A
[(1,2)]
1,2 , . . ., A

[(1,2)]
N−1,2. Subtracting A

[(1,2)]
N,4 from

A
[(1,2)]
1,2 , . . . , A

[(1,2)]
N−1,2 in (10), we obtain⎡⎢⎢⎢⎢⎢⎢⎣

A
[(1,2)]
1,2 − A

[(1,2)]
N,4

...

A
[(1,2)]
N−1,2 − A

[(1,2)]
N,4

A
[(1,2)]
N,3

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
u1,2

...
uN−1,2

g3

⎤⎥⎥⎥⎦AT
(N+1:2N). (13)

By (11), the coefficient matrix on the RHS of (13) is full-
rank. Therefore, both users can decode A(N+1:2N) as

AT
(N+1:2N) =

⎡⎢⎢⎢⎣
u1,2

...
uN−1,2

g3

⎤⎥⎥⎥⎦
−1

⎡⎢⎢⎢⎢⎢⎢⎣
A

[(1,2)]
1,2 − A

[(1,2)]
N,4

...

A
[(1,2)]
N−1,2 − A

[(1,2)]
N,4

A
[(1,2)]
N,3

⎤⎥⎥⎥⎥⎥⎥⎦. (14)

Similarly, due to the alignment condition of (12a), we have
A

[(1,2)]
N,1 = g1A

T
(1:N) = un,1A

T
(1:N), ∀n ∈ [N − 1], i.e., A(1:N)

are aligned among A
[(1,2)]
1,1 , . . . , A

[(1,2)]
N−1,1. Subtracting A

[(1,2)]
N,1

from A
[(1,2)]
1,1 , . . . , A

[(1,2)]
N−1,1, and by the full-rank condition (11),

B(1:N) can be decoded by both users as

BT
(1:N) =

⎡⎢⎢⎢⎣
v1,1

...
vN−1,1

g2

⎤⎥⎥⎥⎦
−1

⎡⎢⎢⎢⎢⎢⎢⎣
A

[(1,2)]
1,1 − A

[(1,2)]
N,1

...

A
[(1,2)]
N−1,1 − A

[(1,2)]
N,1

A
[(1,2)]
N,2

⎤⎥⎥⎥⎥⎥⎥⎦ . (15)

Now the message bits A(N+1:2N), B(1:N) are available to
both users. User 1 still needs A(1:N) and user 2 still needs
B(N+1:2N). Removing the interference of B(1:N) from Z1,
user 1 obtains N − 1 linear combinations of A(1:N). Together

with A
[(1,2)]
N,1 = g1A

T
(1:N), user 1 obtains N independent linear

combinations of A(1:N), from which A(1:N) can be decoded
as

AT
(1:N) =

⎡⎢⎢⎢⎣
α1,1

...
α1,N−1

g1

⎤⎥⎥⎥⎦
−1

⎡⎢⎢⎢⎢⎢⎣
Z1,1 − β1,1B

T
(1:N)

...

Z1,N−1 − β1,N−1B
T
(1:N)

A
[(1,2)]
N,1

⎤⎥⎥⎥⎥⎥⎦. (16)

As a result, user 1 correctly decodes all the 2N bits of the
desired message A. Similarly, user 2 can also correctly decode
all the 2N bits of message B.

For (θ1, θ2) = (1, 1), the following six coefficient matrices⎡⎢⎢⎢⎢⎢⎣
α1,1

α1,2

...
α1,N−1

g1

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣
α2,1

α2,2

...
α2,N−1

g3

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣
β1,1

β1,2
...

β1,N−1

g2

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣
β2,1

β2,2
...

β2,N−1

g4

⎤⎥⎥⎥⎥⎥⎦ ,

×

⎡⎢⎢⎢⎢⎢⎣
u1,1

u2,1

...
uN−1,1

g1

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣
u1,2

u2,2

...
uN−1,2

g3

⎤⎥⎥⎥⎥⎥⎦ (17)

are required to be full-rank. The alignment condition is

g2 = vn,1, ∀n ∈ [N − 1], (18a)

g4 = vn,2, ∀n ∈ [N − 1]. (18b)

With the above conditions, we next show that both users
can correctly recover message A.

Authorized licensed use limited to: University of North Texas. Downloaded on September 15,2021 at 22:18:02 UTC from IEEE Xplore.  Restrictions apply. 



5834 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 9, SEPTEMBER 2021

Due to (18a), we have A
[(1,1)]
N,2 = g2B

T
(1:N) =

vn,1B
T
(1:N), ∀n ∈ [N − 1]. Subtracting A

[(1,1)]
N,2 from

A
[(1,1)]
n,1 , . . . , A

[(1,1)]
N−1,1, and by the full-rank condition (17), both

users can decode A(1:N) as

AT
(1:N) =

⎡⎢⎢⎢⎢⎢⎣
u1,1

u2,1

...
uN−1,1

g1

⎤⎥⎥⎥⎥⎥⎦
−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
[(1,1)]
1,1 − A

[(1,1)]
N,2

A
[(1,1)]
2,1 − A

[(1,1)]
N,2

...

A
[(1,1)]
N−1,1 − A

[(1,1)]
N,2

A
[(1,1)]
N,1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (19)

Also, due to (18b), we have A
[(1,1)]
N,4 = g4B

T
(N+1:2N) =

vn,2B
T
(N+1:2N), ∀n ∈ [N − 1]. Subtracting A

[(1,1)]
N,4 from

A
[(1,1)]
n,2 , . . . , A

[(1,1)]
N−1,2, and by (17), both users can decode

A(N+1:2N) as

AT
(N+1:2N) =

⎡⎢⎢⎢⎣
u1,2

...
uN−1,2

g3

⎤⎥⎥⎥⎦
−1

⎡⎢⎢⎢⎢⎢⎢⎣
A

[(1,1)]
1,2 − A

[(1,1)]
N,4

...

A
[(1,1)]
N−1,2 − A

[(1,1)]
N,4

A
[(1,1)]
N,3

⎤⎥⎥⎥⎥⎥⎥⎦ . (20)

As a result, both users correctly recover message A.
Remark 2: One interesting observation is that, for the

case of identical demands, i.e., (θ1, θ2) = (1, 1) or (2, 2),
the cached contents of the users are actually not used in the
decoding process. This means that caching does not help to
improve the PIR load in the case of identical demands for the
considered problem setup K = Ku = 2.

With the above full-rank and alignment conditions, we now
employ a randomized specification of the linear combination
coefficients used by each DB and formally describe the
delivery scheme.

We first introduce some necessary notations. Define a binary
matrix YN ∈ F

N×N
2 (N ≥ 2) as

YN
Δ=
[
IN−1 1T

N−1

0N−1 1

]
(21)

It can be seen that rank(YN ) = N . Let YN
Δ=
{
YN (i, :) :

i ∈ [N ]
}

be a set that contains the rows of YN . Also
define two binary matrices M(u:,i,gj),M(v:,i,gj) ∈ F

N×N
2 ,

∀i ∈ [2], ∀j ∈ [4] as

M(u:,i,gj)
Δ=

[
u1,i;u2,i; . . . ;uN−1,i;gj

]
, (22a)

M(v:,i,gj)
Δ=

[
v1,i;v2,i; . . . ;vN−1,i;gj

]
. (22b)

Note that M(u:,i,gj) and M(v:,i,gj) represent the coeffi-
cient sub-matrices of (10) corresponding to the message bits
A(i−1)N+1:iN and B(i−1)N+1:iN respectively.

The delivery strategies for different user demands are given
as follows:

· (θ1, θ2) = (1, 2): Let g1 and g4 be chosen randomly
and uniformly i.i.d. from YN . Also let M(u:,2,g3) and
M(v:,1,g2) be two independent random permutations

of the rows of YN . It can be seen that with such a
specification of the answer coefficients and the previously
defined cache coefficients, the full-rank and the alignment
conditions (11), (12) are satisfied. Therefore, both users
can recover their desired messages.

· (θ1, θ2) = (1, 1): Let g2 and g4 be chosen randomly
and uniformly i.i.d. from YN . Also let M(u:,1,g1) and
M(u:,2,g3) be two independent random permutations of
the rows of YN . It can be seen that the full-rank and
alignment conditions (17), (18) are satisfied.

· (θ1, θ2) = (2, 1): Let g2 and g3 be chosen randomly
and uniformly i.i.d. from YN . Also let M(u:,1,g1) and
M(u:,2,g4) be two independent random permutations of
the rows of YN . It can be verified that the corresponding
full-rank and alignment conditions are satisfied.

· (θ1, θ2) = (2, 2): Let g1 and g3 be chosen randomly
and uniformly i.i.d. from YN . Also let M(v:,1,g2) and
M(v:,2,g4) be two independent random permutations of
the rows of YN .

We next prove the correctness and privacy of the above
delivery scheme.

Correctness: Since the random specification of the answer
coefficients satisfies the corresponding full-rank and align-
ment conditions for any (θ1, θ2) ∈ [2]2, decodability is
guaranteed.

Privacy: WLOG, we prove that the above delivery scheme
is private from DB 1’s viewpoint, i.e., the demand vec-
tor θ is equally likely to be (1, 2), (2, 1), (1, 1) or (2, 2).
More specifically, let x

Δ= [u1,1,u1,2,v1,1,v1,2] ∈ Y1×4
N

be a random realization of the answer linear coefficients
of DB 1. Let Γ(u1,j , θ) denote a random query of the
value of u1,j , j = 1, 2 to DB 1 when the demand vec-

tor is θ. Other notations follow similarly. Let X(θ) Δ=[
Γ(u1,1, θ),Γ(u1,2, θ),Γ(v1,1, θ),Γ(v1,2, θ)

]
represent the

random query to DB 1 when the user demand vector is θ.
Then the probability that x is generated for θ, i.e., X(θ) = x,
is equal to

P (X(θ) = x)

= P (Γ(u1,1, θ) = u1,1)×P (Γ(u1,2, θ) = u1,2)

×P (Γ(v1,1, θ) = v1,1)×P (Γ(v1,2, θ) = v1,2) (23a)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
N

× (N − 1)!
N !

× (N − 1)!
N !

× 1
N

=
1

N4
,

if θ = (1, 2)

(N − 1)!
N !

× 1
N

× 1
N

× (N − 1)!
N !

=
1

N4
,

if θ = (2, 1)

(N − 1)!
N !

× (N − 1)!
N !

× 1
N

× 1
N

=
1

N4
,

if θ = (1, 1)

1
N

× 1
N

× (N − 1)!
N !

× (N − 1)!
N !

=
1

N4
,

if θ = (2, 2)

(23b)
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in which (23a) is because the specifications of the query
vectors Γ(u1,1, θ),Γ(u1,2, θ),Γ(v1,1, θ) and Γ(v1,2, θ) are
independent of each other according to the delivery design.
Moreover, for θ = (1, 2), because u1,1 and v1,2 are cho-
sen i.i.d. from YN , we have P (Γ(u1,1, θ) = u1,1) =
P (Γ(v1,2, θ) = v1,2) = 1

N . Also, because M(u:,2,g3) and
M(v:,1,g2) are two independent random permutations of YN ,
we have P (Γ(u1,2, θ) = u1,2) = P (Γ(v1,1, θ) = v1,1) =
(N−1)!

N ! = 1
N . Therefore, we have P (X(θ) = x) = 1

N4

if θ = (1, 2). The probabilities for other demands can be
calculated similarly. Since P (X(θ) = x) does not depend
on θ, from DB 1’s viewpoint, the coefficient realization x
is equally likely to be generated for θ = (1, 2), (2, 1), (1, 1)
or (2, 2). Therefore, the scheme is private from DB 1’s point
of view. Due to symmetry, the scheme is also private from
any other DB’s viewpoint. As a result, the proposed delivery
scheme is private.

Performance: Since D = 2N +2 linear combinations, each
containing one bit, are downloaded in total, the achieved load
is R = N+1

N .
We provide the following example to illustrate the above

design.
Example 1: (Achievability of (1/4, 3/2) for N = 2)

Consider the cache-aided MuPIR problem with K = Ku =
N = 2. The cache placement and private delivery phases are
as follows.

3) Cache Placement: Each message consists of L = 4
bits, i.e., A = (A1, A2, A3, A4), B = (B1, B2, B3, B4).
Each user stores a linear combination of the message bits
which are Z1 = α1,1[A1, A2]T + β1,1[B1, B2]T = A1 +
B1, Z2 = α2,1[A3, A4]T + β2,1[B3, B4]T = A3 + B3

where the coefficients are chosen as α1,1 = α2,1 =
β1,1 = β2,1 = [1, 0].5 Therefore, M = 1/4.

4) Private Delivery: The answers are⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
[θ]
1,1

A
[θ]
1,2

A
[θ]
2,1

A
[θ]
2,2

A
[θ]
2,3

A
[θ]
2,4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣
u1,1 02 v1,1 02

02 u1,2 02 v1,2

g1 02 02 02

02 02 g2 02

02 g3 02 02

02 02 02 g4

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

AT
(1:2)

AT
(3:4)

BT
(1:2)

BT
(3:4)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (24)

Suppose the demand vector is (θ1, θ2) = (1, 2). For this
demand vector, we let u1,1 = g1 and v1,2 = g4 as shown
in (12). To specify the coefficients in (24), we introduce
the matrix Y2 =

[
1 1
0 1

]
which is independent of the θ.

We let g1 and g4 be chosen randomly and uniformly i.i.d.
from Y2 = {[1, 1], [0, 1]}. In addition, we let [u1,2;g3] and
[v1,1;g2] be two independent random permutations of the
rows of Y2.

5With a slight abuse of notation, here we use Z1, Z2 to denote the cached
bits by the users despite they are defined as sets.

Correctness: From A
[θ]
1,2 − A

[θ]
2,4, each user obtains

u1,2[A3, A4]T. In addition, each user receives A
[θ]
2,3 = g3[A3,

A4]T. Since u1,2 and g3 are two different rows of Y2,
it can be seen that they are linearly independent. Thus A3

and A4 can be decoded by the users. From A
[θ]
1,1 − A

[θ]
2,1,

each user obtains v1,1[B1, B2]T. Also, each user receives
A

[θ]
2,2 = g2[B1, B2]T. Since v1,1 and g2 are linearly inde-

pendent, each user can decode B1 and B2. User 1 caches
A1 + B1 and has decoded B1, it can then decode A1.
User 1 also receives A

[θ]
2,1 = g1[A1, A2]T where g1 ∈ Y2.

Due to the design of Y2, for both choices of g1, user 1
can always decode A1 and A2 from g1[A1, A2]T. There-
fore, user 1 can recover message A. Similarly, since user 2
caches A3 + B3 and has decoded A3, it can then decode
B3. User 2 also receives A

[θ]
2,4 = g4[B3, B4]T where g4 ∈

Y2. It can be seen that user 2 can always decode B3, B4

regardless of the choice of g4. Therefore, both users can
recover their desired messages, proving the correctness of the
scheme.

Privacy: From the viewpoint of DB 1, whose sent
linear combinations are g1[A1, A2]T + v1,1[B1, B2]T and
u1,2[A3, A4]T + g4[B3, B4]T, the vectors g1,g4,v1,1,u1,2

appear to be chosen randomly and uniformly i.i.d. from Y2

regardless of θ. Thus, these linear combinations are indepen-
dent of θ. From the viewpoint of DB 2, whose sent linear
combinations are g1[A1, A2]T, g2[B1, B2]T, g3[A3, A4]T, and
g4[B3, B4]T, the vectors g1,g2,g3,g4 also appear to be
chosen randomly and uniformly i.i.d. from Y2, implying the
independence between the coefficients and θ. Therefore, each
DB cannot get any information about θ from its answer and
the user cache.

Performance: The achieved load is R = 3/2. ♦

B. Achievability of
(

2(N−1)
2N−1 , N+1

2N−1

)
The cache placement and private delivery phases are

described as follows.
1) Cache Placement: Let W1 = A, W2 = B be the

two messages each of which has L = 2N − 1 bits,
i.e., A = (A1, . . . , A2N−1), B = (B1, . . . , B2N−1). Each
user stores 2(N − 1) bits of each message (therefore
M = 2(N−1)

2N−1 ), i.e.,

Z1 = {A1:N−1, B1:N−1} , (25a)

Z2 = {AN :2N−2, BN :2N−2} . (25b)

2) Private Delivery: We first construct the answers
from the DBs. The answer of DB n ∈ [N − 1]
is a linear combination of certain message bits which
is A

[θ]
n = unAT

(1:2N−1) +vnBT
(1:2N−1). The answer of DB N

consists of two linear combinations, i.e., A
[θ]
N =

(
A

[θ]
N,1, A

[θ]
N,2

)
where A

[θ]
N,1 = g1 AT

(1:2N−1) and A
[θ]
N,2 = g2 BT

(1:2N−1).

The coefficient vectors un
Δ= [un,1, . . . , un,2N−1],

vn
Δ= [vn,1, . . . , vn,2N−1] , ∀n ∈ [N − 1], gj

Δ=
[gj,1, . . . , gj,2N−1] , ∀j ∈ [2] belong to F

1×(2N−1)
2 \{02N−1}

and are subject to design according to the user demands.
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These answers can be written as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
[θ]
1

...

A
[θ]
N−1

A
[θ]
N,1

A
[θ]
N,2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
u1 v1

...
...

uN−1 vN−1

g1 02N−1

02N−1 g2

⎤⎥⎥⎥⎥⎥⎦
⎡⎣AT

(1:2N−1)

BT
(1:2N−1)

⎤⎦

=

⎡⎢⎢⎢⎢⎢⎣
u1,(1:2N−2) 1 v1,(1:2N−2) 1

...
...

...
...

uN−1,(1:2N−2) 1 vN−1,(1:2N−2) 1
g1,(1:2N−2) 1 02N−2 0

02N−2 0 g2,(1:2N−2) 1

⎤⎥⎥⎥⎥⎥⎦
×

⎡⎣AT
(1:2N−1)

BT
(1:2N−1)

⎤⎦ , (26)

where we fix the coefficients un,2N−1 = vn,2N−1 = 1,
∀n ∈ [N − 1] and g1,2N−1 = g2,2N−1 = 1.

We next consider different demands and present the neces-
sary full-rank and alignment conditions. Due to space limit,
we focus on the cases of (θ1, θ2) = (1, 2) and (1, 1).

For (θ1, θ2) = (1, 2), the following two coefficient matrices
are required to be full-rank:

Full-rank condition: the following matrices are full-rank,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,(N :2N−1)

...

uN−1,(N :2N−1)

g1,(N :2N−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
v1,(1:N−1), v1,2N−1

]
...[

vN−1,(1:N−1), vN−1,2N−1

]
[
g2,(1:N−1), g2,2N−1

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (27)

where u1,(N :2N−1)
Δ= [u1,N , u1,N+1, . . . , u1,2N−1]

and other notation follows similarly. For alignment,
we let ∀n ∈ [N − 1]:

Alignment condition:[
un,(1:N−1), un,2N−1

]
=

[
g1,(1:N−1), g1,2N−1

]
, (28a)

vn,(N :2N−1) = g2,(N :2N−1), (28b)

i.e., the message bits A(1:N−1), A2N−1 are aligned among the

linear combinations A
[(1,2)]
n , ∀n ∈ [N − 1] and A

[(1,2)]
N,1 ; the

bits B(N :2N−1) are aligned among A
[(1,2)]
n , ∀n ∈ [N − 1] and

A
[(1,2)]
N,2 . We next show that the users can recover their desired

messages with the above conditions.
For user 1, due to the alignment of B(N :2N−1), we have

A
[(1,2)]
N,2 − g2,(1:N−1)B

T
(1:N−1) = g2,(N :2N−1)B

T
(N :2N−1)

= vn,(N :2N−1)B
T
(N :2N−1),

×∀n ∈ [N − 1]. (29)

Subtracting A
[(1,2)]
N,2 − g2,(1:N−1)B

T
(1:N−1) (this is known

to user 1 since B1:N−1 are already cached by user 1)
from A

[(1,2)]
1 , . . . , A

[(1,2)]
N−1 in (26), together with A

[(1,2)]
N,1 =

g1A
T
(1:2N−1), user 1 obtains N independent linear combina-

tions of A(N :2N−1), which can be decoded as

AT
(N :2N−1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,(N :2N−1)

...

uN−1,(N :2N−1)

g1,(N :2N−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

y, (30)

where y is defined as

y Δ=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
[(1,2)]
1 − (A[(1,2)]

N,2 − g2,(1:N−1)B
T
(1:N−1))

...

A
[(1,2)]
N−1 − (A[(1,2)]

N,2 − g2,(1:N−1)B
T
(1:N−1))

A
[(1,2)]
N,1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,(1:N−1) v1,(1:N−1)

...
...

uN−1,(1:N−1) vN−1,(1:N−1)

g1,(1:N−1) 0N−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎣AT

(1:N−1)

BT
(1:N−1)

⎤⎦ . (31)

Since the message bits A(1:N−1), B(1:N−1) are cached
by user 1, it can decode the bits A(N :2N−1) and then
recover message A. Similarly, user 2 can correctly recover
message B.

For (θ1, θ2) = (1, 1), the following two coefficient matrices
should by full-rank:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,(N :2N−1)

u2,(N :2N−1)

...

uN−1,(N :2N−1)

g1,(N :2N−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
u1,(1:N−1), u1,2N−1

][
u2,(1:N−1), u2,2N−1

]
...[

uN−1,(1:N−1), uN−1,2N−1

][
g1,(1:N−1), g1,2N−1

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (32)

The alignment condition is

g2 = vn, ∀n ∈ [N − 1]. (33)

The decoding process is explained as follows. Due to the
alignment of (33), we have

A
[(1,1)]
N,2 = g2B

T
(1:2N−1) = vnBT

(1:2N−1), ∀n ∈ [N − 1].
(34)
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Subtracting A
[(1,1)]
N,2 from all A

[(1,1)]
n , ∀n ∈ [N − 1],

we obtain

AT
(N :2N−1)

=

⎡⎢⎢⎢⎢⎢⎣
u1,(N :2N−1)

u2,(N :2N−1)

...
uN−1,(N :2N−1)

g1,(N :2N−1)

⎤⎥⎥⎥⎥⎥⎦
−1

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
[(1,1)]
1 − A

[(1,1)]
N,2

A
[(1,1)]
2 − A

[(1,1)]
N,2

...

A
[(1,1)]
N−1 − A

[(1,1)]
N,2

A
[(1,1)]
N,1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎣
u1,(1:N−1)

u2,(1:N−1)

...
uN−1,(1:N−1)

g1,(1:N−1)

⎤⎥⎥⎥⎥⎥⎦AT
(1:N−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(35)

Since the bits A1:N−1 are cached by user 1, it can decode
the desired bits AN :2N−1 and then recover A. Similarly,
user 2 can decode the desired bits A1:N−1, A2N−1. Therefore,
both users can correctly recover message A.

With the above full-rank and alignment conditions, we now
employ a randomized specification of the linear coefficients
used by each DB and formally describe the delivery scheme.

We first introduce some necessary notation. Let
Y′

N
Δ= [IN−1;0N−1] ∈ F

N×(N−1)
2 and let Y ′

N
Δ=
{
Y′

N (i, :) :
i ∈ [N ]

}
be a set containing the rows of Y′

N . For an index
vector (m : n) = (m, m + 1, . . . , n), define ∀j ∈ [2]:

M′(u,gj , (m : n)) Δ=
[
u1,(m:n); . . . ;uN−1,(m:n);gj,(m:n)

]
∈ F

N×(n−m+1)
2 , (36a)

M′(v,gj , (m : n)) Δ=
[
v1,(m:n); . . . ;vN−1,(m:n);gj,(m:n)

]
∈ F

N×(n−m+1)
2 . (36b)

It can be seen that M′(u,gj , (m : n)) and M′(v,gj , (m :
n)) represent the coefficient sub-matrices of (26) correspond-
ing to the message bits A(m:n) and B(m:n) respectively.

The delivery strategies for different demands are as follows.

• (θ1, θ2) = (1, 2): Let g1,(1:N−1) and g2,(N :2N−2) be
chosen randomly and uniformly i.i.d. from Y ′

N . Also, let
M′(u,g1, (N : 2N − 2)) and M′(v,g2, (1 : N − 1))
be two independent random permutations of the rows of
Y′

N . It can be easily seen that the full-rank condition
of (27) is satisfied, guaranteeing the decodability.

• (θ1, θ2) = (1, 1): Let g2,(N :2N−2) and g2,(1:N−1) be
chosen randomly and uniformly i.i.d. from Y ′

N . Also, let
M′(u,g1, (N : 2N − 2)) and M′(u,g1, (1 : N − 1)) be
chosen as two independent random permutations of the
rows of Y′

N .
• (θ1, θ2) = (2, 1): Let g1,(N :2N−2) and g2,(1:N−1) be

chosen randomly and uniformly i.i.d. from Y ′
N . Also, let

M′(u,g1, (1 : N − 1)) and M′(v,g2, (N : 2N − 2)) be
chosen as two independent random permutations of the
rows of Y′

N .

• (θ1, θ2) = (2, 2): Let g1,(N :2N−2) and g1,(1:N−1) be
chosen randomly and uniformly i.i.d. from Y ′

N . Also, let
M′(v,g2, (1 : N − 1)) and M′(v,g2, (N : 2N − 2)) be
chosen as two independent random permutations of the
rows of Y′

N .

Correctness: Decodability is straightforward since the ran-
domized specifications of the linear coefficients guarantee the
corresponding full-rank and alignment conditions.

Privacy: The privacy can be proved by a similar argument
to that of (23).

Performance: Since D = N + 1 linear combinations, each
containing one bit, are downloaded in total, the achieved load
is R = N+1

2N−1 .
The following example is provided to illustrate the above

design idea.
Example 2: (Achievability of (2/3, 1) for N = 2) Con-

sider the same setting as Example 1 where K = Ku = N = 2.
We show the achievability of the memory-load pair (2/3, 1)
which is achieved by uncoded placement.

3) Cache Placement: Each message consists of L = 3
bits, i.e., A = (A1, A2, A3), B = (B1, B2, B3). The cache
placement is Z1 = {A1, B1}, Z2 = {A2, B2}. Therefore,
M = 2/3.

4) Private Delivery: The answers are written as⎡⎢⎢⎣
A

[θ]
1

A
[θ]
2,1

A
[θ]
2,2

⎤⎥⎥⎦ =

⎡⎣u1 v1

g1 03

03 g2

⎤⎦[
AT

(1:3)

BT
(1:3)

]

=

⎡⎣u1,1 u1,2 1 v1,1 v1,2 1
g1,1 g1,2 1 0 0 0
0 0 0 g2,1 g2,2 1

⎤⎦[
AT

(1:3)

BT
(1:3)

]
. (37)

Suppose (θ1, θ2) = (1, 2). For this demand vector, we let
u1,1 = g1,1, v1,2 = g2,2 as shown in (28). Thus (37) becomes⎡⎢⎣A

[θ]
1

A
[θ]
2,1

A
[θ]
2,2

⎤⎥⎦ =

⎡⎣g1,1 u1,2 1 v1,1 g2,2 1
g1,1 g1,2 1 0 0 0
0 0 0 g2,1 g2,2 1

⎤⎦[
AT

(1:3)

BT
(1:3)

]
. (38)

To specify the coefficients, we let g1,1 and g2,2 be cho-
sen randomly and uniformly i.i.d. from {0, 1}. Also, let
[u1,2, g1,2]

T and [v1,1, g2,1]
T be two independent random per-

mutations of [1, 0]T.
Correctness: We first consider user 1 who stores A1, B1

and wants message A. From A
[θ]
2,1 and A1, user 1

obtains g1,2A2 + A3. From A
[θ]
1 − A

[θ]
2,2, user 1 decodes

g1,1A1 + u1,2A2 + A3 + (v1,1 − g2,1)B1, and then obtains
u1,2A2 + A3 by removing the cached bits A1, B1. Since
u1,2 	= g1,2, user 1 can solve A2, A3 from the two independent
linearly combinations g1,2A2+A3 and u1,2A2+A3. Therefore,
user 1 recovers message A. We then consider user 2 who
stores A2, B2 and wants message B. From A

[θ]
2,2 and B2,

user 2 obtains g2,1B1 + B3. From A
[θ]
1 −A

[θ]
2,1 and the cached

bits A2, B2, user 2 obtains v1,1B1 + B3. Since v1,1 	= g2,1,
the two linear combinations g2,1B1 + B3 and v1,1B1 + B3

are independent, from which B1, B3 can be solved by user 2.
Therefore, both users can recover their desired messages.
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Privacy: From the viewpoint of DB 1 whose sent linear
combination is g1,1A1 +u1,2A2 +A3 +v1,1B1 +g2,2B2 +B3,
the coefficients g1,1, u1,2, v1,1, g2,2 appear to be chosen ran-
domly and uniformly i.i.d. from {0, 1} regardless of θ. Thus
the answer of DB 1 is independent of θ. From the viewpoint of
DB 2 whose sent linear combinations are g1,1A1+g1,2A2+A3

and g2,1B1 + g2,2B2 +B3, the coefficients g1,1, g1,2, g2,1, g2,2

also appear to be chosen randomly and uniformly i.i.d. from
{0, 1}, implying the independence between the DB 2 answer
and θ. Therefore, the delivery scheme is private from both
users’ viewpoint.

Performance: The achieved load is R = 1 for M = 2/3. ♦

V. PROOF OF THEOREM 2: THE PRODUCT DESIGN

In this section, we present a general achievable scheme for
arbitrary K, Ku and N , which we call Product Design (PD).
PD is inspired by both MAN coded caching [6] and the
SJ PIR scheme [5] and enjoys combined coding gain.6 By
comparing with the already established converse bounds for
coded caching [33], we show that the PD is optimal within a
factor 8 in general as implied by Theorem 2. We first provide
an example to highlight the design idea of PD and then present
the general achievable schemes.

A. An Example

Example 3: Consider the cache-aided MuPIR problem with
K = 3 messages, Ku = 2 users and N = 2 DBs. Let A, B
and C denote the three messages. By Theorem 2, the pair
(1, 7/8) is achievable.

1) Cache Placement: Each message is split into two pack-
ets, i.e., A = (A1, A2) where Ai represents the i-the packet
which consists of 8 bits. Therefore, L = 16 bits. Similarly,
B = (B1, B2), C = (C1, C2). User u ∈ [2] then stores one
packet of each message, i.e., the cache is Zu = {Au, Bu, Cu},
satisfying the memory constraint M = 3/2.

2) Private Delivery: Let [A1
i , . . . , A

8
i ], [B1

i , . . . , B8
i ]

and [C1
i , . . . , C8

i ] represent three independent random
permutations of the 8 bits of the packet Ai, Bi and
Ci, ∀i ∈ [2] respectively. These permutations are known
to the users but not to the DBs. Suppose θ = (1, 2). Let
A

[θ1]
n (A2, B2, C2) represent the answer of DB n ∈ [2] in

the SJ PIR scheme where the corresponding message library
is (First messages, second message, third messages) =
(A2, B2, C2) and the user demand is θ1 (i.e., the user
demands A2). Other notations follow similarly. Then
the answer of DB n is constructed as A

[θ]
n =

A
[θ1]
n (A2, B2, C2) + A

[θ2]
n (A1, B1, C1), ∀n ∈ [2], which

is shown in Table I. For other demands, the delivery phase
proceeds similarly. We next prove that the above delivery
scheme is both correct and private.

Correctness: For θ = (1, 2), user 1 needs A2 since A1 is
already in the cache. Similarly, user 2 needs B1. For user 1,
since A1, B1 and C1 are stored in Z1, the interference of
A

[θ2]
n (A1, B1, C1) can be eliminated from A

[θ]
n , ∀n ∈ [2]. Then

6Note that, any capacity-achieving PIR scheme for the original single-user
non-colluding database PIR problem can be used to combine with the linear
caching code to produce a corresponding product design.

TABLE I

ANSWER OF EXAMPLE 3

user 1 obtains A
[θ1]
1 (A2, B2, C2) and A

[θ1]
2 (A2, B2, C2), from

which A2 can be decoded as in the SJ scheme. Similarly,
by eliminating A2, B2 and C2 from the answers, user 2 can
decode B1. Therefore, both users can recover their desired
messages.

Privacy: We show that the delivery scheme is private from
DB 1’s viewpoint. First, by the privacy of the SJ scheme,
DB 1 can neither determine which of the packets A2, B2

and C2 is requested by user 1, nor determine which of
the packets A1, B1 and C1 is requested by user 2. Second,
note that random permutations that are applied to the set
of packets {A1, B1, C1} and {Z2, B2, C2} are independent.
These two aspects guarantee the privacy of θ with respect to
DB 1. By symmetry, the scheme is also private from DB 1’s
viewpoint.

Performance: Since D = 14 bits are downloaded in total,
the achieved load is R = 7/8. ♦

B. General Achievable Scheme

For general K, Ku and N , we assume that t = KuM
K ∈

[1 : Ku]. Each message is assumed to have L =
(
Ku
t

)
NK

bits. The cache placement and delivery phases are described
as follows.

1) Cache Placement: The MAN cache placement is applied
over the message packets. In particular, each message Wk

is split into
(
Ku
t

)
disjoint and equal-sized packets, i.e.,

Wk
Δ=

{
Wk,T : T ⊆ [Ku], |T | = t

}
, ∀k ∈ [K]. Therefore,

each packet consists of L

(Ku
t ) = NK bits. User u then stores

all the packets Wk,T such that u ∈ T , i.e.,

Zu = {Wk,T : T ⊆ [Ku], |T | = t, u ∈ T , ∀k ∈ [K]} , (39)

for each u ∈ [Ku]. Therefore, each user stores KL
(Ku−1

t−1 )
(Ku

t ) =
ML bits, satisfying the memory size constraint.

2) Private Delivery: Suppose the user demands are
θ = (θ1, . . . , θKu). We first construct

(
Ku
t+1

)
different coded

messages{
X

[θ]
S

Δ=
(
A

[θ]
1,S , A

[θ]
2,S , . . . , A

[θ]
N,S

)
: S ⊆ [Ku], |S| = t + 1

}
,

(40)

each of which being useful to a subset of t+1 users in S. The
n-th component A

[θ]
n,S of X

[θ]
S represents the answer from DB

n. For each S, the components of the coded message X
[θ]
S are

constructed as

A
[θ]
n,S =

∑
u∈S

A[θu]
n

(
W1:K,S\{u}

)
, ∀n ∈ [N ], (41)
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where W1:K,S\{u}
Δ=

(
W1,S\{u}, . . . , WK,S\{u}

)
. The term

A
[θu]
n (W1:K,S\{u}) in the summation of (41) represents the

answer from DB n in the SJ scheme for the single-user
PIR problem when the messages are (First message, second
message, . . ., K-th message) =

(
W1,S\{u}, . . . , WK,S\{u}

)
and user u demands Wθu,S\{u}. To preserve demand privacy,
the users employ a random and uniform i.i.d. permutation
(not known to the DBs) of the NK bits of each packet
Wθu,S\{u}. For different coded messages X

[θ]
S , the set of the

random bit permutations of the corresponding packets are also
independent from each other. Moreover, the ordering of the
randomly-permuted message bits in the query to the DBs is
preserved as in the SJ scheme in the summation of (41). Next
we prove that the proposed PD is both correct and private.

Correctness: We show that for any user u ∈ [Ku],
it can correctly recover its desired message Wθu

from all the answers received. Since the packets
{Wk,T : |T | = t, u ∈ T , ∀k ∈ [K]} are already cached
by user u, it needs to recover the packets {Wθu,T :
|T | = t, u /∈ T }. For each n ∈ [N ],S ⊆ [Ku] such that
|S| = t + 1, u ∈ S, we can write (41) as

A
[θ]
n,S =A[θu]

n

(
W1:K,S\{u}

)
+

∑
u�∈S\{u}

A[θu� ]
n

(
W1:K,S\{u�}

)
,

(42)

from which user u can decode the desired term
A

[θu]
n

(
W1:K,S\{u}

)
since all the packets {W1:K,S\{u�} :

u′ 	= u} are cached by user u because u ∈ S\{u′}.
Therefore, user u obtains a set of desired answers{
A

[θu]
n

(
W1:K,S\{u}

)
: ∀n ∈ [N ]

}
from which the desire

packet Wθu,S\{u} can be decoded due to the decodability
of the SJ scheme. Going through all different S, user u can
decode all the

(
Ku−1

t

)
desired packets. As a result, user u

can correctly recover its desired message Wθu .
Privacy: It can be seen that each A

[θ]
n,S , ∀n ∈ [N ] of

the coded message X
[θ]
S is independent of the demands

of the users in S and that of the users in [Ku]\S from
the viewpoint of each DB. The reason is explained as
follows. For any user u ∈ S, the first term in (42),
i.e., A

[θu]
n

(
W1:K,S\{u}

)
, ∀n ∈ [N ] is independent of θu

by the privacy of the SJ scheme. Also, each term in the
summation in (42) is independent of θu because for each
A

[θu� ]
n

(
W1:K,S\{u�}

)
, a set of random and independent per-

mutations are employed to the bits of the set of packets
{Wk,S\{u�} : ∀k ∈ [K]}. Therefore, A

[θ]
n,S is independent

of the demands of the users in S. Moreover, for S where
u /∈ S, due to the employment of the random and independent
permutations, A[θ]

n,S is independent of the demands of the users

in [Ku]\S. As a result, A
[θ]
n,S is independent of θ from DB n’s

viewpoint for any S ⊆ [Ku], |S| = t+1, which completes the
proof of privacy.

Performance: By the SJ PIR scheme, each X
[θ]
S

has
(
1 + · · · + 1

NK−1

)
NK bits. Therefore, D =

(
Ku
t+1

)(
1 + · · · + 1

NK−1

)
NK . As a result, the achieved load is

R̂(M) = Ku−t
t+1

(
1 + · · · + 1

NK−1

)
.

VI. DISCUSSION: MUPIR WITH DISTINCT DEMANDS

In this section, we consider an interesting scenario where
the users have distinct demands. Recall that R�

d denotes the
minimum load. We obtain the following theorem.

Theorem 3: For the cache-aided MuPIR problem with
K = 2 messages, Ku = 2 users and N = 2 DBs, where
the users demand distinct messages in a uniform manner,
the optimal memory-load trade-off is characterized as

R�
d(M) =

⎧⎪⎪⎨⎪⎪⎩
2(1 − M), 0 ≤ M ≤ 1/3

5/3 − M, 1/3 ≤ M ≤ 2/3
3(2−M)

4 , 2/3 ≤ M ≤ 2

(43)

Proof: For achievability, we show that the memory-load
pairs (1/3, 4/3) and (2/3, 1) are achievable using the idea
of CIA in Section VI-A. Together with the two trivial pairs
(0, 2) and (2, 0), we obtain four corner points. By the
memory-sharing among these corner points, the load of The-
orem 3 can be achieved. For the converse, when M ≤ 1/3,
the load of Rd(M) = 2(1 − M) coincides with the caching
bound without demand privacy and hence is optimal. When
M ≥ 2/3, the load Rd(M) = 3(2−M)

4 is optimal since it
coincides with the single-user cache-aided PIR bound of [9].
A novel converse bound is derived for the case 1/3 ≤ M ≤
2/3 to show the optimality of R(M) = 5/3 − M when the
users have distinct demands.

Remark 3: It can be seen that the load in (43) is lower than
the one in (1) achieved by the CIA based scheme. Thus the
optimal load under the constraint of distinct demands can be
strictly lower than the optimal load without such constraint
(See Fig. 2a). The reason is that, by removing the cases of
identical demands, the decodability constraint is relaxed and
therefore allows a lower achievable load.

A. Achievability

First, we consider the achievability of the memory-load
pair (1/3, 4/3). Assume that the users have distinct demands,
i.e., θ = (θ1, θ2) ∈ {(1, 2), (2, 1)}.

1) Cache placement: Assume that each message contains
L = 3 bits, i.e., W1 = (a1, a2, a3), W2 = (b1, b2, b3). The
cache placement is Z1 = {a1 + b1}, Z2 = {a2 + b2} and
therefore M = 1/3.

2) Private delivery: Let A1,1 and A1,2 be two different
answers of DB 1, and let A2,1 and A2,2 be two different
answers of DB 2. The answers are

A1,1 = (a3, b1 + b2 + b3),
A1,2 = (a1 + a2 + a3, b3),
A2,1 = (a2 + a3, b2 + b3),
A2,2 = (a1 + a3, b1 + b3). (44)

The delivery scheme is that the users randomly choose
A1,1 or A1,2 to request from DB 1 with equal probabilities.
We then consider the following two cases. When (θ1, θ2) =
(1, 2), if A1,1 is chosen, then go to DB 2 to download A2,1.
Otherwise, if A1,2 is chosen, go to DB 2 to download A2,2.
When (θ1, θ2) = (2, 1), if A1,1 is chosen, then go to DB 2 to
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download A2,2. Otherwise if A1,2 is chosen, go to DB 2 to
download A2,1.

Correctness: One can check that (A1,1, A2,1, Z1) →
W1 (meaning that W1 can be recovered from A1,1, A2,1

and Z1), (A1,1, A2,1, Z2) → W2, (A1,2, A2,2, Z1) →
W1, (A1,2, A2,2, Z2) → W2, (A1,1, A2,2, Z1) → W2,
(A1,1, A2,2, Z2) → W1, (A1,2, A2,1, Z1) → W2, and
(A1,2, A2,1, Z2) → W1. Therefore, both users can decode their
desired messages.

Privacy: Note that the answer from DB 1 is equally likely
to be A1,1 or A1,2, and the answer from DB 2 is also equally
likely to be A2,1 or A2,2. Therefore, we have

P (θ = (1, 2)) = P ((A1,1, A2,1)) + P ((A1,2, A2,2)) = 1/2,

(45a)

P (θ = (2, 1)) = P ((A1,1, A2,2)) + P ((A1,2, A2,1)) = 1/2.

(45b)

such that the privacy constraint (3) is satisfied (for distinct
demands). Since D = 4 bits are downloaded, the achieved
load is Rd = 4/3.

Second, we consider the achievability of (2/3, 1). Let
W1 = (a1, a2, a3), W2 = (b1, b2, b3). The cache placement
is Z1 = {a1, b1}, Z2 = {a2, b2} and the answers are

A1,1 = (a3 + b3 + b1 + b2),
A1,2 = (a3 + b3 + a1 + a2),
A2,1 = (a2 + a3, b2 + b3),
A2,2 = (a1 + a3, b1 + b3). (46)

The delivery scheme is similarly to that of (1/3, 4/3). The
correctness of this scheme can be easily verified. The privacy
argument is similar to the previous case, i.e., from each DB’s
viewpoint, the demand vector θ is equally likely to be (1, 2) or
(2, 1). Since D = 3 bits are downloaded in total, the achieved
load is Rd = 1.

B. Converse

The converse consists of three piece-wise linear segments
corresponding to different cache memory regimes M ∈
[0, 1/3], [1/3, 2/3] and [2/3, 2]. We prove the converse for
each segment respectively. When M ∈ [0, 1/3], the cut-set
bound R ≥ 2(1−M) without privacy constraint is tight. Since
increasing the number of users while preserving the demand
privacy can only possibly increase the load, the single-user
cache-aided PIR converse given in [9] is also a converse for
our considered MuPIR problem. This gives a bound R�

d(M) ≥
3(2−M)

4 for M ∈ [2/3, 2]. When M ∈ [1/3, 2/3], we develop
a new converse Rd(M) ≥ 5/3 − M as follows.

Let A1,1 = A
[(1,2)]
1,1 = A

[(2,1)]
1,1 be an answer of DB 1

and let A2,1 = A
[(1,2)]
2,1 = A

[(2,1)]
2,1 be an answer of DB 2.

It is clear that the message W1 can be recovered from{
A

[(1,2)]
1,1 , A

[(1,2)]
2,1 , Z1

}
while W2 can be recovered from{

A
[(1,2)]
1,1 , A

[(1,2)]
2,1 , Z2

}
for which we use a shorthand notation

as
(
A

[(1,2)]
1,1 , A

[(1,2)]
2,1 , Z1

)
→ W1,

(
A

[(1,2)]
1,1 , A

[(1,2)]
2,1 , Z2

)
→

W2. For privacy with respect to DB 1, there must exist
another answer A

[(2,1)]
2,2 of DB 2 such that the demands

θ = (2, 1) can be satisfied, i.e.,
(
A

[(2,1)]
1,1 , A

[(2,1)]
2,2 , Z1

)
→ W2

and
(
A

[(2,1)]
1,1 , A

[(2,1)]
2,2 , Z2

)
→ W1. Also, for privacy

with respect to DB 2, there must exist another answer
A

[(2,1)]
1,2 of DB 1 such that

(
A

[(2,1)]
1,2 , A

[(2,1)]
2,1 , Z1

)
→ W2

and
(
A

[(2,1)]
1,2 , A

[(2,1)]
2,1 , Z2

)
→ W1. Note that Rd =

H(A1,i)+H(A2,j)
L for any index pair (i, j) ∈ {(1, 1), (1, 2),

(2, 1)} because the load does not depend on the
demands. Denote X

[θ]
i,j,k

Δ=
(
A

[θ]
1,i, A

[θ]
2,j , Zk

)
, ∀(i, j, k) ∈

{(1, 1, 1), (1, 2, 2), (2, 1, 2)}. Then

3Rd(M)L + 3ML

≥ H
(
X

[(1,2)]
1,1,1

)
+ H

(
X

[(2,1)]
2,1,2

)
+ H

(
X

[(2,1)]
1,2,2

)
(a)= 3L + H

(
X

[(1,2)]
1,1,1

∣∣W1

)
+ H

(
X

[(2,1)]
2,1,2

∣∣W1

)
+ H

(
X

[(2,1)]
1,2,2

∣∣W1

)
(b)
≥ 3L + H

(
X

[(1,2)]
1,1,1

∣∣W1

)
+ H(Z2|W1)

+ H
(
A

[(2,1)]
2,1

∣∣W1, Z2

)
+ H

(
X

[(2,1)]
1,2,2

∣∣W1

)
≥ 3L + H

(
X

[(1,2)]
1,1,1 , Z2

∣∣W1

)
+ H

(
A

[(2,1)]
2,1

∣∣W1, Z2

)
+ H

(
X

[(2,1)]
1,2,2

∣∣W1

)
(c)= 4L + H

(
A

[(2,1)]
2,1

∣∣W1, Z2

)
+ H

(
X

[(2,1)]
1,2,2

∣∣W1

)
≥ 4L + H

(
A

[(2,1)]
2,1

∣∣W1, Z2

)
+ H

(
A

[(2,1)]
1,1

∣∣W1, Z2

)
+ H

(
Z2|W1

)
≥ 4L + H

(
A

[(2,1)]
1,1 , A

[(2,1)]
2,1 |W1, Z2

)
+ H(Z2|W1)

= 4L + H
(
A

[(2,1)]
1,1 , A

[(2,1)]
2,1 , Z2|W1

)
= 4L + H

(
A

[(1,2)]
1,1 , A

[(1,2)]
2,1 , Z2|W1

)
= 5L (47)

where (a) is due to X
[(1,2)]
1,1,1 → W1, X

[(2,1)]
2,1,2 → W1

and X
[(2,1)]
1,2,2 → W1; In (b) we used the chain

rule and non-negativity of mutual information,
i.e., H

(
X

[(2,1)]
2,1,2 |W1

)
= H(Z2|W1) + H

(
A

[(2,1)]
2,1 |W1, Z2

)
+

H
(
A

[(2,1)]
1,2 |W1, Z2, A

[(2,1)]
2,1

)
≥ H

(
A

[(2,1)]
2,1 |W1, Z2

)
+

H(Z2|W1); (c) is because both W1 and W2 can be decoded
from X

[(1,2)]
1,1,1 and Z2. (47) implies Rd(M) ≥ 5/3 − M ,

which completes the converse proof of Theorem 3.

VII. CONCLUSION

In this paper, we introduced the problem of cache-aided
multiuser Private Information Retrieval (MuPIR), which gen-
eralizes the single-user cache-aided PIR problem to the case
of multiple users. We provided achievability for the MuPIR
problem with two messages, two users and arbitrary number of
databases utilizing the novel idea of cache-aided Interference
Alignment (CIA). The proposed scheme is shown to be
optimal when the cache placement is uncoded. For general
system parameters, inspired by both single-user PIR and coded
caching, we proposed a product design which is order optimal
within a factor of 8. Moreover, when the user’s demands are
constrained to be distinct, the optimal memory-load trade-
off is characterized for a system with two messages, two
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users and two databases. Due to the strong connection to
both PIR and coded caching, our result on the cache-aided
MuPIR problem provides useful insights into understanding
the role of side information (i.e., cache) in multiuser and
multi-message PIR. Besides the proposed achievability and
converse results, the cache-aided MuPIR problem still remains
open for arbitrary system parameters in terms of the optimal
memory-load trade-off. For example, utilizing the idea of CIA,
we expect more achievability results to come. Also, based on
the well-established converse results of coded caching and
PIR, a systematic approach to characterize the converse is
needed.

APPENDIX A
COMPUTER-AIDED CONVERSE

In this section, we provide a brief description of the open
source toolbox CAI developed by [29], which conducts a
computer-aided investigation on the fundamental limits of
information systems. By utilizing the linear programming (LP)
framework involving the Shannon-type inequalities, the CAI
solver is able to read a problem description file which defines
the problem-specific random variables and their dependency.
It then computes a bound for a given linear combination of
information measures, and provides the value of information
measures at the optimal solution or a proof as a weighted sum
of known information inequalities. This toolbox was shown
rather effective in the problems of distributed storage, coded
caching and PIR [34]–[36].

We next show how to use the CAI prover to prove
the optimality of the proposed CIA based scheme for
K = Ku = 2 and N = 2, 3. Due to limitation of space,
we only present the case for N = 2. For brevity, we use a
different notation from the main paper here.

Sketch of the Computer-Aided Proof

For the K = Ku = N = 2 cache-aided MuPIR problem, let
f denote an answer of DB 1. By demand privacy, there must
exist four different configurations of the DB 2 answer, denoted
by g1, g2, g3 and g4, such that the following decodability
condition can be satisfied: (f, g1, Z1) → W1 (meaning that
W1 can be recovered from f, g1 and Z1), (f, g1, Z2) → W1,
(f, g2, Z1) → W1, (f, g2, Z2) → W2, (f, g3, Z1) → W2,
(f, g3, Z2) → W1, (f, g4, Z1) → W2, and (f, g4, Z2) → W2.
The following privacy condition

H (gi|S) = H (gj|S) , ∀i, j ∈ [4], ∀S ⊆ {Z1, Z2, W1, W2}
(48)

also needs to be satisfied. (48) implies that the four different
configurations of DB 2’s answer have identical entropy after
removing the information S available to DB 2, i.e., these
configurations are indistinguishable from DB 2’s viewpoint.
We also have the symmetry condition H(f) = H(gi),
∀i ∈ [4] and the message and cache memory size con-
straints H(W1) = H(W2) = 1, H(Z1) = H(Z2) = M .
Putting the above constraints as an input file to the CAI
prover with LP objective 5R + 6M , it produces the fol-
lowing points: (0.000000, 2.000000), (0.250000, 1.500000),

(0.666667, 1.000000), (2.000000, 0.000000), which coincides
with the four achievable corner points by the CIA based
scheme. This proves the optimality of the proposed scheme.
For N = 3, a similar approach can be used.
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