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On the Capacity of Locally Decodable Codes
Hua Sun , Member, IEEE, and Syed Ali Jafar , Fellow, IEEE

Abstract— A locally decodable code (LDC) maps K source
symbols, each of size Lw bits, to M coded symbols, each of size
Lx bits, such that each source symbol can be decoded from
N ≤ M coded symbols. A perfectly smooth LDC further
requires that each coded symbol is uniformly accessed when
we decode any one of the messages. The ratio Lw/Lx is
called the symbol rate of an LDC. The highest possible symbol
rate for a class of LDCs is called the capacity of that class.
It is shown that given K, N , the maximum value of capacity
of perfectly smooth LDCs, maximized over all code lengths
M , is C∗ = N

�
1 + 1/N + 1/N 2 + · · · + 1/N K−1

�−1
.

Furthermore, given K, N , the minimum code length M for
which the capacity of a perfectly smooth LDC is C∗ is shown to
be M = N K . Both of these results generalize to a broader
class of LDCs, called universal LDCs. The results are then
translated into the context of PIRmax, i.e., Private Information
Retrieval subject to maximum (rather than average) download
cost metric. It is shown that the minimum upload cost of
capacity achieving PIRmax schemes is (K − 1) log N . The
results also generalize to a variation of the PIR problem, known
as Repudiative Information Retrieval (RIR).

Index Terms— Capacity, locally decodable codes, private infor-
mation retrieval.

I. INTRODUCTION

A LOCALLY decodable code (LDC) with locality
N is a mapping from K source symbols, W =

{W1, W2, · · · , WK}, each of size Lw bits, to M coded sym-
bols, X = {X1, X2, · · · , XM}, each of size Lx bits, such that
for every source symbol Wk, there exists at least one subset
of N coded symbols, S ⊂ X , |S| = N , such that Wk can be
recovered from the elements of S. Such a set S is called a
decoding set for Wk. This basic definition is somewhat trivial,
for example, any systematic code is locally decodable with
locality N = 1. LDCs are useful primarily if they are capable
of withstanding a significant fraction of corrupted coded sym-
bols without losing their local decodability. An (N, δ, 1 − �)
LDC is guaranteed to have locality N and a randomized
decoding algorithm that succeeds with probability at least 1−�
when the fraction of corrupted coded symbols is at most δ.
For this to be meaningful, there must be multiple decoding sets
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Fig. 1. An SLDC with locality N = 2 that encodes K = 3 binary (Lw = 1)
source symbols, W1, W2, W3, into M = 6 binary (Lx = 1) coded symbols,
X1, · · · , X6.

for each source symbol. Let Sk be the set of decoding sets for
source symbol Wk, so that if S ∈ Sk then S ⊂ X , |S| = N ,
and Wk is decodable from S. An LDC is said to be perfectly
smooth if the coded symbols are uniformly distributed across
decoding sets. Specifically, ∀m1, m2 ∈ {1, 2, · · · , M}, and
∀k ∈ {1, 2, · · · , K}, the number of decoding sets in Sk that
contain Xm1 , must be equal to the number of decoding sets
in Sk that contain Xm2 . If there are |Sk| decoding sets for
Wk in a perfectly smooth LDC (SLDC) with locality N ,
then every coded symbol must appear in exactly N |Sk|/M of
them. For such a code, at least one uncorrupted decoding set
survives as long as the fraction of corrupted coded symbols,
δ, is less than 1/N . This is because each corrupted coded
symbol can corrupt at most N |Sk|/M decoding sets in Sk.
If δM coded symbols are corrupted, then the number of
decoding sets that are corrupted is no more than δN |Sk|.
So a decoding algorithm that randomly chooses one of the
decoding sets must be successful with probability at least
1 − δN , provided that δ < 1/N . Therefore, an SLDC is
an (N, δ, 1 − δN) LDC for any δ < 1/N . By the same
token, the minimum distance d of an SLDC, i.e., the minimum
number of coded symbols that must be erased for a loss of
data to occur, is at least M/N . Figure 1 shows an example
of an SLDC with locality N = 2 that encodes K = 3 binary
(Lw = 1) source symbols, W1, W2, W3, into M = 6 binary
(Lx = 1) coded symbols, X1, · · · , X6. The decoding sets
for W1, W2, W3 are comprised of pairs of coded symbols
connected by blue, red, and green edges, respectively. This is
also a (2, δ, 1− 2δ) LDC for δ < 1/2. So if δ = 1/3, and any
two coded symbols Xi, Xj are corrupted, then at least one of
the three decoding sets remains uncorrupted for every source
symbol, and a randomized decoder succeeds with probability
at least 1− δN = 1/3. The minimum distance of this code is
d = M/N = 3 because, e.g., a loss of X1, X5, X6 causes a
loss of data (W1 is lost).
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LDCs were introduced in the year 2000 by Katz and
Trevisan in [1].1 One of the motivations for studying LDCs
comes from distributed storage applications. Coding is used
in distributed storage systems to limit storage and decoding
costs while providing resilience against failures of storage
nodes and efficient repair when such failures occur. LDCs
are especially effective for reducing the decoding cost in
commonly encountered scenarios where multiple datasets
are jointly encoded and only one of them needs to be
retrieved. In particular, smoothness of LDCs is a desirable
feature for distributed storage because it minimizes risk by
spreading it evenly across storage nodes. Remarkably, LDCs
play even more important roles in complexity theory [2],
[3, Chapters 17, 18], data structures [4], [5], fault tolerant
computation [6], multiparty computation [7] and private infor-
mation retrieval (PIR) [8]–[10]. As such, understanding the
fundamental limits of LDCs (especially the tradeoff between
code length M and locality N ) is recognized as a major open
problem in theoretical computer science [7], whose answer
could have a domino effect on a number of related problems.
For further details on LDCs, we refer to the excellent tutorials
in [11], [12] and references therein.

In this work we view this open problem through the lens
of PIR. In its basic form [8], PIR is the problem of efficiently
retrieving a desired message from a set of K messages
that are replicated across N non-colluding databases, without
disclosing any information about the identity of the desired
message to any individual database. The strong connection
between PIR and LDCs is evident from the example illustrated
in Figure 1. In fact the example is derived from a PIR scheme
with K = 3 messages, W1, W2, W3, and two databases that
store (X1, X2, X3) and (X4, X5, X6), respectively. The user
randomly asks Database 1 for one of X1, X2 or X3, and
asks Database 2 for the other element of the decoding set for
his desired message, which is also uniformly distributed over
X4, X5, X6, thus revealing no information to either database
about which message is being retrieved. The upload cost for
this PIR scheme is a 3-ary symbol per database. Interestingly,
as shown in [13], the capacity of PIR subject to this upload
cost is 1/2, so the scheme shown in Figure 1 is optimal among
all PIR schemes with the same upload constraint.

In particular, this work is motivated by recent capacity
characterizations of PIR with various assumptions on message
sets, storage, and upload costs [13]–[19]. The capacity of
PIR, CPIR(N, K), is the maximum number of bits of desired
message that can be retrieved per bit of total download from
the N databases. Defining Rs = Lw/Lx as the symbol rate of
an LDC, the corresponding notion of capacity, CLDC(M, N, K),
is the maximum symbol rate that is feasible for an LDC given
the locality parameter N , the code length M , and the number
of source symbols K . From this perspective, the fundamental
tradeoff for SLDCs is expressed in terms of the 4 parameters:

1In [1], Katz and Trevisan introduced (N, δ, 1−�) LDCs and smooth LDCs
(which include perfectly smooth LDCs as special cases). It is noted later
in Section 3.2 of [2] that a perfectly smooth LDC produces an (N, δ, 1 −
δN) LDC for every δ < 1/N , and that for constant locality N (the setting
considered in this work) all known constructions of LDCs and PIR schemes
follow from the constructions of perfectly smooth LDCs.

M, N, K, Rs. It is desirable for M, N to take smaller values,
and for K, Rs to take larger values. The rate Rs is a critical
part of this tradeoff. If we consider M, K as independently
chosen natural numbers, then the range of values of N is
between 1 and M , while the range of values of Rs is between
1/K and M/K . At one extreme, N = 1 forces Rs = 1/K .
This is because N = 1 for an SLDC implies that all source
symbols can be decoded from any single coded symbol. At the
other extreme, Rs = M/K forces N = M , because there is no
redundancy, i.e., the total number of bits of all coded symbols
is the same as the total number of bits of all source symbols.

In this paper we explore two particular aspects of the
(M, N, K, Rs) tradeoff.2 The first is the tradeoff between
N, K, Rs for unconstrained M . In other words, we identify
the capacity of an SLDC for arbitrary N, K and unconstrained
code length M . Specifically we show that,

C∗(N, K) � max
M∈N

CLDC(M, N, K)

= N

(
1 +

1
N

+ · · · 1
N2

+ · · · + 1
NK−1

)−1

(1)

The second aspect of the tradeoff that we characterize is
the minimum codeword length M∗ that is needed to achieve
C�(N, K) for arbitrary N, K . Specifically, we show that
M∗ = NK . Remarkably, both results are shown not only for
all SLDCs but also for a broader class of LDCs that we label
universal LDCs (ULDCs). An LDC is universal if every coded
symbol appears in at least one of the decoding sets of every
source symbol. Mathematically, a ULDC is defined by the
property that ∀m ∈ {1, 2, · · · , M}, and ∀k ∈ {1, 2, · · · , K},
there exists some S ∈ Sk such that Xm ∈ S. Clearly,
every SLDC is a ULDC. However, not every ULDC is an
SLDC. For example, the LDC that maps K = 3 binary
source symbols W1, W2, W3 to the M = 4 binary code
symbols W1, W2, W3, W2 + W3 with locality N = 2 and
decoding sets S1 = {{W1, W2}, {W1, W3}, {W1, W2+W3}},
S2 = {{W1, W2}, {W2, W3}, {W3, W2 + W3}} and S3 =
{{W1, W3}, {W2, W3}, {W2, W2 +W3}}, is universal but not
perfectly smooth. While less structured than SLDCs, evidently
ULDCs retain all the structure needed for the two aspects of
the tradeoff that are explored in this work.

For our final result, we apply the new insights from the study
of fundamental limits of LDCs back to the problem of PIR.
Recall that the rate of a PIR scheme is defined as Rp = Lw

ND ,
where Lw is the number of bits of each message, N is the
number of databases, and D is the number of bits downloaded
from each database. For most PIR capacity results [13], [16],
[19], [20] the parameter D may be interpreted either as the
average download per database or as the maximum download
from any database (maximized across all databases and all
queries), without changing the capacity. This is because the
normalized downloads for almost all PIR schemes are either

2Prior work in theoretical computer science literature [1], [2], [11] typically
explores a different regime where Rs is fixed (Rs = 1 is commonly assumed),
and studies the tradeoff between the number of source symbols K and the
number of coded symbols M for various values of locality parameter N
(including scaling of N with K).
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already identical across databases or can be made identical
by time-sharing across different permutations of databases.
Exceptions include [15] which admits only the maximum
download formulation and [14] which allows only the average
download formulation. Reference [15] considers the capacity
of PIR for fixed length messages, and relies on the maximum
download formulation because averages are less meaningful
over the finite horizon. Reference [14] on the other hand con-
siders the minimum upload cost of a capacity achieving PIR
scheme, and allows only the average download formulation
because the PIR scheme is asymmetric and the usual approach
of making the scheme symmetric with time-sharing arguments
does not work (does not preserve the upload cost). When PIR
is viewed in relation to LDCs, the natural interpretation of
D is the maximum download across all databases and all
queries,3 which corresponds to Lx in the corresponding LDC
setting. To make the distinction clear, we refer to PIR with the
maximum download metric as PIRmax, and PIR with the aver-
age download metric as PIRave. Using insights from LDCs,
we determine the minimum upload cost needed to achieve the
capacity of PIRmax. Specifically, we show that the minimum
upload for any capacity achieving PIRmax scheme, linear or
non-linear, is (K − 1) log N bits per database, i.e., the user
must upload a q-ary symbol per database where q is at least
NK−1. Our result complements the result of [14] which shows
that the minimum upload cost for capacity achieving PIRave
schemes is also (K − 1) log N bits per database, although
the optimality in [14] is established only within a restricted
class of decomposable (e.g., linear) schemes. Remarkably,
while the capacity and minimum upload cost characterizations
are identical for PIRmax and PIRave, the mapping between
the corresponding PIR schemes turns out to be highly non-
trivial. Furthermore, just as our results for SLDCs generalize
to ULDCs, by the same token we show that both the capacity
and the minimum upload cost are unaffected if the privacy
constraint is relaxed in the PIRmax problem formulation from
perfect privacy to a weaker deniability condition. Perfect
privacy implies that the query to each database must not reveal
any information about the user’s desired message index. Deni-
ability only implies that the query does not absolutely rule out
any message from being the user’s desired message, i.e., even
if some messages are revealed by the query to be more likely
to be the desired message than others, each message has a
non-zero probability of being the desired message. Information
retrieval under a deniability constraint is called Repudiative
information retrieval (RIR) in [21]. Surprisingly, under the
maximum download formulation, PIRmax and RIRmax have
the same4 capacity, and the same minimum upload cost.

3Equivalently, the size of the download from each database n is fixed at the
same constant value, D, for all queries and all databases, n ∈ {1, 2, · · · , N}.

4Under the average download formulation, the capacity of PIRave is not the
same as the capacity of RIRave . In particular, the capacity of RIRave is trivially
seen to be 1 if the number of databases is N > 1. For example, let (i, j)
be a random permutation of (1, 2) generated privately by the user. The user
downloads his desired message Wθ from Database i. With probability � the
user downloads a randomly chosen undesired message Wθ′ from Database j.
It is easy to verify that the scheme is valid for RIR, and that the rate achieved
under the average download formulation with this scheme is 1/(1+ �) which
approaches 1 as � → 0. If N = 1 then the capacity of RIR is 1/K , same as
PIR, under both average and maximum download formulations.

Notation : For positive integers n1, n2, with n1 ≤ n2,
we use the notation [n1 : n2] to represent the set {n1, n1 +
1, · · · , n2}. For a set A, |A| denotes its cardinality and XA

represents the set {Xi, i ∈ A}. For two random variables
X, Y , the notation X ∼ Y denotes that X and Y are iden-
tically distributed. If X and Y are sets of random variables,
then the conditional entropy H(X | Y ) refers to the joint
entropy of all the random variables in X , conditioned on all
the random variables in Y .

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Locally Decodable Codes (LDC)
Definition 1 (Set of Source Symbols, W): Define W =

{W1, · · · , WK} as a set of K independent source symbols,
each of size Lw bits,

H(W1, · · · , WK) = H(W1) + · · · + H(WK), (2)

Lw = H(W1) = · · · = H(WK). (3)

Definition 2 (Set of Coded Symbols, X ): Define X =
{X1, X2, · · · , XM} as a set of M coded symbols each of
size Lx bits,

Lx = H(X1) = · · · = H(XM ). (4)

Note that Lx and Lw are not necessarily integer values.
For example, if Wi are uniformly random 3-ary symbols,
then Lw = log(3) bits. Furthermore, both Lw and Lx are
allowed to take arbitrarily large values, since it is only their
relative size that matters (see Definition 6). Indeed, in typical
applications, such as distributed storage, each source symbol
may represent a large dataset and each coded symbol may
represent all data stored in one storage node. Measuring the
size of each symbol by its entropy is especially meaningful
for large symbols which can be optimally compressed.

Definition 3 [LDC (C,S[1:K])]: An LDC (C,S[1:K]) with
locality N is comprised of a mapping C from (W1, · · · , WK)
to (X1, · · · , XM ), and K non-empty sets Sk, k ∈ [1 : K],
called decoding supersets. Elements of the decoding superset
Sk are called decoding sets of the source symbol Wk . Each
decoding set of Wk is itself a set S containing N coded
symbols from which Wk can be recovered.

S ∈ Sk ⇒
⎧⎨
⎩

S ⊂ X ,
|S| = N,

H(Wk | S) = 0.
(5)

Definition 3 is useful only as a baseline upon which the
definitions of more interesting types of LDCs can be built. The
most interesting type of LDCs for our purpose are perfectly
smooth LDCs, defined next.

Definition 4 [Perfectly Smooth LDC (SLDC)]: An LDC is
said to be perfectly smooth if for all k ∈ [1 : K], a uniform
choice of a decoding set from Sk implies that each coded
symbol is equally likely to be in the chosen decoding set.
Equivalently, ∀m, m′ ∈ [1 : M ] and ∀k ∈ [1 : K],

|{S | S ∈ Sk, Xm ∈ S}| = |{S | S ∈ Sk, Xm′ ∈ S}|
(6)

Thus, in an SLDC, every coded symbol appears in the
same number of decoding sets for any given source symbol.
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While SLDCs are most commonly encountered in various
applications of LDCs, it is useful to also define a broader
class of LDCs, called universal LDCs.

Definition 5 [Universal LDC (ULDC)]: An LDC is said to
be universal if every coded symbol Xm, m ∈ [1 : M ] appears
in at least one of the decoding sets of every source symbol
Wk, k ∈ [1 : K].

∀m∈ [1 : M ], ∀k∈ [1 : K], ∃S ∈ Sk such that Xm ∈ S. (7)

Note that an SLDC is universal by definition.
Definition 6 (Symbol Rate and Capacity): The symbol rate

of an LDC is defined as,

Rs =
Lw

Lx
, (8)

and the supremum of Rs values achievable within a class of
LDCs is called the capacity of that class of LDCs.

For example, it may be of interest to find the capacity of
the class of SLDCs for given values of locality parameter N ,
the number of source symbols K , and the code length M .
Another important quantity of interest is the code rate of an
LDC,

Rc =
KLw

MLx
(9)

which measures the redundancy of the code. Note that
Rc = K

M Rs.

B. Private Information Retrieval (PIRmax)

Instead of repeating the definition of the PIR problem from,
say [13], let us present it through the following definitions that
are analogous to the corresponding notions in the context of
LDCs. As much as possible we will use the same notation for
corresponding quantities to make their relationship obvious.

Definition 7 (Set of Messages, W): Define W = {W1,
W2, · · · , WK} as the set of K independent messages, each
of size Lw bits.

H(W1, · · · , WK) = H(W1) + · · · + H(WK), (10)

Lw = H(W1) = · · · = H(WK). (11)

Definition 8 (Sets of Answers, X , X [1:N ], Upload Cost):
Define sets X [n] = {X [n]

1 , X
[n]
2 , · · · , X

[n]
Mn

} containing all
possible answers from Database n, n ∈ [1 : N ], such that
all answers have the same size, Lx.

Lx = H(X [n]
m ), ∀n ∈ [1 : N ], m ∈ [1 : Mn].

The upload cost for Database n, is defined to be log(Mn) for
all n ∈ [1 : N ]. Furthermore, define

X =
⋃

n∈[1:N ]

X [n] (12)

as the set of all answers.
Note that we assume all answers have the same size. Under

‘maximum download’ formulation of PIR, there is no loss of
generality in this assumption because the rate of a PIR scheme
is limited only by the largest possible download (answer) from
any database for any query. If different possible answers have

different lengths, then smaller answers can be padded with
useless information to match the length of the biggest answer
(maximum download).

Definition 9 [IR (A,S[1:K])]: An N -query Information
Retrieval scheme is comprised of a mapping A from the set of
messages W to the sets of answers X [1:N ], and K non-empty
sets, Sk, k ∈ [1 : K], called decoding supersets. Elements
of the decoding supserset Sk, are called decoding sets for
the message Wk. Each decoding set for Wk is of the form
S = {X [1]

q1 , X
[2]
q2 , · · · , X

[N ]
qN } with qn ∈ [1 : Mn], ∀n ∈ [1 : N ]

such that

S ∈ Sk ⇒ H(Wk | S) = 0, ∀k ∈ [1 : K]. [Correctness]

(13)

The parameter N is recognized as the number of databases.
The elements of the decoding set, X

[n]
qn represent what is

requested by the user from the nth database, i.e., the query
sent to Database n is qn and the answer received from
Database n is X

[n]
qn . If the desired message is Wθ , then a

decoding set is chosen from Sθ . Condition (13) is called the
‘correctness’ condition, because it guarantees that the message
can be decoded correctly from the answers received from all
N databases. Definition 9 is useful only as a baseline for
introducing more interesting forms of information retrieval.
The most interesting for our purpose is perfectly private
information retrieval, or simply PIR.

Definition 10 [Perfectly Private Information Retrieval
(PIRmax)]: A PIR scheme is an N -query Information
Retrieval scheme with a distribution defined on the elements
of each decoding superset (so we have K distributions, one
for each decoding superset), such that for all n ∈ [1 : N ], and
for all k, k′ ∈ [1 : K] the conditional distribution of qn given
S ∈ Sk is identical to the conditional distribution of qn given
S ∈ Sk′ .

Prob(qn = q | S ∈ Sk) = Prob(qn = q | S ∈ Sk′),
∀k, k′ ∈ [1 : K], n ∈ [1 : N ], ∀q ∈ [1 : Mn]. (14)

Equation (14) ensures perfect privacy for the desired mes-
sage index, because the query sent to any database has the
same distribution regardless of the desired message index.
It is useful to also define a broader class of N -query Infor-
mation Retrieval schemes, called Repudiative Information
Retrieval (RIR), which includes PIR as a special case.

Definition 11 [Repudiative Information Retrieval
(RIRmax)]: An RIR scheme is an N -query Information
Retrieval scheme such that every possible answer from every
database appears in at least one of the decoding sets of every
Sk, k ∈ [1 : K].

∀n ∈ [1 : N ], ∀m ∈ [1 : Mn], ∀k ∈ [1 : K],
∃S ∈ Sk such that X [n]

m ∈ S. (15)

Definition 12 (Rate and Capacity): The rate of an N -query
information retrieval scheme is defined as

R =
Lw

NLx
(16)

and the supremum of R values for a class of information
retrieval schemes is called the capacity of that class.
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C. Connection Between ULDCs and RIRmax

It is well known that LDCs and PIR schemes are closely
related [10]. Comparing preceding definitions for LDCs with
locality N and N -query information retrieval, it is evident
that source symbols correspond to messages, coded symbols
correspond to answers, code length corresponds to total upload
cost, SLDCs correspond to PIRmax, the relaxation to ULDCs
correspond to the relaxation to RIRmax, and the decoding sets,
rates and capacity expressions for both settings are similar as
well. However, a closer look also reveals clear differences.
For example, answers are partitioned into X [n], n ∈ [1 : N ],
whereas no such partitioning is invoked for coded symbols.
While both SLDCs and PIRmax impose additional constraints
on the decoding sets, the two constraints are not equivalent.
These distinctions often do not matter much in practice, indeed
most PIRmax schemes produce SLDCs and most constructions
of SLDCs are obtained from PIRmax schemes. Neverthe-
less, the distinctions pose difficulties in translating theoretical
results between the two problems. For our purpose, the precise
connection5 (obvious from the preceding definitions) that
allows us to connect our results across the two settings is
between ULDCs and RIRmax, as stated below.

Observation 1: The set of all answers X from an RIRmax

scheme with message set W , N databases, upload costs
log(M[1:N ]), decoding supersets S[1:K] and rate R, constitutes
a ULDC with set of source symbols W , coded symbols X ,
locality N , code length M =

∑
n∈[1:N ] Mn, decoding super-

sets S[1:K], and symbol rate Rs = NR.
Given the translation from RIRmax to ULDCs, one might

be interested in the other direction, i.e., the translation from
ULDCs to RIRmax, which is also possible, although in general
less efficient. For example, by choosing the sets of answers
X [n], n ∈ [1 : N ], to be each identical to the set of
coded symbols X of a ULDC, an RIRmax scheme is trivially
obtained. This is less efficient because of the expansion by
the factor N , i.e., the value of

∑
n∈[1:N ] Mn for the resulting

RIRmax scheme is N times larger than the code length M of
the ULDC. Note that no such expansion occurs in the reverse
direction. Interestingly, as illustrated in Figure 2 through an
example, an expansion by a factor of N is necessary in some
cases when translating a ULDC into an RIRmax scheme.

Note that since ULDCs and RIRmax are relaxations of
SLDCs and PIRmax, respectively, impossibility results (con-
verse arguments) for ULDCs and RIRmax apply to SLDCs and
PIRmax automatically, while achievable schemes for SLDCs
and PIRmax apply automatically to ULDCs and RIRmax. These
inclusions will be useful to prove our main results, presented
in the next section.

III. MAIN RESULTS

A. Capacity Results

Our first set of results are capacity characterizations. Given
K source symbols, code length M , and locality N , let
CSLDC(N, K, M) and CULDC(N, K, M) denote the capacity for

5This may be viewed as an extension of the corresponding connections
between SLDCs and PIRmax (e.g., see Section 3.2 of [2] and Lemma 7.2 of
[11]).

Fig. 2. A ULDC (also an SLDC) with locality N = 2 that encodes
K = 3 source symbols with Lw = 4 bits each, W1, W2, W3, into M = 6
coded symbols, X1, X2, X3, X4, with Lx = 6 bits each. The decoding
sets for W1, W2, W3 are comprised of pairs of coded symbols connected
by blue, red, and green edges, respectively. It is easy to see that the only
RIRmax scheme that can be constructed from this ULDC is with answer sets
{X1, X2, X3, X4} replicated at the N = 2 databases. Therefore, the total
number of answers is 8, N = 2 times the ULDC length, i.e., we have an
expansion by a factor of N = 2.

the class of SLDCs and ULDCs respectively. Our first result
characterizes the maximum possible capacity of a ULDC given
the locality N and the number of source symbols K. The
maximum is over all possible codeword lengths M .

Theorem 1:

C∗
ULDC(N, K)

�
= max

M∈N

CULDC(N, K, M)

= N
(
1 + 1/N + 1/N2 + · · · + 1/NK−1

)−1
.

(17)

The expression for C∗
ULDC(N, K) is reminiscent of the capac-

ity of PIR [13]. Indeed, since the capacity achieving PIR
schemes in [13] naturally produce SLDCs, and all SLDCs are
also ULDCs, the achievability argument is directly implied.
However, since ULDCs are a more general class of objects
than the LDCs produced by PIR schemes, the converse from
[13] does not apply. Instead, a new combinatorial converse
proof is presented for Theorem 1 in Section IV. As an
immediate corollary, we settle the corresponding question for
SLDCs as well.

Corollary 1.1:

C∗
SLDC(N, K)

�
= max

M∈N

CSLDC(N, K, M)

= N
(
1 + 1/N + 1/N2 + · · · + 1/NK−1

)−1
.

(18)

The achievability argument for Corollary 1.1 follows from
the capacity achieving PIR schemes in [13] (note that Corol-
lary 2.1, to be presented in the next subsection, also contains
a capacity achieving SLDC). The converse follows from
Theorem 1 as SLDCs are special cases of ULDCs.

As another corollary, the capacity of RIRmax is shown to
be the same as the capacity of PIRmax.

Corollary 1.2:

CRIRmax(N, K) =
(
1 + 1/N + 1/N2 + · · · + 1/NK−1

)−1

= CPIRmax(N, K) = CPIRave(N, K). (19)

The achievability for Corollary 1.2 follows because PIRmax

schemes are special cases of RIRmax schemes and capacity
achieving PIRmax schemes are available from [13]. The con-
verse follows from Observation 1 and Theorem 1. That is,
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the rate of any RIRmax scheme must be no higher than
CRIRmax(N, K), otherwise by Observation 1 we will have a
ULDC that has a rate higher than C∗

ULDC(N, K), contradicting
Theorem 1.

B. Optimal Code Length and Upload Cost Results

The next set of results concerns minimum code lengths
and minimum upload costs. We first show that given N, K ,
the minimum code length M of ULDCs for which the capacity
takes its maximum value (maximum over all M ), is NK .

Theorem 2:

min{M | CULDC(N, K, M) = C∗
ULDC(N, K)} = NK . (20)

For the converse, we prove that any capacity achieving
ULDCs must have length M ≥ NK . The proof is presented
in Section V. Since SLDCs are special cases of ULDCs,
the converse also applies to SLDCs. For the achievability,
we provide a construction of a capacity achieving SLDC with
length M = NK . The proof is presented in Section VI. Since
every SLDC is also a ULDC, the achievability applies also to
ULDCs. Thus, we immediately have the following corollary
for SLDCs.

Corollary 2.1:

min{M | CSLDC(N, K, M) = C∗
SLDC(N, K)} = NK . (21)

Corollary 2.2: The minimum upload cost of a capacity
achieving RIRmax scheme with K messages and N databases
is (K − 1) log(N) per database.

Corollary 2.3: The minimum upload cost of a capacity
achieving PIRmax scheme with K messages and N databases
is (K − 1) log(N) per database.

The proofs of Corollaries 2.2 and 2.3 are presented in
Section VII.

It is already known from [13] that the capacity of PIRmax

is the same as the capacity of PIRave. Surprisingly, based on
Corollary 2.3 and the results in [14], it turns out that the
minimum upload cost for PIRmax is also the same as the min-
imum upload cost of PIRave. Note that any capacity achieving,
upload optimal PIRmax scheme is also a capacity achieving,
upload optimal PIRave scheme. However, the reverse direction
is not true. This is evident from Figure 3 which shows capacity
achieving and upload optimal schemes for both settings.

The PIRave scheme shown in Figure 3 uses message size
Lw = 1 bit and achieves an average download of Lw from
Database 1, and 3

4Lw = 3/4 from Database 2, for total
average download of 7

4Lw, so its rate is 4/7, the capacity
for this setting. Note that this is because with probability 1/4
nothing is downloaded from Database 2. However, the maxi-
mum download for this scheme is Lw per database which is
not optimal. Therefore, using the answers from this scheme
directly to produce an LDC would result in an LDC with
Lx = Lw, which is not capacity achieving. On the other
hand, the PIRmax scheme shown in Figure 3 uses message
size Lw = 8 bits, and achieves constant, maximum, and
average download of 7

8Lw = 7 bits from each database, for
a total download of 7

4Lw, so its rate is also 4/7, same as the
capacity for this setting. This is a stronger capacity achieving

Fig. 3. Shown at the top is a capacity achieving, upload optimal PIRave
scheme for K = 3 messages, N = 2 databases from [14]. At the bottom is the
corresponding capacity achieving, upload optimal PIRmax scheme from this
work. The messages are denoted by W1 = a[1:Lw], W2 = b[1:Lw], W3 =
c[1:Lw], in both cases, with Lw = 1 for PIRave and Lw = 8 for PIRmax.
Nodes in the left column are all possible answers from Database 1, and the
nodes in the right column are all possible answers from Database 2. In both
cases, W1 can be retrieved from pairs of nodes connected by blue edges, W2

from red edges and W3 from green edges.

scheme because not only is it capacity achieving and upload
optimal for PIRmax but also it is capacity achieving and upload
optimal for PIRave. Furthermore, the same scheme gives us a
minimum length capacity achieving ULDC, a minimum length
capacity achieving SLDC, as well as a capacity achieving
and upload optimal scheme for RIRmax. Note that the upload
optimal PIRmax scheme cannot be obtained simply from a
time-sharing argument that symmetrizes the upload optimal
PIRave scheme, because the time-sharing argument increases
the upload cost. Instead, this powerful scheme, which gets
even more sophisticated for larger number of messages and
databases, is obtained by a special construction specified in
Section VI.

IV. CONVERSE PROOF OF THEOREM 1

Let us start with a simple yet extremely useful lemma.
Lemma 1: Let S ∈ Sk be an arbitrary decoding set of Wk.

Consider an arbitrary subset of [1 : K], denoted by J , such
that k /∈ J . Then for any element Xs in S, we have∑

Xi∈S

H(Xi|WJ ) ≥ Lw + H(Xs|W{k}∪J ), ∀Xs ∈ S.

(22)
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Fig. 4. The full N -ary tree with depth K containing all coded symbols and decoding sets that appear in the converse proof. The indices of coded symbols
are labelled lexicographically from the root to the leaf nodes (they are not necessarily distinct).

Fig. 5. Shown at the top of the figure is a ULDC with locality N = 2 that codes K = 3 binary source symbols, W1, W2, W3, into M = 4 binary coded
symbols, X1, X2, X3, X4. The decoding sets for W1, W2, W3 are shown as pairs of coded symbols connected by blue, red, and green edges, respectively.
At the bottom of the figure is one possible N -ary tree for this ULDC. Node labels are the Xi values highlighted in yellow.

Proof:∑
Xi∈S

H(Xi|WJ ) ≥ H(S|WJ ) (23)

(a)
= H(S, Wk|WJ ) (24)
(2)
= H(Wk) + H(S|Wk, WJ ) (25)
(3)

≥ Lw + H(Xs|W{k}∪J ) (26)

where (a) follows from the fact that S is a decoding set of
Wk, so from S, we may decode Wk. The last step is due to
the assumption that Xs ∈ S.

Remark: Lemma 1 states that the amount of information
contained in any decoding set of a source symbol is no less
than the entropy of that source symbol plus the entropy of
any coded symbol from the decoding set conditioned on that
source symbol (i.e., interference about other source symbols).

The rest of the proof follows from invoking Lemma 1
for a carefully chosen sequence of decoding sets and a
permutation of the K source symbols. Consider an arbitrary
permutation of [1 : K], π such that (1, 2, · · · , K) is mapped
to (π1, π2, · · · , πK).

The decoding sets and coded symbols involved in the
converse proof are constructed following a full N -ary tree
with depth K (see Figure 4). At depth-k, k ∈ [1 : K], there
are Nk−1 decoding sets (not necessarily distinct) of the source
symbol Wπk

. Specifically, we start from the root, where we
pick an arbitrary coded symbol, Xi1 . Because the LDC is
universal, Xi1 can be used to decode Wπ1 , with another N−1
symbols (denoted as Xi2 , · · · , XiN ). These N symbols form
the depth-1 nodes and this decoding set is denoted as S

[1]
π1 . The

remaining procedure is similar, where for each node at depth-
(k − 1), we find a decoding set of the source symbol Wπk

that contains it and these decoding sets appear at depth-k.
Finally, at depth-K , we have NK−1 decoding sets of the
source symbol WπK . When referring to a node in the full
N -ary tree, we may use either the content (i.e., the entropy
term) or the Xi value (called the node label).

Example 1: To illustrate the construction of the full N -ary
tree, we consider an example of a ULDC as shown in Figure 5.
For one possible construction of the full binary tree, we set the
permutation π as the identity permutation and pick X1 as the
root node. To find the depth-1 nodes, we pick any decoding
set of W1 that contains X1, say {X1, X2} � S

[1]
1 , so that
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the depth-1 nodes are H(X1|W2, W3) and H(X2|W2, W3).
Next, we find the depth-2 nodes. Consider the two depth-1
nodes and for each of them, we pick any decoding set of
W2 that contains the coded symbol in the depth-1 node.
For the first depth-1 node H(X1|W2, W3), we only have 1
decoding set that contains X1 (note that there must exist
one as the LDC is universal), so S

[1]
2 = {X1, X2}. For

the second depth-1 node H(X2|W2, W3), we have 2 decod-
ing sets that contain X2 and we may choose either one,
say we choose {X2, X3} � S

[2]
2 . We have now found

the 4 depth-2 nodes, as H(X1|W3), H(X2|W3), H(X2|W3),
and H(X3|W3), where the first two nodes are from S

[1]
2

and the last two nodes are from S
[2]
2 . Note that the

nodes at the same depth are not necessarily distinct,
e.g., X2 appears twice6 at depth-2. Finally, we con-
sider the depth-K (depth-3) nodes. For each one of the
depth-2 nodes, we find a decoding set of W3 that con-
tains it, e.g., S

[1]
3 = {X1, X3}, S[2]

3 = {X2, X3}, S[3]
3 =

{X2, X4}, S[4]
3 = {X3, X2}, then the depth-3 nodes

are H(X1), H(X3), H(X2), H(X3), H(X2), H(X4), H(X3),
H(X2), where sequentially every 2 nodes form a decoding
set of W3. The construction of the full binary tree is now
complete.

Remark: From this example, it is clear that there are many
different ways to generate the full N -ary tree (e.g., the per-
mutation can be chosen arbitrarily, the root node can be
chosen arbitrarily, and when there are multiple qualified decod-
ing sets, any one may be chosen). Interestingly, the con-
verse proof works for any realization of the full N -ary
tree.

For the converse proof, we start from the NK−1 decoding
sets of the source symbol WπK at depth-K and repeatedly
apply Lemma 1 as we ascend the tree, and stop when we
reach the root.

NKLx =
NK−1∑
n=1

∑
Xi∈S

[n]
πK

H(Xi) (27)

(22)

≥ NK−1Lw+
NK−2∑
n=1

∑
Xi∈S

[n]
πK−1

H(Xi|WπK ) (28)

(22)

≥ NK−1Lw + NK−2Lw

+
NK−3∑
n=1

∑
Xi∈S

[n]
πK−2

H(Xi|WπK−1:K ) (29)

≥ · · · (30)
(22)

≥ NK−1Lw + · · · + NLw

+
∑

Xi∈S
[1]
π1

H(Xi|Wπ2:K ) (31)

6However, for any ULDC to achieve the capacity, the nodes from the same
depth must be distinct. We refer to the proof of Theorem 2 for the justification
of this distinctness property. Therefore, it follows that this ULDC does not
achieve the capacity, verified by noting that the symbol rate is R = Lw/Lx =
1 while the capacity is C∗

ULDC(N = 2, K = 2) = 4/3.

(22)

≥ NK−1Lw + · · · + NLw + Lw

+ H(Xi1 |Wπ1:K ) (32)

≥ (NK−1 + · · · + N + 1)Lw (33)

We obtain the final rate bound by rearranging terms.

Rs =
Lw

Lx
≤ N

(
1 +

1
N

+ · · · + 1
NK−1

)−1

. (34)

V. PROOF OF THEOREM 2: CONVERSE

We show that a capacity achieving ULDC has length at
least NK . For a set K ⊂ [1 : K], denote its complement set
as K (i.e., the set of elements that are not in K). We start by
defining when two coded symbols contain the same informa-
tion about a source symbol set.

Definition 13 (Same Information): We say that two coded
symbols Xi1 , Xi2 contain the same information about
a set of source symbols WK if H(Xi1 |Xi2 , WK) =

H(Xi2 |Xi1 , WK) = 0 and denote it as Xi1

WK
 Xi2 .
By definition, the same information operation is symmetric,

i.e., if Xi1

WK
 Xi2 , then Xi2

WK
 Xi1 . Interestingly, the same
information operation is also transitive. This is proved in the
following lemma.

Lemma 2 (Transitivity of Same Information): If Xi1

WK

Xi2 and Xi2

WK
 Xi3 , then Xi1

WK
 Xi3 .
Proof: We show that H(Xi1 |Xi3 , WK) = 0, and the proof

of H(Xi3 |Xi1 , WK) = 0 follows by symmetry.

H(Xi1 |Xi3 , WK)
= H(Xi1 |Xi2 , Xi3 , WK) + I(Xi1 ; Xi2 |Xi3 , WK) (35)

= H(Xi1 |Xi2 , Xi3 , WK) + H(Xi2 |Xi3 , WK)
− H(Xi2 |Xi1 , Xi3 , WK) (36)

= 0 (37)

where in (36), the first term is zero because Xi1

WK
 Xi2

(i.e., H(Xi1 |Xi2 , WK) = 0) and adding conditioning cannot
increase entropy and the last two terms are zero because

Xi2

WK
 Xi3 .
Similarly, we define when two coded symbols contain

distinct information about a single source symbol.
Definition 14 (Distinct Information): We say that two

coded symbols Xi1 , Xi2 contain distinct information
about the source symbol Wk, k ∈ [1 : K] if

H(Xi1 |Xi2 , Wk) = H(Xi1 |Wk) and denote it as Xi1

Wk⊥ Xi2 .
Next we distill properties of capacity achieving ULDCs.
Lemma 3 (Properties of Capacity Achieving ULDC): For

capacity achieving ULDCs, we have

1) (Non-zero entropy property) ∀i ∈ [1 : M ], ∀k ∈ [1 : K],
H(Xi|Wk) �= 0.

2) For an arbitrary decoding set of Wk, k ∈ [1 : K],
S ∈ Sk,

a) (Same interference property) ∀i1, i2 ∈ S, ∀k′ �= k,

Xi1

Wk′
 Xi2 .
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Fig. 6. The full binary tree with locality N = 2 and K = 3 messages.

b) (Distinct desired information property) ∀i1, i2 ∈ S,

Xi1

Wk⊥ Xi2 .
c) (Independence of coded symbols) ∀i1, i2 ∈ S,

H(Xi1 |Xi2) = H(Xi1).
3) (Incompatibility of same and distinct information) There

do not exist coded symbols Xi1 , Xi2 and source symbol

Wk such that Xi1

Wk
 Xi2 and Xi1

Wk⊥ Xi2 .

The proof of Lemma 3 is deferred to Section V-C.
Remark: The idea of using properties on same interference

and distinct information has appeared previously in [14],
albeit within a restricted class of decomposable (e.g., linear)
schemes. Here we develop them in the information theoretic
sense (that works for any non-linear schemes). Further we
treat same and distinct information as general mathematical
operators and establish the transitivity of same information
and incompatibility of same and distinct information.

Equipped with the definitions and lemmas presented above,
we are now ready for the proof, i.e., any capacity achieving
ULDC must have length M ≥ NK . The proof idea is to
consider a full N -ary tree (refer to Figure 4) that contains
NK coded symbols and show that these coded symbols must
be all distinct (so the length M ≥ NK). To this end, we show
that if any two coded symbols are the same, then the ULDC
cannot achieve the capacity (as some properties established
in Lemma 3 are violated). To illustrate the idea in a simpler
setting, let us start from an example with N = 2, K = 3.

A. Example: N = 2, K = 3

We redraw the full binary tree with depth 3 in Figure 6,
when the permutation is the identity permutation. There
are NK = 8 coded symbols (leaf nodes) involved, i.e.,
Xi1 , · · · , Xi8 , and we show that they are all distinct,
i.e., Xij �= Xil

, ∀j, l ∈ [1 : 8], j �= l. This is proved by
contradiction, i.e., if Xij = Xil

, then the ULDC violates some
property that must be satisfied by capacity achieving ULDCs.

We have 3 cases for the 2 leaf nodes Xij , Xil
.

1) Xij , Xil
are siblings (i.e., Xij , Xil

have the same par-
ent). For example, Xi1 and Xi5 are siblings. Now if
Xi1 = Xi5 , we have H(Xi1 |Xi5) = 0. Noting that
Xi1 , Xi5 form a decoding set of W3, we apply the inde-
pendence property of coded symbols (Property 2.(c)),
and obtain H(Xi1) = H(Xi1 |Xi5) = 0, which con-
tradicts the fact that H(Xi1) = Lx �= 0 (as the code is
capacity achieving). Therefore Xi1 , Xi5 must be distinct.

2) Xij , Xil
are descendants of the same node from depth-1

(i.e., the same depth-1 node is reached from Xij , Xil
by

proceeding from child to parent). For example, the leaf
nodes Xi5 and Xi6 are descendants of the same depth-1
node with label Xi1 . As {Xi1 , Xi5} can be used to
decode W3, we apply the same interference property to
obtain that Xi1 , Xi5 contain the same information about
W2, i.e.,

{Xi1 , Xi5} ∈ S3
Property 2.(a)

=⇒ Xi1

W2
 Xi5 . (38)

Similarly, {Xi3 , Xi6} can be used to decode W3 so that
they contain the same information about W2,

{Xi6 , Xi3} ∈ S3
Property 2.(a)

=⇒ Xi6

W2
 Xi3 . (39)

Now suppose Xi5 = Xi6 . Applying the transitivity of
the same information operation, we have that Xi1 , Xi3

must contain the same information about W2.

Xi1

W2
 Xi5 , Xi5

W2
 Xi3
Lemma 2=⇒ Xi1

W2
 Xi3 . (40)

However, {Xi1 , Xi3} can be used to decode W2,
so from the distinct desired information property (Prop-
erty 2.(b)), they must contain distinct information about
W2.

{Xi1 , Xi3} ∈ S2
Property 2.(b)

=⇒ Xi1

W2⊥ Xi3 . (41)

Finally, we arrive at the contradiction by invoking the
incompatibility property of same and distinct informa-
tion (Property 3).

Xi1

W2
 Xi3 , Xi1

W2⊥ Xi3
Property 3

=⇒ Contradiction. (42)

Therefore we conclude that Xi5 and Xi6 must be dis-
tinct. The proof for other choices of Xij , Xil

is similar.
3) Xij , Xil

are descendants of the same node from depth-0.
For example, the leaf nodes Xi6 and Xi8 are descendants
of the same depth-0 node with label Xi1 . The remaining
proof is similar to the one above, where we trace Xi6

to Xi1 (and Xi8 to Xi2 ) using decoding constraints of
W2, W3 and argue that they must contain the same infor-
mation about W1. Then if Xi6 = Xi8 , Xi1 and Xi2 must
contain the same information about W1, contradicting
the fact that they must contain distinct information about
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W1 (as Xi1 and Xi2 form a decoding set of W1).

{Xi6 , Xi3} ∈ S3
Property 2.(a)

=⇒ Xi6

W1
 Xi3 (43)

{Xi3 , Xi1} ∈ S2
Property 2.(a)

=⇒ Xi3

W1
 Xi1 (44)
Lemma 2=⇒ Xi6

W1
 Xi1 (45)

(Symmetrically) Xi8

W1
 Xi3 (46)

Suppose Xi6 = Xi8
Lemma 2=⇒ Xi1

W1
 Xi3 (47)

{Xi1 , Xi3} ∈ S1
Property 2.(b)

=⇒ Xi1

W1⊥ Xi3 (48)
Property 3

=⇒ Contradiction. (49)

The proof for other choices of Xij , Xil
is similar.

The proof for the 3 cases is now complete. To sum up, any
two coded symbols cannot be the same, i.e., all NK = 8 coded
symbols are all distinct, so the code length for any capacity
achieving ULDC must satisfy M ≥ NK = 8. The converse
proof with N = 2, K = 3 is thus complete.

B. General Proof for Arbitrary N, K

The general proof for arbitrary N, K is a simple generaliza-
tion of that presented in the previous section. Consider a full
N -ary tree with depth K (refer to Figure 4), root node label
Xi1 and permutation π. There are NK coded symbols that
appear as the leaf nodes. We show that they are all distinct.

To set up the proof by contradiction, let us assume there
exist two coded symbols Xj , Xj′ such that Xj = Xj′ .
We have two cases.

1) Xj , Xj′ are siblings. In this case if Xj = Xj′ , then
H(Xj |Xj′) = 0. However, as Xj , Xj′ are siblings, they
belong to a decoding set of WπK . Applying the inde-
pendence property of coded symbols (Property 2.(c)),
we have H(Xj) = H(Xj |Xj′) = 0, which contradicts
the fact that H(Xj) = Lx �= 0 (as the code is capacity
achieving). Therefore Xj , Xj′ must be distinct.

2) Xj , Xj′ are descendants of the same node (denoted as
Xj∗) from depth-k, k ∈ [0 : K − 2]. We find the
path from Xj to Xj∗ (by moving from chid to parent
recursively). The path passes K−k +1 nodes (one each
from depth-k′, k′ ∈ [k : K]).

Xj−Xj1−Xj2 · · · − Xjl
− X

�j − · · · − X
�j − Xj∗. (50)

Note that due to the construction of the full N -ary tree,
the coded symbol in the parent node is always equal
to the coded symbol in the leftmost child node. The
nodes that appear in the path are initially distinct but
after some steps, the node (nodes) that appear in the
path will be equal to X

�j (which might be the same as
Xj∗ if X

�j is the leftmost child of Xj∗). Any two distinct
adjacent nodes in the path belong to a decoding set of
some source symbol Wk′ , k′ ∈ [k+2 : K]. Applying the
same interference property to each such pair of nodes,
we have

Xj

Wk+1
 Xj1 , Xj1

Wk+1
 Xj2 , · · · , Xjl

Wk+1
 X
�j

Lemma 2=⇒ Xj

Wk+1
 X
�j (51)

Symmetrically, we consider the path from Xj′ to Xj∗,

Xj′−Xj′1−Xj′2 · · ·−Xj′
l′
−X

�j′ − · · · − X
�j′−Xj∗. (52)

Similarly, we apply the same interference property to
distinct adjacent nodes in the path as they belong to a
decoding set of some source symbol other than Wk+1.

Xj′
Wk+1
 Xj′1 , Xj′1

Wk+1
 Xj′2 , · · · , Xj′
l′

Wk+1
 X
�j′

Lemma 2=⇒ Xj′
Wk+1
 X

�j′ (53)

Now if Xj = Xj′ , then

Xj

Wk+1
 X
�j , Xj

Wk+1
 X
�j′

Lemma 2=⇒ X
�j

Wk+1
 X
�j′ (54)

However, this contradicts the fact that X
�j , X�j′ belong

to a decoding set of the source symbol Wk+1 (as the
two paths overlap at node Xj∗).

X
�j

Wk+1

⊥ X
�j′ , X�j

Wk+1
 X
�j′

Property 3
=⇒ Contradiction. (55)

Therefore, Xj = Xj∗ cannot hold and we have NK distinct
coded symbols, i.e., M ≥ NK . The proof is thus complete.

Remark: Comparing our minimum length proof of capacity
achieving ULDC (and the upload cost proof of PIRmax) to
the upload cost proof of PIRave [14], we have an additional
non-zero entropy property (Property 1 in Lemma 3) that allows
the proof to work for all non-linear schemes (whereas the
result of [14] is limited to a restricted class of decomposable
schemes).

C. Proof of Lemma 3

Let us prove the properties listed in Lemma 3 one at a time.
1) Proof of Property 1: To set up the proof by contradiction,

let us assume, for some i1 ∈ [1 : M ], k ∈ [1 : K],

H(Xi1 |Wk) = 0. (56)

Consider a full N -ary tree (see Figure 4) with root node
label Xi1 and permutation π such that π1 = k. Thus Wπ2:K =
Wk̄. For a capacity achieving ULDC, all the inequalities from
(28) to (33) must be equalities. Replacing (32) and (33) with
equalities, we have

Lw =
∑

Xi∈S
[1]
π1

H(Xi|Wk) (57)

= H(Xi1 |Wk) + H(Xi2 |Wk) + · · ·
+ H(XiN−1 |Wk) + H(XiN |Wk) (58)

= H(Xi2 |Wk) + · · · + H(XiN |Wk) (59)

where in (59), we used our assumption (56). Because the sum
of N − 1 non-negative terms is equal to Lw, we must have at
least one term, say corresponding to Xi∗, that is not less than
Lw

N−1 .

H(Xi∗|Wk) ≥ Lw

N − 1
. (60)
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Because the code is universal, there exists a decoding set S ∈
Sj of message Wj , j �= k that contains Xi∗.

NLx =
∑

Xi∈S

H(Xi) (61)

(22)

≥ Lw + H(Xi∗ |Wj) (62)

≥ Lw + H(Xi∗ |Wk) (63)

Plugging in the capacity achieving condition, Lx =
C∗

ULDC(N, K)−1Lw, we have

H(Xi∗ |Wk) ≤ Lw(NC∗
ULDC(N, K)−1 − 1) (64)

=
(

1
N

+
1

N2
+ · · · + 1

NK−1

)
Lw (65)

<
1/N

1 − 1/N
Lw =

Lw

N − 1
(66)

But (60) and (66) contradict each other. The contradiction
completes the proof of Property 1.

2) Proof of Property 2: First let us prove (a), that

∀Xi1 , Xi2 ∈ S ∈ Sk and ∀k′ �= k, Xi1

Wk′
 Xi2 . For this
purpose, let us consider a full N -ary tree (see Figure 4) where
the root has label Xi1 , the permutation π satisfies πK = k,
and Xi1 , Xi2 appear at depth-K in decoding set S. Consider
the step from depth-K to depth-(K−1) of the converse proof
(i.e., (28)). As we assume the ULDC achieves the capacity,
the following equality must hold (refer to (26)).∑

Xi∈SπK

H(Xi) =
∑

Xi∈S

H(Xi) (67)

= Lw + H(Xi1 | Wk) (68)

= Lw + H(S | Wk) (69)

In (69) we used (26), which must also be an equality for a
capacity achieving ULDC. From (68) and (69) we must have

H(Xi1 , Xi2 |Wk) = H(Xi1 |Wk) (70)

⇒ H(Xi2 |Xi1 , Wk) = 0 (71)

⇒ H(Xi2 |Xi1 , Wk′ ) = 0, k′ �= k. (72)

By symmetry, we can similarly prove H(Xi1 |Xi2 , Wk′ ) = 0

so that Xi1

Wk′
 Xi2 and we have proved Property 2(a).
To prove Property 2.(b), we consider a full N -ary tree (see

Figure 4) where the root has label Xi1 , the permutation π
satisfies π1 = k (such that π2:K = k), and the label Xi2

appears at depth-1. Consider the step from depth-1 to depth-0
of the converse proof (i.e., (32)). As the ULDC achieves the
capacity, the following equality must hold (refer to (23)).

H(Xi1 |Wk) + H(Xi2 |Wk) = H(Xi1 , Xi2 |Wk) (73)

⇒ H(Xi1 |Xi2 , Wk) = H(Xi1 |Wk) (74)

Therefore we have proved Property 2.(b), that Xi1

Wk⊥ Xi2

holds.
To prove Property 2.(c), we consider a full N -ary tree

(see Figure 4) where the root label is Xi1 , the permutation
π satisfies πK = k, and the label Xi2 appears at depth-K .
Consider the step from depth-K to depth-(K − 1) of the

converse proof (i.e., (28)). As we assume the ULDC achieves
the capacity, the following equality must hold (refer to (23)).

H(Xi1) + H(Xi2) = H(Xi1 , Xi2) (75)

⇒ H(Xi1 |Xi2) = H(Xi1) (76)

Therefore the desired claim is proved.
3) Proof of Property 3:

Xi1

Wk
 Xi2 ⇒ H(Xi1 |Xi2 , Wk) = 0 (77)

Xi1

Wk⊥ Xi2 ⇒ H(Xi1 |Xi2 , Wk)=H(Xi1 |Wk) (78)

⇒ H(Xi1 |Wk) = 0 (79)

which contradicts the non-zero entropy property (Property 1).
So same and distinct information conditions cannot be simul-
taneously satisfied and the proof is complete.

VI. PROOF OF THEOREM 2: ACHIEVABILITY

In this section, we present the construction of a capacity
achieving SLDC with length M = NK . Before proceeding to
the general proof, we first consider two examples.

A. Example 1: N = 2, K = 2

When N = 2, K = 2, the capacity is C∗
ULDC(N = 2, K =

2) = Lw

Lx
= 2(1 + 1

2 )−1 = 4
3 . We present an SLDC with

length 4, where each source symbol is comprised of Lw = 4
bits and each coded symbol has Lx = 3 bits.

Denote W1 = (a1, a2, a3, a4), W2 = (b1, b2, b3, b4), where
ai, bj are i.i.d. uniform bits. The code is as follows.

X1 X2 X3 X4

∅ a1 a1 + b1 b1

a2 ∅ b2 a2 + b2

b3 a3 + b3 a3 ∅
a4 + b4 b4 ∅ a4

(80)

We have 2 decoding sets for each source symbol.

S1 = {{X1, X2}, {X3, X4}} (81)

S2 = {{X1, X4}, {X2, X3}} (82)

Correctness is easy to verify (i.e., from any decoding in Sk,
we can decode Wk). Perfect smoothness is also easily verified,
as each coded symbol appears once and only once in the
decoding sets for any message.

Inspecting the code in (80), we see that each row forms a
feasible sub-code and the rows are some permutations of each
other (note however, this is a highly-structured permutation
that preserves the same upload cost and is particularly distinct
from time-sharing). This is in fact the key idea of our SLDC
and we will further develop it in the following example and
in the general proof.

B. Example 2: N = 3, K = 3

When N = 3, K = 3, the capacity is C∗
ULDC(N = 3, K =

3) = Lw

Lx
= 3(1 + 1

3 + 1
32 )−1 = 27

13 = 54
26 . We present an

SLDC with length 27, where each source symbol is comprised
of Lw = 54 bits and each coded symbol has Lx = 26 bits.
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Each source symbol is divided into 27 sub-source-symbols
and each sub-source-symbol has 2 bits. Denote W1 as the
collection of (a(γ1,γ2,γ3)

1 , a
(γ1,γ2,γ3)
2 ) for all γ1, γ2, γ3, where

γ1, γ2, γ3 ∈ [0 : 2] are indices for sub-source-symbol. Simi-
larly, W2 is the collection of (b(γ1,γ2,γ3)

1 , b
(γ1,γ2,γ3)
2 ) and W3

is the collection of (c(γ1,γ2,γ3)
1 , c

(γ1,γ2,γ3)
2 ). ai, bj, cl are i.i.d.

uniform bits. a
(γ1,γ2,γ3)
0 , b

(γ1,γ2,γ3)
0 , c

(γ1,γ2,γ3)
0 are set to 0.

To simplify the notation, we denote the NK = 27 coded
symbols as Xp1,p2,p3 where pi ∈ [0 : 2], i ∈ [1 : 3]. These
27 coded symbols are divided into 3 groups depending on
the value of p1 + p2 + p3, so that xp1,p2,p3 belongs to Group
p1+p2+p3 (modulo 3), and each group has 9 coded symbols.

Each coded symbol is similarly comprised of 27 sub-
coded-symbols, denoted as X

(γ1,γ2,γ3)
p1,p2,p3 . When there will be no

confusion from the context, we simply denote X
(γ1,γ2,γ3)
p1,p2,p3 as

xp1,p2,p3 . To determine the value of xp1,p2,p3 , we use pk + γk

as the bit sub-script for the (γ1, γ2, γ3) sub-source-symbol
of Wk, k ∈ [1 : 3] and take the sum of all 3 bits,
i.e., xp1,p2,p3 = a

(γ1,γ2,γ3)
p1+γ1

+ b
(γ1,γ2,γ3)
p2+γ2

+ c
(γ1,γ2,γ3)
p3+γ3

. For
example, the symbol denoted as x0,1,2 = aγ1 +b1+γ2 +c2+γ3 ,
is comprised of 27 sub-coded-symbols corresponding to all 27
values of (γ1, γ2, γ3) ∈ [0 : 2]3, such as a1 + b0 + c1 when
(γ1, γ2, γ3) = (1, 2, 2). All these symbols belong to Group 0
because p1 + p2 + p3 = 0 + 1 + 2 = 0 mod 3.

The decoding constraints are as follows (easy to verify from
the table shown at the top of the next page).

From xp1,p2,p3 , xp1+1,p2,p3 , xp1+2,p2,p3 ,

we can decode ap1 , ap1+1, ap1+2. (84)

From xp1,p2,p3 , xp1,p2+1,p3 , xp1,p2+2,p3 ,

we can decode bp2 , bp2+1, bp2+2. (85)

From xp1,p2,p3 , xp1,p2,p3+1, xp1,p2,p3+2,

we can decode cp3 , cp3+1, cp3+2. (86)

That is, if we pick one coded symbol from each group such
that their subscripts only differ in the kth digit, then we
can decode Wk. Further, this claim remains valid for any
realization of (γ1, γ2, γ3). As a result, for each source symbol,
we have 9 decoding sets and each coded symbol appears once
and only once in the decoding sets, leading to correctness and
perfect smoothness.

Finally, we note that each coded symbol contains 26 bits,
although it contains 27 sub-coded-symbols (each sub-
coded-symbol is one equation, thus at most 1 bit). This follows
from the observation that for any p1, p2, p3, there exists one
and only one realization of (γ1, γ2, γ3) such that pi + γi = 0
(modulo 3), ∀i ∈ [1 : 3], X

(γ1,γ2,γ3)
p1,p2,p3 = a0 + b0 + c0 = 0

and nothing needs to be stored. For all other cases, the sub-
coded-symbol is 1 bit. Therefore, Lx = 26 and the SLDC
achieves the capacity.

C. General Proof for Arbitrary N, K

The general proof follows from the ideas presented in pre-
vious sections. For any N, K , the capacity is C∗

ULDC(N, K) =
Lw

Lx
= N(1+ 1

N + · · ·+ 1
NK−1 )−1 = NK(N−1)

NK−1 . We present an
SLDC with length M = NK , where each source symbol is

comprised of Lw = NK(N − 1) bits and each coded symbol
has Lx = NK − 1 bits.

Each source symbol is divided into NK sub-source-symbols
and each sub-source-symbol has N − 1 bits. Define �γ =
(γ1, γ2, · · · , γK).

Wk = (W (0,0,··· ,0)
k , W

(0,0,··· ,1)
k , · · · , W

(N−1,N−1,··· ,N−1)
k ),

∀k ∈ [1 : K]. (87)

W�γ
k = (W�γ

k,0, W
�γ
k,1, W

�γ
k,2, · · · , W�γ

k,N−1),
∀i ∈ [1 : K], ∀γi ∈ [0 : N − 1]. (88)

W�γ
k,0 � 0. (89)

Define �p = (p1, p2, · · · , pK). The NK coded symbols are
denoted as X�p, where i ∈ [1 : K], pi ∈ [0 : N − 1]. These
NK coded symbols are divided into N groups depending on
the value of

∑K
i=1 pi (modulo N ), so that X�p belongs to

Group
∑K

i=1 pi (modulo N ) and each group has NK−1 coded
symbols.

∀n∈ [0 : N−1], Group n=

{
X�p :

K∑
i=1

pi (modulo N ) =n

}
.

(90)

Each coded symbol is similarly comprised of NK sub-
coded-symbols and each sub-coded-symbol is designed as
follows.

X�p = (X(0,0,··· ,0)
�p , X

(0,0,··· ,1)
�p , · · · , X

(N−1,N−1,··· ,N−1)
�p ), ∀�p

(91)

X�γ
�p = W�γ

1,p1+γ1
+ W�γ

2,p2+γ2
+ · · · + W�γ

K,pK+γK
, ∀�γ (92)

For each message, we have NK−1 decoding sets. For given
p1, · · · , pk−1, pk+1, · · · , pK , define p∗k = N − (p1 + · · · +
pk−1 + pk+1 + · · · + pK) (modulo N ). The subscripts below
are understood modulo N .

∀k ∈ [1 : K], ∀i ∈ [1 : k − 1] ∪ [k + 1 : K],
∀pi ∈ [0 : N − 1], (93)

Sk =
⋃

∀pi,i�=k

{
Xp1,··· ,pk−1,p∗

k,pk+1,··· ,pK ,

Xp1,··· ,pk−1,p∗
k+1,pk+1,··· ,pK , · · ·

Xp1,··· ,pk−1,p∗
k+N−1,pk+1,··· ,pK

}
(94)

where each decoding set is comprised of one and only one
coded symbol from each group.

We verify that the code is correct, perfectly smooth and
capacity achieving.

First, to show that the code is correct, we verify that
from any coding set in Sk, we can decode Wk, ∀k ∈ [1 : K].
Consider any realization of p1, · · · , pk−1, pk+1, · · · , pK .
From (92), we consider the N coded symbols and obtain
that ∀�γ,

X�γ
p1,··· ,pk−1,p∗

k
,pk+1,··· ,pK

=
K∑

j=1,j �=k

W�γ
j,pj+γj

+ W�γ
k,p∗

k+γk
(95)

X�γ
p1,··· ,pk−1,p∗

k+1,pk+1,··· ,pK
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Group 0 Group 1 Group 2
x0,0,0 = aγ1 + bγ2 + cγ3 x0,0,1 = aγ1 + bγ2 + c1+γ3 x0,0,2 = aγ1 + bγ2 + c2+γ3

x1,1,1 = a1+γ1 + b1+γ2 + c1+γ3 x0,1,0 = aγ1 + b1+γ2 + cγ3 x0,2,0 = aγ1 + b2+γ2 + cγ3

x2,2,2 = a2+γ1 + b2+γ2 + c2+γ3 x1,0,0 = a1+γ1 + bγ2 + cγ3 x2,0,0 = a2+γ1 + bγ2 + cγ3

x0,1,2 = aγ1 + b1+γ2 + c2+γ3 x0,2,2 = aγ1 + b2+γ2 + c2+γ3 x0,1,1 = aγ1 + b1+γ2 + c1+γ3

x0,2,1 = aγ1 + b2+γ2 + c1+γ3 x2,0,2 = a2+γ1 + bγ2 + c2+γ3 x1,0,1 = a1+γ1 + bγ2 + c1+γ3

x1,0,2 = a1+γ1 + bγ2 + c2+γ3 x2,2,0 = a2+γ1 + b2+γ2 + cγ3 x1,1,0 = a1+γ1 + b1+γ2 + cγ3

x2,0,1 = a2+γ1 + bγ2 + c1+γ3 x1,1,2 = a1+γ1 + b1+γ2 + c2+γ3 x2,2,1 = a2+γ1 + b2+γ2 + c1+γ3

x1,2,0 = a1+γ1 + b2+γ2 + cγ3 x1,2,1 = a1+γ1 + b2+γ2 + c1+γ3 x2,1,2 = a2+γ1 + b1+γ2 + c2+γ3

x2,1,0 = a2+γ1 + b1+γ2 + cγ3 x2,1,1 = a2+γ1 + b1+γ2 + c1+γ3 x1,2,2 = a1+γ1 + b2+γ2 + c2+γ3

(83)

=
K∑

j=1,j �=k

W�γ
j,pj+γj

+ W�γ
k,p∗

k+1+γk
(96)

· · · (97)

X�γ
p1,··· ,pk−1,p∗

k+N−1,pk+1,··· ,pK

=
K∑

j=1,j �=k

W�γ
j,pj+γj

+ W�γ
k,p∗

k+N−1+γk
(98)

Note that the interference about source symbols Wk is
the same in the above N equations and the desired sub-
source-symbol has N − 1 bits. So we can decode all N − 1
desired bits, W�γ

k,1, W
�γ
k,2, · · · , W�γ

k,N−1. Repeating the same
decoding procedure for all �γ, we decode all Lw = NK(N−1)
bits in Wk. Therefore the LDC is correct.

Second, the code is perfectly smooth because from (94),
we note that for any source symbol Wk and for any Group
n ∈ [0 : N − 1], any coded symbol X�p (from Group n)
appears once and only once. Therefore, the definition of
perfect smoothness (refer to Definition 4) is satisfied.

Finally, we prove that the code achieves the capacity. To this
end, we verify that H(X�p) = Lx = NK−1, ∀�p. Note that each
coded symbol contains NK sub-coded-symbols, and there
exists one and only one sub-coded-symbol that is constantly
zero. That is, for any given �p, when

γk = −pk (modulo N ), ∀k ∈ [1 : K], (99)

we have X�γ
�p =

∑K
k=1 W�γ

k,0 = 0 (refer to (92), (89)). The
proof is thus complete.

Remark: One might wonder if our SLDC (and the corre-
sponding upload optimal PIRmax scheme) can be constructed
from the upload optimal PIRave scheme in [14] by symmetriza-
tion (e.g., as described in Section 5 of [14]), as one sub-code
in our scheme is similar to the PIRave scheme in [14]. This
does not work because general symmetrization techniques will
increase the upload proportional to the number of concatena-
tions of sub-codes, while in our PIRmax scheme, the upload
cost of the concatenated code remains the same as that of one
sub-code (i.e., (K − 1) log(N) per database). Therefore, our
code is is not constructed by generic symmetrizations. Instead,
the specific sub-code has a permutation-invariant property that
allows us to shift the symbol indices while retaining the same
decoding structure (refer to (92)).

VII. PROOF OF COROLLARIES 2.2 AND 2.3

For the converse, it suffices to provide the proof for RIRmax,
which automatically implies the converse for PIRmax. The
converse proof for RIRmax is as follows.

To set up the proof by contradiction, suppose on the contrary
that we have a capacity achieving RIRmax scheme such that
the upload cost from some database is strictly less than (K−1)
log(N), i.e., there exists a set of answers X [n] from one
database such that |X [n]| < NK−1. Then by Observation 1,
we have a capacity achieving ULDC such that there exists at
least one group of strictly fewer than NK−1 coded symbols
(this group corresponds to the set of answers X [n] from the
database in PIR) such that any decoding set must contain
one coded symbol from this group (as any decoding set in
PIR must contain one answer from each database, including
the one with answer set X [n]). Note that for any full N -ary
tree (refer to Figure 4), the NK leaf nodes form NK−1

decoding sets. As any one of these NK−1 decoding sets must
contain one coded symbol from X [n] (where |X [n]| < NK−1),
the leaf nodes must have at least two identical coded symbols.
Then from the converse proof of Theorem 2, it follows that
the ULDC cannot achieve capacity and we arrive at the
contradiction.

For the achievability, it suffices to provide the proof for
PIRmax, which automatically implies the achievability for
RIRmax. The achievable scheme for PIRmax is based on the
SLDC from Theorem 2. The SLDC has an N -partite property,
that any decoding set is comprised of one symbol from each
group. Group n, n ∈ [0 : N − 1] maps to answer set X [n+1],
i.e., the coded symbols from Group n, n ∈ [0 : N − 1] of the
SLDC (refer to (90)) form the answers from the (n + 1)th

database in PIRmax. The decoding supersets S[1:K] of PIRmax

are chosen to be the same as the decoding supersets S[1:K] of
the SLDC. Now if the user wishes to retrieve Wk, the user
simply asks for one of the decoding sets for Wk of the SLDC,
uniformly over all NK−1 choices of decoding sets (refer
to (94)). Thus, the user downloads exactly N answers, one
from each database. The correctness and perfect smoothness
of LDC translate to the correctness and privacy of PIRmax

directly.

VIII. DISCUSSION

We introduce the notion of capacity for LDC, and show that
the capacity of ULDCs and SLDCs with K source symbols
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and locality N is C∗ = N(1+1/N+1/N2+· · ·+1/NK−1)−1.
We further show that the minimum length of capacity achiev-
ing ULDCs and SLDCs is NK . The results are translated
into the context of PIRmax and RIRmax, where we show that
the capacity of RIRmax is equal to that of PIRmax, and the
minimum upload cost of both PIRmax and RIRmax is equal to
(K − 1) log N .

In this work, we have focused on the capacity achieving
regime for LDCs. That is, the number of bits in each coded
symbol is equal to 1/C∗ times the number of bits in each
source symbol, Lx = Lw

C∗ = Lw(1−1/NK)
N−1 < Lw

N−1 . In other
words, the size of each coded symbol is (sometimes much)
smaller than the size of each source symbol, a regime that
is rarely studied in classical coding theory or theoretical
computer science. Specifically, when the coded symbol has
the smallest size (capacity achieving), the code length M must
be exponential, i.e., M ≥ NK in order to preserve either
universality or perfect smoothness. It is an interesting avenue
for future work to study other rate regimes. In particular,
the minimum symbol rate for which the code length is
polynomial remains an interesting question.

As a final remark, we note that in the PIRmax problem
formulation of this work, we have defined the max to be over
all queries and all databases, as this formulation is the one
that connects to LDCs and is consistent with most scenarios.
Essentially, we restrict the downloads to be symmetric and
constant over all databases. An alternative formulation could
be defining the max to be only over all queries, e.g., this
formulation was adopted in [15], where the downloads are
constant for one database, but could be asymmetric across the
databases. These two formulations have the same capacity,
but could behave differently in terms of other metrics, such
as message size, upload cost etc. It is an interesting question
to compare these models and identify their similarities and
differences.
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