
7390 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 11, NOVEMBER 2021

On the Tradeoff Between Computation and
Communication Costs for Distributed Linearly
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Abstract— This paper studies the distributed linearly separable
computation problem, which is a generalization of many existing
distributed computing problems such as distributed gradient
coding and distributed linear transform. A master asks N
distributed workers to compute a linearly separable function
of K datasets, which is a set of Kc linear combinations of K
equal-length messages (each message is a function of one dataset).
We assign some datasets to each worker in an uncoded manner,
who then computes the corresponding messages and returns some
function of these messages, such that from the answers of any Nr

out of N workers the master can recover the task function with
high probability. In the literature, the specific case where Kc = 1
or where the computation cost is minimum has been considered.
In this paper, we focus on the general case (i.e., general Kc

and general computation cost) and aim to find the minimum
communication cost. We first propose a novel converse bound
on the communication cost under the constraint of the popular
cyclic assignment (widely considered in the literature), which
assigns the datasets to the workers in a cyclic way. Motivated by
the observation that existing strategies for distributed computing
fall short of achieving the converse bound, we propose a novel
distributed computing scheme for some system parameters. The
proposed computing scheme is optimal for any assignment when
Kc is large and is optimal under the cyclic assignment when
the numbers of workers and datasets are equal or Kc is small.
In addition, it is order optimal within a factor of 2 under the
cyclic assignment for the remaining cases.

Index Terms— Distributed computation, linearly separable
function, communication and computation costs tradeoff.

I. INTRODUCTION

NOWADAYS to cope with the emergence of big data
and the complexity of data mining algorithm, using
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cloud computing infrastructures such as Amazon Web Ser-
vices (AWS) [1], Google Cloud Platform [2], and Microsoft
Azure [3] becomes an efficient and popular solution. While
large scale distributed computing algorithms and simulations
have the potential for achieving unprecedented levels of accu-
racy and providing dramatic insights into complex phenomena,
they are also presenting new challenges. This paper mainly
refers to two important challenges of cloud distributed com-
puting. The first is the relation between the computation and
communication costs. It is critically important to understand
the fundamental tradeoff between computation and communi-
cation costs for large scale distributed computing algorithms.
The second is to tackle the existence of straggler workers
(i.e., machines) in applications, such that it is not necessary to
wait for the computation of slow workers. Coding techniques
have been introduced into the cloud distributed computing
scenarios [4] and have attracted significant attention recently.
The strategy of this paper is to use coding techniques to char-
acterize the tradeoff between computation and communication
costs, while mitigating the straggler effect.

This papers specially considers a distributed linearly separa-
ble computation problem recently formulated in [5]. A master
aims to compute a linearly separable function f on K datasets
(D1, . . . , DK), where

f(D1, . . . , DK)=g
�
f1(D1), . . . , fK(DK)

�
= g(W1, . . . ,WK).

Wk = fk(Dk) for all k ∈ {1, . . . ,K} is the outcome of the
partial function fk(·) applied to dataset Dk and contains L
uniformly i.i.d. symbols on some finite field Fq. We assume
that g(W1, . . . ,WK) represents Kc linear combinations of the
messages W1, . . . ,WK with uniformly i.i.d. coefficients on Fq,
i.e., g(W1, . . . ,WK) can be seen as the matrix product FW,
where F is the coefficient matrix and W = [W1; . . . ;WK].1

The task function is computed by N workers in the following
three phases. During the data assignment phase, we assign
each dataset to a subset of workers, and the number of datasets

1As the matrix multiplication is one of the key building blocks underlying
many data analytics, machine learning algorithms and engineering prob-
lems, the considered model also has potential applications in those areas,
where f1, . . . , fK represent the pretreatment of the datasets. For example,
D1, . . . , DK are the K “input channels” of a Convolutional Neural Net-
work (CNN) stage. Each input channel Dk where k ∈ {1, . . . , K} is filtered
individually by a convolution operation yielding Wk. Then the convolutions
are linearly mixed by the coefficients of g(W1, . . . , WK) producing Kc new
layers in the feature space.
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assigned to each worker is defined as the computation cost.2

During the computing phase, each worker should compute and
send coded messages as functions of the datasets assigned to
it, such that from the answers of any Nr workers (i.e., Nr

represents the recovery threshold), the master can recover the
task function with high probability during the decoding phase.
The communication cost is defined as the number of symbols
which should be received by the master in order to recover
the task function. The objective is to characterize the tradeoff
between the computation-communication costs.

In the literature, some sub-cases of the considered problem
have been considered. When Kc = 1, the considered problem
becomes the distributed gradient coding problem considered
in [17]–[21]. The optimal computation-communication costs
tradeoff was characterized in [20] under the constraint of linear
coding in the computing phase and symmetric transmission
(i.e., the number of symbols transmitted by each worker is the
same). When M = K

N(N−Nr +Kc) and each worker is limited
to send one linear combination of messages, the considered
problem becomes the distributed linear transform problem
in [22]. The “Short-Dot” distributed computing scheme in [22]
offers significant speed-up compared to uncoded computing
techniques. When the computation cost is minimum (equal to
K
N (N − Nr + 1)), the considered problem becomes the one
in [5]; a distributed computing scheme based on linear space
intersection was proposed in [5], which is exactly optimal
when N = K; and is optimal under the constraint of the cyclic
assignment.3

A. Contributions

In this paper, as in [20], we assume that the computation
cost of each worker is K

N (N−Nr+m) where m ∈ {1, . . . ,Nr}.
Our main contributions are as follows.

• For any m ∈ {1, . . . ,Nr}, under the constraint of the
cyclic assignment, we propose an information theoretic
converse bound on the minimum communication cost
R�

cyc.
• On the observation that the existing distributed computing

schemes [5], [20], [21] for the case Kc = 1 or m = 1
cannot be used to achieve the converse bound when Kc >
1 and m > 1, we propose a novel distributed computing
scheme under the constraint that N ≥ m+u−1

u + u(Nr −
m − u + 1) where u :=

�
KcN
K

�
.

2One of the major differences between this problem and the existing
distributed matrix-matrix multiplication problems [6]–[16] is that in the
considered problem we can only assign the datasets in an uncoded manner to
the workers. The main challenge of designing the computing schemes with
uncoded assignment is that in addition to satisfying the decodability constraint,
we should also guarantee that the transmission of each worker is the function
of the assigned datasets only.

3The cyclic assignment was widely used in the existing works on the sub-
problems or related problems of the considered problem such as [5], [17],
[18], [20], [21], [23]. The main advantages of the cyclic assignment are that
it can be used for any case where N divides K regardless of other system
parameters, and its simplicity. The other existing assignments, such as the
repetition assignments in [17], [24] and the caching-like assignment in [5],
can only be used for very limited number of cases. In addition, the cyclic
assignment is independent of the task function; thus if the master has multiple
tasks in different times, we need not assign the datasets in each time.

• Compared to the proposed converse bound, for the con-
sidered problem satisfying N ≥ m+u−1

u +u(Nr−m−u+
1), the proposed computing scheme is exactly optimal
when Kc ∈ {Nr − m + 1,Nr − m + 2, . . . ,K} and is
optimal under the constraint of the cyclic assignment
when K = N or Kc ∈

�
1, . . . , K

N

�
. In addition, it is order

optimal within a factor of 2 under the constraint of the
cyclic assignment for the remaining cases.

B. Paper Organization

The rest of this paper is organized as follows. Section II
introduces the distributed linearly separable computation prob-
lem. Section III provides the main results of this paper and
provide some numerical evaluations. Section IV proves the
proposed converse bound. Section V describes the proposed
distributed computing scheme. Section VI concludes the paper
and some of the proofs are given in the Appendices.

C. Notation Convention

Calligraphic symbols denote sets, bold symbols denote
vectors and matrices, and sans-serif symbols denote system
parameters. We use | · | to represent the cardinality of a set
or the length of a vector; [a : b] := {a, a+ 1, . . . , b} and
[n] := [1 : n]; a! = a × (a − 1) × . . . × 1 represents the
factorial of a; Fq represents a finite field with order q; MT

and M−1 represent the transpose and the inverse of matrix
M, respectively; the matrix [a; b] is written in a Matlab form,
representing [a, b]T; rank(M) represents the rank of matrix
M; 0m×n represents the zero matrix with dimension m× n;
(M)m×n represents that the dimension of matrix M is m×n;
M(S)r represents the sub-matrix of M which is composed of
the rows of M with indices in S (here r represents ‘rows’);
M(S)c represents the sub-matrix of M which is composed
of the columns of M with indices in S (here c represents
‘columns’); det(M) represents the determinant matrix M;
a mod b represents the modulo operation on a with integer
divisor b and in this paper we let (a mod b) ∈ [b] (i.e., we let
a mod b = b if b divides a); we let

�
x
y

�
= 0 if x < 0 or y < 0

or x < y. In this paper, for each set of integers S, we sort
the elements in S in an increasing order and denote the ith

smallest element by S(i), i.e., S(1) < . . . < S(|S|).

II. SYSTEM MODEL

We consider a (K,N,Nr,Kc,m) distributed linearly sepa-
rable computation problem over the canonical master-worker
distributed system, formulated in [5]. The master wants to
compute a linearly separable function on K statistically inde-
pendent datasets D1, . . . , DK,

f(D1, . . . , DK)=g
�
f1(D1), . . . , fK(DK)

�
= g(W1, . . . ,WK),

where we model fk(Dk), k ∈ [K] as the k-th message Wk and
fk(·) is an arbitrary function. We assume that the K messages
are independent and that each message is composed of L
uniformly i.i.d. symbols on a finite field Fq for some large
enough prime-power q, where L is large enough such that any

Authorized licensed use limited to: University of North Texas. Downloaded on November 22,2021 at 16:02:17 UTC from IEEE Xplore.  Restrictions apply. 



7392 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 11, NOVEMBER 2021

sub-message division is possible. As in [5], we assume that
the function g(·) is a linear mapping as follows,

g(W1, . . . ,WK) = F [W1; . . . ;WK] = [F1; . . . ;FKc ],

where F is a matrix known by the master and the workers.
The dimension of F is Kc ×K, with elements uniformly i.i.d.
over Fq. The ith row of F, denoted by fi, is referred to as
the ith demand vector. The jth element of fi is denoted by
fi,j . It can be seen that g(W1, . . . ,WK) contains Kc ≤ K
linear combinations of the K messages, whose coefficients are
uniformly i.i.d. over Fq. In this paper, we assume that K

N is an
integer.4

A distributed computing scheme for our problem contains
three phases, data assignment, computing, and decoding.

A. Data Assignment Phase

Each dataset Dk where k ∈ [K] is assigned to a subset of
N workers in an uncoded manner. Define Zn ⊆ [K] as the
set of datasets assigned to worker n ∈ [N]. The assignment
constraint is that

|Zn| ≤ M :=
K

N
(N − Nr + m) , ∀n ∈ [N],

where M represents the computation cost, and m represents
the computation cost factor.5

The assignment function of worker n is denoted by ϕn,
where

Zn = ϕn(F), ϕn : [Fq]KcK →
�

[K]
≤ M

	
,

and
�

[K]
≤M

�
represents the set of all subsets of [K] of size not

larger than M. In addition, for each dataset Dk where k ∈ [K],
we define Hk as the set of workers to whom dataset Dk is
assigned. For each set of datasets K where K ⊆ [K], we define
HK := ∪k∈[K]Hk as the set of workers to whom there exists
some dataset in K assigned.

B. Computing Phase

Each worker n ∈ [N] first computes the message
Wk = fk(Dk) for each k ∈ Zn. Worker n then computes

Xn = ψn({Wk : k ∈ Zn},F)

where the encoding function ψn is

ψn : [Fq]|Zn|L × [Fq]KcK → [Fq]Tn ,

and Tn represents the length of Xn. Finally, worker n sends
Xn to the master.

C. Decoding Phase

The master only waits for the Nr fastest workers’ answers
to compute g(W1, . . . ,WK). In other words, the computation
scheme can tolerate N− Nr stragglers. Since the master does

4When N does not divide K, as shown in [5, Section V-A], we can simply
add

�
K
N

�
N − K virtual datasets.

5It was proved in [5] that in order to tolerate N−Nr stragglers, the minimum
computation cost is K

N
(N − Nr + 1).

not know a priori which workers are stragglers, the computa-
tion scheme should be designed so that from the answers of
any Nr workers, the master should recover g(W1, . . . ,WK).
More precisely, for any subset of workers A ⊆ [N] where
|A| = Nr, with the definition

XA := {Xn : n ∈ A},
there exists a decoding function φA such that
ĝA = φA

�
XA,F

�
, where the decoding function is

φA : [Fq]
�

n∈A Tn × [Fq]KcK → [Fq]KcL.

The worst-case probability of error is defined as

ε := max
A⊆[N]:|A|=Nr

Pr{ĝA 	= g(W1, . . . ,WK)}.

In addition, we denote the communication cost by,

R := max
A⊆[N]:|A|=Nr



n∈A Tn

L
,

representing the maximum normalized number of symbols
downloaded by the master from any Nr responding workers.
The communication cost R is achievable if there exists a
computation scheme with assignment, encoding, and decoding
functions such that

lim
q→∞ lim

L→∞
ε = 0.

Since the probability of each demand matrix is identical,
the above constraint implies that any achievable computing
scheme should work for most demand matrices with dimension
Kc × K.

The objective is to characterize the optimal tradeoff between
the computation and communication costs (m,R�), i.e., for
each m ∈ [Nr], we aim to find the minimum communication
cost R�.

As shown in [5, Section II], since the elements of the
demand matrix F are uniformly i.i.d. over a large enough
field Fq, the desired task contains Kc linearly independent
combinations of messages with high probability, where each
message contains L uniformly i.i.d. symbols on Fq; thus a
simple cut-set bound argument yields

R� ≥ Kc. (1)

The cyclic assignment was widely used in the existing works
on the distributed computing problems [5], [17]–[21]. For each
dataset Dk where k ∈ [K], we assign Dk to the workers in
Hk where (recall that in this paper we let a mod b = b if b
divides a)

Hk =
�
k mod N, (k − 1) mod N, . . . ,

(k − N + Nr − m + 1) mod N
�
. (2)

Thus the set of datasets assigned to worker n ∈ [N] is

Zn = ∪
p∈[0: K

N−1]

�
(n mod N) + pN, ((n+ 1) mod N) + pN, . . . ,

((n+ N − Nr + m − 1) mod N) + pN
�

(3)

with cardinality K
N (N−Nr + m). For example, if K = N = 4,

Nr = 3 and m = 2, by the cyclic assignment with p = 0

Authorized licensed use limited to: University of North Texas. Downloaded on November 22,2021 at 16:02:17 UTC from IEEE Xplore.  Restrictions apply. 



WAN et al.: ON TRADEOFF BETWEEN COMPUTATION AND COMMUNICATION COSTS 7393

in (3), we have

H1 = {1, 3, 4}, H2 = {1, 2, 4},
H3 = {1, 2, 3}, H4 = {2, 3, 4};
Z1 = {1, 2, 3}, Z2 = {2, 3, 4},
Z3 = {3, 4, 1}, Z4 = {4, 1, 2}.

For each m ∈ [Nr], the minimum communication cost
under the cyclic assignment in (3) is denoted by R�

cyc. Clearly,
we have R�

cyc ≥ R�.
Remark 1: It will be clear that the assumption that the

desired function’s coefficients (i.e., the elements in demand
matrix F) are uniformly i.i.d. over a large enough field, is
needed for the information theoretic converse bounds, and
to prove the decodability of the proposed computing scheme
with vanishing probability of error by the Schwartz-Zippel
lemma [25]–[27].6 As shown in [5, Remark 3], for some
specific demand matrices, the optimal communication costs
can be strictly higher than R�. It is one of our on-going works
to study the arbitrary demand matrices.

In contrast, the assumption that the symbols in each mes-
sage are uniformly i.i.d., is only needed for the information
theoretic converse bounds, while the proposed computing
scheme in this paper works for any arbitrary component
functions fk(Dk) where k ∈ [K]. �

D. Special Cases

The sub-case of the considered problem for Kc = 1 and any
m was studied in [20], [21] and the sub-case for m = 1 and
any Kc was studied in [5].

• Kc = 1. It was proved in [20], [21] that when Kc = 1,
the communication cost Nr

m is optimal under the constraint
of linear coding in the computing phase and symmetric
transmission (i.e., the number of symbols transmitted by
each worker is the same).

• m = 1. The communication cost by the computing
scheme in [5] is NrKc when Kr ≤ K

N ; is KNr
N when K

N ≤
Kc ≤ K

NNr; is Kc when Kc ≥ K
NNr. The communication

cost is exactly optimal when K = N, or when Kc ∈��
K

( N
N−Nr+1)


�
, or when Kc ∈ �KNNr : K

�
. In addition,

it is optimal under the constraint of the cyclic assignment
when N divides K.

III. MAIN RESULTS

A. Novel Converse and Achievable Bounds

We first provide a converse bound under the constraint of
the cyclic assignment, which will be proved in Section IV.

Theorem 1: For the (K,N,Nr,Kc,m) distributed linearly
separable computation problem,

• when Kc ∈ �KN(Nr − m + 1)
�
, by defining u :=

�
KcN
K

�
,

we have

R�
cyc ≥

NrKc

m + u − 1
. (4a)

6The Schwartz-Zippel lemma [25]–[27] shows that the realization of a
multivariate polynomial is not equal to zero with high probability if the
coefficients of this polynomial are not all zero and each variable in the
polynomial is uniformly i.i.d. over a large enough field.

• when Kc ∈
�

K
N (Nr − m + 1) : K

�
, we have

R�
cyc ≥ R� ≥ Kc. (4b)

�
We then introduce the computation-communication costs

tradeoff by the novel computing scheme in the following
theorem.

Theorem 2: For the (K,N,Nr,Kc,m) distributed linearly
separable computation problem where

40 ≥ N ≥ m + u − 1
u

+ u(Nr − m − u + 1), (5)

the computation-communication costs tradeoff (m,Rach) is
achievable, where

• when Kc ∈
�

K
N

�
,

Rach =
KcNr

m
(6a)

• when Kc ∈
�

K
N : K

N (Nr − m + 1)
�
,

Rach =
NrKu

N(m + u − 1)
; (6b)

• when Kc ∈
�

K
N (Nr − m + 1) : K

�
,

Rach = Kc. (6c)

�
Notice that the RHS of the constraint (5)

N ≥ m + u − 1
u

+ u(Nr − m − u + 1), (7)

will be explained in Remark 3 from a viewpoint of linear space
dimension. It can be seen that in the first case of the proposed
computing scheme (i.e., Kc ∈ �KN �), we have u = 1 and thus
the constraint (7) always holds. In the third case of the pro-
posed computing scheme (i.e., Kc ∈ �KN(Nr − m + 1) : K

�
),

we have u ≥ Nr −m+1 and thus the constraint in (7) always
holds.

While proving the decodability of the proposed com-
puting scheme in Theorem 2, we use the Schwartz-Zippel
lemma [25]–[27] in Appendix A. For the non-zero polynomial
condition for the Schwartz-Zippel lemma, we numerically
verify all cases that 40 ≥ N ≥ m+u−1

u + u(Nr − m − u + 1),
and conjecture in the rest of the paper that the condition holds
for any case where N ≥ m+u−1

u + u(Nr − m − u + 1), i.e., in
Theorem 2 we replace the constraint (5) by (7).

In Section V, due to the space limitation, we will only
provide the computing scheme for the second case (6b) (i.e.,
Kc ∈ �KN : K

N(Nr − m + 1)
�
). By the exactly same method

as described in [5, Sections IV-B and IV-C], the computing
schemes for the first and third cases can be obtained by the
direct extensions of the computing scheme for the second case.
More precisely,

• Kc ∈ �
K
N

�
. When Kc = 1, it can be easily shown

(see [5, Section IV-B]) that the (K,N,Nr, 1,m) distrib-
uted linearly separable computation problem is equiva-
lent to the (N,N,Nr, 1,m) distributed linearly separable
computation problem, which needs the communication
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cost Nr
m from (6b). For Kc ∈ �2 : K

N

�
, we can treat the

(K,N,Nr,Kc,m) distributed linearly separable computa-
tion problem as Kc independent (K,N,Nr, 1,m) distrib-
uted linearly separable computation problems; thus the
communication cost is KcNr

m , coinciding with (6a).
• Kc ∈

�
K
N (Nr − m + 1) : K

�
. When Kc = K

N (Nr −m + 1),
from (6b) it can be seen that the communication cost is

NrKu
N(m+u−1) = Ku

N = Kc, coinciding with (6c). When Kc >
K
N(Nr − m + 1), as in [5, Section IV-C], we can divide
each demanded linear combination into

� Kc−1
K
N (Nr−m+1)−1

�
equal-length sub-combinations, each of which has

L

( Kc−1
K
N

(Nr−m+1)−1)
symbols. We then treat the

(K,N,Nr,Kc,m) distributed linearly separable
computation problem as

� Kc
K
N (Nr−m+1)

�
independent�

K,N,Nr,
K
N(Nr − m + 1),m

�
distributed linearly

separable computation sub-problems, where in each
sub-problem we let the master recover K

N(Nr − m + 1)
sub-combinations, with the communication cost

K
N (Nr−m+1)

( Kc−1
K
N

(Nr−m+1)−1)
; thus the total communication cost is

� Kc
K
N (Nr−m+1)

� K
N (Nr−m+1)

( Kc−1
K
N

(Nr−m+1)−1)
= Kc, coinciding with (6c).

By comparing the proposed converse bound in Theorem 1
and the proposed scheme in Theorem 2, we can directly obtain
the following (order) optimality results.

Theorem 3: For the (K,N,Nr,Kc,m) distributed
linearly separable computation problem where
N ≥ m+u−1

u + u(Nr − m − u + 1),

• when K = N, we have

R�
cyc = Rach =

⎧⎨
⎩

NrKc

m + u − 1
, if Kc ∈ [Nr − m + 1];

Kc, if Kc ∈ [Nr − m + 1 : K];

• when Kc ∈
�

K
N

�
, we have

R�
cyc = Rach =

NrKc

m
;

• when Kc ∈
�

K
N + 1 : K

N (Nr − m + 1) − 1
�
, we have

R�
cyc ≥

Kc

K
Nu

Rach ≥ Rach

2
;

• when Kc ∈
�

K
N(Nr − m + 1) : K

�
, we have

R� = R�
cyc = Rach = Kc.

�
In words, for the considered problem satisfying the con-

straint in (7), when Kc ∈ [Nr − m + 1 : K], the pro-
posed computing scheme is exactly optimal; when K = N
or Kc ∈ �

K
N

�
, the proposed computing scheme is opti-

mal under the constraint of the cyclic assignment; when
N divides K and Kc ∈ �

K
N + 1 : K

N (Nr − m + 1) − 1
�
,

the proposed scheme is order optimal within a factor of
K
N u

Kc
≤ 2 under the constraint of the cyclic assignment. Note

that when Kc = 1, the proposed computing scheme achieves
the same communication load as in [20], [21], which was
proved to be optimal under the constraint of linear coding

in the computing phase and symmetric transmission. Instead,
we prove that it is optimal only under the constraint of the
cyclic assignment.

Remark 2: When the elements in F and [W1; . . . ;WK] are
on the field of real numbers, the proposed computing scheme
in Theorem 2 can work with high probability if each element
in F is uniformly i.i.d. over a large enough finite set of
real numbers. For example, real numbers in finite arithmetic
(either fixed points or floating points) can be in a discrete
and large finite set. Note that, the decodability proof of the
proposed computing scheme is based on the Schwartz-Zippel
lemma [25]–[27], while this lemma is valid for any field
if each variable in the multivariate polynomial (i.e., some
element in F or some dummy variable) is uniformly i.i.d.
over a large enough finite set. Furthermore, by a simple
extension, the proposed computing scheme can also work with
high probability if each element in F is uniformly i.i.d. over
an interval of real numbers. This is because for a non-zero
multivariate polynomial with finite degree where the range of
the variables is an interval of real number, the set of roots of
this polynomial has measure 0. �

B. Numerical Evaluations

We end this section by providing some numerical eval-
uations on the proposed converse and achievable bounds.
In Fig. 1, we provide some numerical evaluations on the
proposed converse and achievable bounds. For the sake of
comparison, we introduce a baseline scheme. For the case
where Kc = 1, the computing scheme in [20], [21] needs the
communication cost Nr

m for each m ∈ [N]. Hence, a simple
baseline scheme can be obtained by treating the considered
problem as Kc independent sub-problems, where in each sub-
problem the master recover one of its desired linear combi-
nation. Thus the communication cost for the baseline scheme
is

Rbase = KcNr/m, ∀m ∈ [Nr]. (8)

In Fig. 1a, we consider the distributed linearly sepa-
rable computation problem where K = 20, N = 10,
Nr = 8, and Kc = 8. In this example, the con-
straint in (7) always holds. It can be seen from Fig. 1a
that the proposed computing scheme outperforms the base-
line scheme and coincides with the proposed converse
bound.

In Fig. 1b, we consider the distributed linearly separable
computation problem where K = 20, N = 10, Nr = 7, m = 2.
For each Kc ∈ [20], we plot the communication costs. In this
example, the constraint in (7) also always holds. It can be seen
from Fig. 1b that the proposed computing scheme outperforms
the baseline scheme. The propose scheme coincides with the
proposed converse bound when Kc ≤ K

N = 2, or when Kc

divides K
N , or when Kc ≥ K

N (Nr − m + 1) = 12.
The focus of the paper is on some large enough finite

field, where the proposed computing scheme in Theorem 2
works with high probability. However, in practice the field
size is limited. In Table I, we illustrate the probabilities
that the proposed scheme works on the different finite
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TABLE I

THE PROBABILITIES THAT THE PROPOSED SCHEME WORKS ON DIFFERENT FINITE FIELDS, FOR THE (K, N, Nr, Kc, m)
DISTRIBUTED LINEARLY SEPARABLE COMPUTATION PROBLEM

fields by the Monte Carlo simulation. For each considered
system, we randomly generate 104 demand matrices and
count the number of demand matrices for which the pro-
posed computing can work. In Table Ia we consider that
(K,N,Nr,Kc,m) = (6, 6, 5, 2, 2), and in Table Ib we con-
sider that (K,N,Nr,Kc,m) = (11, 11, 7, 2, 2). Both tables
show that the success probability of the proposed comput-
ing scheme increases as q grows. In addition, it increases
faster in the smaller computing system than in the larger
system.

IV. PROOF OF THEOREM 1

When Kc ∈ �KN(Nr − m + 1) : K
�
, the converse bound in

Theorem 1 is the cut-set converse bound in (1). Hence, in the
following we focus on the case Kc ∈

�
K
N (Nr − m + 1)

�
.

We will use an example to illustrate the main idea.
Example 1: In this example, we have N = K = 5, Nr = 4,

m = 2, and Kc = u = 2.
The number of datasets assigned to each worker is M =

K
N (N − Nr + m) = 3. Each dataset is assigned to 3 workers.
With the cyclic assignment, we assign

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5
D1 D2 D3 D4 D5

D2 D3 D4 D5 D1

D3 D4 D5 D1 D2

We consider the demand matrix F whose dimension is
2 × 5 with elements uniformly i.i.d. over large field Fq. Hence,
the sub-matrix including each Kc = 2 columns is full rank with
high probability.

Notice that in this example the number of stragglers is
N − Nr = 1. We first consider that worker 5 is the strag-
gler; thus the master should recover F[W1; . . . ;W5] from the
answers of workers in A = [4]. In addition, each dataset
is assigned to N − Nr + m = 3 workers. Hence, there
must exist one dataset assigned to all the straggler(s) which
is also assigned to m responding workers. In this example,
all of D1, D2, and D5 belong to such datasets. Now we

select one of them, e.g., D2. Note that D2 is assigned to
workers H2 = {1, 2, 5}. We then consider the next dataset
D(2+1) mod K = D3. The set of workers storing dataset
D3 (denoted by H3) is obtained by right-shifting H2 by one
position, i.e., H3 = {1, 2, 3}. Hence, there is exactly one new
worker in H3 who is not in H2∩A, which is worker 3. So we
have

|(H2 ∪H3) ∩ A| = m + (2 − 1) = 3 = m + u − 1;

in other words, in the set of responding workers A, the number
of workers who can compute W2 or W3 is equal to 3.
In addition, the sub-matrix of F including the columns in
{2, 3} is full rank (with rank Kc = 2). Recall that each
message has L uniformly i.i.d. symbols. Hence, the number
of transmitted symbols by workers in (H2 ∪ H3) ∩ A should
be no less than 2L; thus�

n∈
�
(H2∪H3)∩A

�Tn = T1 + T2 + T3 (9a)

≥ H
�
F[W1; . . . ;W5]|W1,W4,W5

�
≥ KcL = 2L. (9b)

Similarly, considering that worker 4 is the straggler, we have

T5 + T1 + T2 ≥ KcL = 2L. (10)

Considering that worker 3 is the straggler, we have

T4 + T5 + T1 ≥ KcL = 2L. (11)

Considering that worker 2 is the straggler, we have

T3 + T4 + T5 ≥ KcL = 2L. (12)

Considering that worker 1 is the straggler, we have

T2 + T3 + T4 ≥ KcL = 2L. (13)

By summing (9b)-(13), we have

T1 + T2 + T3 + T4 + T5 ≥ 10
3

L,
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Fig. 1. Numerical evaluations for the considered distributed linearly separable
computation problem.

which leads that

R�
cyc ≥ max

A⊆ [5]:|A|=Nr=4



j∈A Tj

L
≥ 8

3
,

as the converse bound in (4a). �
We are now ready to generalize the proposed converse

bound under the constraint of the cyclic assignment in
Example 1. Recall that we consider the case where Kc ∈�

K
N(Nr − m + 1)

�
and that u =

�
KcN
K

�
. The demand matrix F

has the dimension Kc×K with elements uniformly i.i.d. over a
large enough finite field. Hence, the sub-matrix including each
Kc columns is full rank with high probability. By the cyclic
assignment, as shown in (2), each dataset Dk is assigned to
workers Hk =

�
k mod N, (k− 1) mod N, . . . , (k−N + Nr −

m + 1) mod N
�
.

We consider the set of stragglers who are adjacent.
Thus each time we choose one integer n ∈ [N], let
Sn := {n mod N, (n−1) mod N, . . . , (n−N+Nr+1) mod N}
where |Sn| = N − Nr, be the set of stragglers.
The master should recover F[W1; . . . ;WK] from
the answers of workers in [N] \ Sn. From the

cyclic assignment, there are exactly K
N datasets,

denoted by U0 =
�
((n+ m) mod N) + pN : p ∈ �0 : K

N − 1
��

,
which are exclusively assigned to the workers
in

HU0 = Sn ∪ {(n+ 1) mod N, (n+ 2) mod N,

. . . , (n+ m) mod N}
= {(n− N + Nr + 1) mod N, (n− N + Nr + 2) mod N,

. . . , (n+ m) mod N}.
Then for each i ∈ [u − 1], the datasets in Ui =�

((n+ m + i) mod N) + pN : p ∈ �0 : K
N − 1

��
, are exclu-

sively assigned to the workers in

HUi = {(n− N + Nr + i+ 1) mod N, (n− N + Nr + i+ 2)
mod N, . . . , (n+ m + i) mod N}.

It can be seen that there are totally K
Nu datasets in

∪i∈[0:u−1]Ui, which are exclusively assigned to the workers
in

∪i∈[0:u−1]HUi

= {(n− N + Nr + 1) mod N,

(n− N + Nr + 2)mod N, . . . , (n+ m + u − 1) mod N}
= Sn ∪ {(n+ 1) mod N, . . . , (n+ m + u − 1) mod N}.
Note that since u ≤ Nr − m + 1, we have Sn ∩ {(n +

1) mod N, . . . , (n+ m + u− 1) mod N} = ∅. In other words,
the number of responding workers in ∪i∈[0:u−1]HUi is���∪i∈[0:u−1]HUi

� ∩ ([N] \ Sn)
��

= |{(n+ 1) mod N, . . . , (n+ m + u − 1) mod N}|
= m + u − 1.

Since K
Nu ≥ Kc, the sub-matrix of the demand matrix

including the columns in ∪i∈[0:u−1]Ui has a rank equal to
Kc with high probability. Hence, the number of transmit-
ted symbols by workers in {(n + 1) mod N, . . . , (n +
m + u − 1) mod N} should be no less than KcL;
thus �

j∈{(n+1) mod N,...,(n+m+u−1) mod N}
Tj ≥ KcL. (14)

By considering all n ∈ [N] and summing all the inequalities
as in (14), we have

�
j∈[N]

Tj ≥ NKc

m + u − 1
L,

which leads that

R�
cyc ≥

maxA⊆[N]:|A|=Nr



j∈A Tj

L
≥ NrKc

m + u − 1
,

as the converse bound in (4a).

V. PROOF OF (6b)

We focus on the case where Kc ∈ �KN : K
N (Nr − m + 1)

�
.

We first illustrate the main idea in the following
example.
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Example 2: In this example, we have N = K = 6, Nr = 5,
m = 2, and Kc = 2. Since N = K in this example, we have
u = Kc = 2. For the sake of simplicity, while illustrating
the proposed scheme through this example, we assume that
the field is a large enough prime field. It will be proved that
in general this assumption is not necessary in our proposed
scheme. We assume that the demand matrix is

F =
�
f1,1 f1,2 f1,3 f1,4 f1,5 f1,6

f2,1 f2,2 f2,3 f2,4 f2,5 f2,6

�

=
�
1 1 1 1 1 1
0 1 2 3 4 5

�
.

A. Data Assignment Phase

The number of datasets assigned to each worker is
M = K

N(N − Nr + m) = 3. We use the cyclic assignment,
to assign

Worker 1 Worker 2 Worker 3 Worker 4 Worker 5 Worker 6
D1 D2 D3 D4 D5 D6

D2 D3 D4 D5 D6 D1

D3 D4 D5 D6 D1 D2

B. Computing Phase

Since the communication cost is no less than Nr
Kc

m+u−1 =
10
3 from the converse bound (4a), we divide each message
Wk where k ∈ [6] into m + u − 1 = 3 non-overlapping
and equal-length sub-messages, Wk = {Wk,j : j ∈ [3]}.
Hence, the task function becomes (m + u − 1)Kc = 6 linear
combinations of sub-messages. Each worker should send Kc =
2 linear combinations of sub-messages. From the answers of
Nr = 5 workers, the master totally receives NrKc = 10
linear combinations of sub-messages. Hence, we generate
v = 10−6 = 4 virtually demanded linear combinations of sub-
messages; thus the effective demand matrix (i.e., containing
original and virtual demands) is

F′[W1,1; . . . ;W6,1;W1,2; . . . ;W6,3]

where F′ has the dimension NrKc ×K(m + u− 1) = 10× 18,
with the form in (15).

(15)

The transmissions of the 6 workers can be expressed as

S F′ [W1,1; . . . ;W6,1;W1,2; . . . ;W6,3]
= [s1,1; s1,2; s2,1; . . . ; s6,2]

×F′[W1,1; . . . ;W6,1;W1,2; . . . ;W6,3],

where the row vector sn,j represents the jth

transmission vector of worker n; in other words,
sn,jF′[W1,1; . . . ;W6,1;W1,2; . . . ;W6,3] represents the
jth transmitted linear combination by worker n. We can
further expand S as in (16), shown at the bottom of the next
page.

Now the jth transmitted linear combination by worker n can
be expressed as

sn,jd1W1,1 + sn,jd2W2,1

+ · · · + sn,jd6W6,1 + sn,jd7W1,2 + · · · + sn,jd18W6,3,(17)

where di represents the ith column of F′. Recall that Zn ⊆
[K] represents the set of messages which are not assigned to
worker n. Hence, to guarantee that the linear combination
in (17) can be transmitted by worker n, we should have

sn,jdk+(t−1)K =0, ∀n ∈ [6], j ∈ [2], t ∈ [3], k ∈ Zn. (18)

In addition, for each set A ⊆ [6] where |A| = 5, by receiv-
ing the linear combinations transmitted by the workers in A,
the master should recover the desired linear combinations.
Hence, we should have (recalling that A(i) represents the ith

smallest element of A)

[sA(1),1; sA(1),2; sA(2),1; . . . ; sA(5),2] is full rank, (19)

∀A ⊆ [6] where |A| = 5. Our objective is to determine
the elements in S and in F′ such that the constraints in (18)
and (19) are satisfied.

We divide matrix F′ into 3 sub-matrices, F′
1,F′

2,F′
3 each

of which has the dimension 10 × 6, as illustrated in (15).
We also divide matrix S into 4 sub-matrices, S1,S2,S3 each of
which has the dimension 12×2 and S4 with dimension 12×4,
as illustrated in (16). In other words, S1,S2,S3 correspond
to the (m + u− 1)Kc = 6 real demanded linear combinations
of sub-messages, while S4 corresponds to the v = 4 virtual
demanded linear combinations of sub-messages.

The proposed computing scheme in the computing phase
contains three main steps:7

• Step 1: We first choose the values for the elements in S4.
• Step 2: After determining S4, the constraints in (18)

become linear in terms of the remaining variables (i.e.,
the elements in F′

1,F′
2,F′

3,S1,S2,S3). Hence, we can

7Notice that the computing schemes in [20], [21] for the case Kc = 1
and in [5] for the case where m = 1 cannot be used in this example to
achieved the converse bound. The idea of the computing schemes in [20],
[21] is first to randomly determine the elements in S, and then to determine
the coefficients of the virtually demanded linear combinations in F′ in order
to satisfy the constraints in (18). One can check that if we randomly choose all
the elements in S, there does not exist any solution on F′ which satisfies the
constraints in (18), because there will be more linearly independent constraints
than the variables. The idea of the computing scheme in [5] is first to randomly
determine the coefficients of the virtually demanded linear combinations
in F′, and then to determine the elements in S in order to satisfy the
constraints in (18). However, if we randomly determine the coefficients of the
virtually demanded linear combinations in F′, the sub-matrix of F′ including
the columns corresponding to the sub-messages which each worker cannot
compute has the dimension v×(m+u−1)(Nr−m) = 10×9. Hence, the left-
hand side null-space of this sub-matrix only has one linearly independent
vector; thus each worker can only transmit one linearly independent linear
combination of sub-messages, where the coefficients of the unknown sub-
messages are 0.
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obtain the values for these remaining variables by solving
the systems of linear equations.

• Step 3: After determining all the variables, we check
the constraints in (19) such that the proposed scheme
is decodable.

C. Step 1

We choose the values for S4 with the following form,

S4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1,1
1 b1,1

2 b1,1
3 b1,1

4

b1,2
1 b1,2

2 b1,2
3 b1,2

4

b2,1
1 b2,1

2 b2,1
3 b2,1

4

b2,2
1 b2,2

2 b2,2
3 b2,2

4

b3,1
1 b3,1

2 b3,1
3 b3,1

4

b3,2
1 b3,2

2 b3,2
3 b3,2

4

b4,1
1 b4,1

2 b4,1
3 b4,1

4

b4,2
1 b4,2

2 b4,2
3 b4,2

4

b5,1
1 b5,1

2 b5,1
3 b5,1

4

b5,2
1 b5,2

2 b5,2
3 b5,2

4

b6,1
1 b6,1

2 b6,1
3 b6,1

4

b6,2
1 b6,2

2 b6,2
3 b6,2

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ 0 0
0 0 ∗ ∗
∗ ∗ 0 0
0 0 ∗ ∗
∗ ∗ 0 0
0 0 ∗ ∗
∗ ∗ 0 0
0 0 ∗ ∗
∗ ∗ 0 0
0 0 ∗ ∗
∗ ∗ 0 0
0 0 ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 0 0
0 0 2 0
2 2 0 0
0 0 0 2
1 2 0 0
0 0 2 1
0 1 0 0
0 0 1 0
1 0 0 0
0 0 2 1
2 2 0 0
0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

where each ‘∗’ represents a uniform i.i.d. symbol on Fq. More
precisely, for the first linear combination transmitted by each
worker n ∈ [6], we choose bn,1

1 and bn,1
2 uniformly i.i.d.

over Fq, while letting bn,1
3 and bn,1

4 be zero. For the second
linear combination transmitted by each worker n, we choose
bn,2
3 and bn,2

4 uniformly i.i.d. over Fq, while letting bn,2
1 and

bn,2
2 be zero. The above choice on S4 will guarantee that the

constraints in (18) become linearly independent in terms of
the remaining variables to be decided in the next step.8

8Note that we can also choose each element in S4 uniformly i.i.d. over
Fq to find a realization of S4 which leads to these linearly independences.
However, by the Schwartz-Zippel lemma [25]–[27], the probability to obtain
a ‘good’ choice of S4 decreases, since the total degree of the corresponding
polynomial in the Schwartz-Zippel lemma increases.

D. Step 2

Let us focus on the constraints in (18) for t = 1, which
corresponds to the elements in S1 and F′

1.
When (t, j) = (1, 1), the constraints in (18) become

sn,1
1 f1,k + sn,1

2 f2,k + bn,1
1 a1,k + bn,1

2 a2,k

+bn,1
3 a3,k + bn,1

4 a4,k = 0, ∀n ∈ [6], k ∈ Zn,

where f1,k represents the kth element in the first demand
vector, f2,k represents the kth element in the second demand
vector, and the values of bn,1

i where i ∈ [4] have been chosen
in (20). For example, if n = 1, we have the set of datasets
which are not assigned to worker 1 is Z1 = {4, 5, 6}. Hence,
we have the following three constraints

s1,1
1 f1,4 + s1,1

2 f2,4 + b1,1
1 a1,4 + b1,1

2 a2,4 + b1,1
3 a3,4 + b1,1

4 a4,4

= 1s1,1
1 + 3s1,1

2 + 0a1,4 + 2a2,4 = 0,
s1,1
1 f1,5 + s1,1

2 f2,5 + b1,1
1 a1,5 + b1,1

2 a2,5 + b1,1
3 a3,5 + b1,1

4 a4,5

= 1s1,1
1 + 4s1,1

2 + 0a1,5 + 2a2,5 = 0,
s1,1
1 f1,6 + s1,1

2 f2,6 + b1,1
1 a1,6 + b1,1

2 a2,6 + b1,1
3 a3,6 + b1,1

4 a4,6

= 1s1,1
1 + 5s1,1

2 + 0a1,6 + 2a2,6 = 0.

Similarly, if n = 2, with Z2 = {1, 5, 6} we have the
following three constraints

s2,1
1 f1,1 + s2,1

2 f2,1 + b2,1
1 a1,1 + b2,1

2 a2,1 + b2,1
3 a3,1 + b2,1

4 a4,1

= 1s2,1
1 + 0s2,1

2 + 2a1,1 + 2a2,1 = 0,
s2,1
1 f1,5 + s2,1

2 f2,5 + b2,1
1 a1,5 + b2,1

2 a2,5 + b2,1
3 a3,5 + b2,1

4 a4,5

= 1s2,1
1 + 4s2,1

2 + 2a1,5 + 2a2,5 = 0,
s2,1
1 f1,6 + s2,1

2 f2,6 + b2,1
1 a1,6 + b2,1

2 a2,6 + b2,1
3 a3,6 + b2,1

4 a4,6

= 1s2,1
1 + 5s2,1

2 + 2a1,6 + 2a2,6 = 0.

If n = 3, with Z3 = {1, 2, 6} we have the following three
constraints

s3,1
1 f1,1 + s3,1

2 f2,1 + b3,1
1 a1,1 + b3,1

2 a2,1 + b3,1
3 a3,1 + b3,1

4 a4,1

= 1s3,1
1 + 0s3,1

2 + 1a1,1 + 2a2,1 = 0,
s3,1
1 f1,2 + s3,1

2 f2,2 + b3,1
1 a1,2 + b3,1

2 a2,2 + b3,1
3 a3,2 + b3,1

4 a4,2

= 1s3,1
1 + 1s3,1

2 + 1a1,2 + 2a2,2 = 0,
s3,1
1 f1,6 + s3,1

2 f2,6 + b3,1
1 a1,6 + b3,1

2 a2,6 + b3,1
3 a3,6 + b3,1

4 a4,6

= 1s3,1
1 + 5s3,1

2 + 1a1,6 + 2a2,6 = 0.

If n = 4, with Z4 = {1, 2, 3} we have the following three
constraints

s4,1
1 f1,1 + s4,1

2 f2,1 + b4,1
1 a1,1 + b4,1

2 a2,1 + b4,1
3 a3,1 + b4,1

4 a4,1

= 1s4,1
1 + 0s4,1

2 + 0a1,1 + 1a2,1 = 0,

(16)
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s4,1
1 f1,2 + s4,1

2 f2,2 + b4,1
1 a1,2 + b4,1

2 a2,2 + b4,1
3 a3,2 + b4,1

4 a4,2

= 1s4,1
1 + 1s4,1

2 + 0a1,2 + 1a2,2 = 0,
s4,1
1 f1,3 + s4,1

2 f2,3 + b4,1
1 a1,3 + b4,1

2 a2,3 + b4,1
3 a3,3 + b4,1

4 a4,3

= 1s4,1
1 + 2s4,1

2 + 0a1,3 + 1a2,3 = 0.

If n = 5, with Z5 = {2, 3, 4} we have the following three
constraints

s5,1
1 f1,2 + s5,1

2 f2,2 + b5,1
1 a1,2 + b5,1

2 a2,2 + b5,1
3 a3,2 + b5,1

4 a4,2

= 1s5,1
1 + 1s5,1

2 + 1a1,2 + 0a2,2 = 0,
s5,1
1 f1,3 + s5,1

2 f2,3 + b5,1
1 a1,3 + b5,1

2 a2,3 + b5,1
3 a3,3 + b5,1

4 a4,3

= 1s5,1
1 + 2s5,1

2 + 1a1,3 + 0a2,3 = 0,
s5,1
1 f1,4 + s5,1

2 f2,4 + b5,1
1 a1,4 + b5,1

2 a2,4 + b5,1
3 a3,4 + b5,1

4 a4,4

= 1s5,1
1 + 3s5,1

2 + 1a1,4 + 0a2,4 = 0.

If n = 6, with Z6 = {3, 4, 5} we have the following three
constraints

s6,1
1 f1,3 + s6,1

2 f2,3 + b6,1
1 a1,3 + b6,1

2 a2,3 + b6,1
3 a3,3 + b6,1

4 a4,3

= 1s6,1
1 + 2s6,1

2 + 2a1,3 + 2a2,3 = 0,
s6,1
1 f1,4 + s6,1

2 f2,4 + b6,1
1 a1,4 + b6,1

2 a2,4 + b6,1
3 a3,4 + b6,1

4 a4,4

= 1s6,1
1 + 3s6,1

2 + 2a1,4 + 2a2,4 = 0,
s6,1
1 f1,5 + s6,1

2 f2,5 + b6,1
1 a1,5 + b6,1

2 a2,5 + b6,1
3 a3,5 + b6,1

4 a4,5

= 1s6,1
1 + 4s6,1

2 + 2a1,5 + 2a2,5 = 0.

Hence, there are totally 6 × 3 = 18 constraints on 24
variables, which are
a1,1, . . . , a1,6, a2,1, . . . , a2,6, s

1,1
1 ,s1,1

2 , s2,1
1 , s2,1

2 , . . . , s6,1
2 . (21)

Since the number of variables is more than the number of
constraints, we fix 24 − 18 = 6 variables. More precisely, we
give a value uniformly i.i.d. over Fq to each of the following 6
variables (the positions of these 6 variables are found through
programming),
s1,1
1 = 0, s2,1

2 = 1, s3,1
1 = 1, s4,1

2 = 1, s5,1
1 = 0, s6,1

2 = 1.
(22)

After determining the 6 variables in (22), the above 18
constraints are linearly independent on the remaining 18
variables, such that by solving a system of linear equations
we have

a1,1 = 1/4, a1,2 = 5/8, a1,3 = 5/4, a1,4 = 15/8, a1,5=21/8,
a1,6 = 27/8, a2,1 = −5/8, a2,2 = −13/8, a2,3 = −21/8,
a2,4 = −15/4, a2,5 = −5, a2,6 = −25/4, s1,1

2 = 5/2,
s2,1
1 = 3/4, s3,1

2 = 13/8, s4,1
1 = 5/8, s5,1

2 = −5/8, s6,1
1 =3/4.

Note that for any element a on Fq, 1/a represents the
multiplicative inverse of a on Fq.

Similarly, by considering all pairs (t, j) where t ∈ [3] and
j ∈ [2], we can determine (23), shown at the bottom of the
page.

E. Step 3

For each subset of workers A ⊆ [6] where |A| = 5,
it can be seen that the constraints in (19) holds. For example,
if A = [5], the sub-matrix S([10])r including the first 10
rows of S is full rank. Hence, we let each worker n ∈ [N]
compute and send two linear combinations of sub-messages,
sn,1F′[W1,1; . . . ;W6,3] and sn,2F′[W1,1; . . . ;W6,3].

F. Decoding Phase

Assume that the set of responding workers is A where
A ⊆ [6] and |A| = 5. The master receives

XA =
�
sA(1),1; sA(1),2; sA(2),1; . . . ; sA(5),2

�
×F′ [W1,1; . . . ;W6,1;W1,2; . . . ;W6,3].

Since
�
sA(1),1; sA(1),2; sA(2),1; . . . ; sA(5),2

�
is full rank,

the master then computes�
sA(1),1; sA(1),2; sA(2),1; . . . ; sA(5),2

�−1

XA

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 5/2 0 0 0 −11/4 0 2 0 0
1 −14 1 27 0 0 0 0 2 0

3/4 1 0 0 41/8 1 2 2 0 0
40 0 −82 1 0 0 0 0 0 2
1 13/8 0 0 1 −9/16 1 2 0 0
1 −10 0 39/2 0 0 0 0 2 1

5/8 1 0 0 −25/16 0 0 1 0 0
−19/2 0 41/2 1 0 0 0 0 1 0

0 −5/8 0 0 1 41/16 1 0 0 0
1 −10 1 37/2 0 0 0 0 2 1

3/4 1 0 0 73/8 0 2 2 0 0
−23/2 1 31/2 0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; (23a)

[a1,1, . . . , a1,18] =
�
1
4
,
5
8
,
5
4
,
15
8
,
21
8
,
27
8
, 0, 0, 0, 0, 0, 0,

−33
8
,
−57
16

,
−49
8
,
139
16

,
161
16

,
−191
16

�
; (23b)

[a2,1, . . . , a2,18] =
�−5

8
,
−13
8
,
−21
8
,
−15
4
,−5,

−25
4
, 0, 0, 0, 0, 0, 0,

25
16
,
25
16
,
25
16
,
33
8
,
11
2
,
55
8

�
; (23c)

[a3,1, . . . , a3,18] =
�
19
2
,
19
2
,
19
2
,
41
2
,
55
2
,
69
2
,
−41
2
,
−43
2
,
−45
2
,−41,

−109
2

,−68, 0, 0, 0, 0, 0, 0
�
; (23d)

[a4,1, . . . , a4,18] =
�
−20,−10, 0,−12,−20,−20, 41,

47
2
, 7,

51
2
, 39,

77
2
, 0, 0, 0, 0, 0, 0

�
. (23e)
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to obtain F′ [W1,1; . . . ;W6,1;W1,2; . . . ;W6,3], which contains
its demanded linear combinations.

G. Performance

Since each worker sends 2L
3 symbols, the communication

cost is 10L
3L = 10

3 , coinciding with the converse bound in (4b).
�

We are ready to generalize the proposed distributed comput-
ing scheme in Example 2. First we focus on Kc = K

Nu, where
u ∈ [Nr−m+1] and N ≥ m+u−1

u +u(Nr−m−u+1). During
the data assignment phase, we use the cyclic assignment.

H. Computing Phase

Since the communication cost is no less than Nr
Kc

m+u−1 ,
from the converse bound (4b), we divide each message Wk

where k ∈ [K] into m+u−1 non-overlapping and equal-length
sub-messages, Wk = {Wk,j : j ∈ [m+u−1]}. Hence, the task
function becomes (m + u− 1)Kc linear combinations of sub-
messages. Each worker should send Kc linear combinations
of sub-messages. From the answers of Nr workers, the master
totally receives NrKc linear combinations of sub-messages.
Hence, we generate

v = NrKc − (m + u − 1)Kc = Kc(Nr − m − u + 1)

virtually requested linear combinations of sub-messages;
thus the effective demand matrix F′ has the dimension

NrKc × K(m + u − 1), with the form in (24), shown at the
bottom of the page.

The transmissions of the K workers can be expressed as

S F′ [W1,1; . . . ;WK,1;W1,2; . . . ;WK,m+u−1]
= [s1,1; . . . ; s1,Kc ; s2,1; . . . ; sN,Kc ]

×F′ [W1,1; . . . ;WK,1;W1,2; . . . ;WK,m+u−1],

where sn,jF′[W1,1; . . . ;WK,1;W1,2; . . . ;WK,m+u−1] repre-
sents the jth transmitted linear combination by worker n.
We can further expand S as in (25), shown at the bottom
of the page.

By defining di as the ith column of F′, the jth transmitted
linear combination by worker n can be expressed as

sn,jd1W1,1 + · · · + sn,jdKWK,1 + sn,jdK+1W1,2

+ · · ·+ sn,jd(m+u−1)KWK,m+u−1. (26)

To guarantee that the linear combination in (26) can be
transmitted by worker n, the coefficients of the sub-messages
which worker n cannot compute should be 0; that is
sn,jdk+(t−1)K = 0, ∀n ∈ [N], j ∈ [Kc],

t ∈ [m + u − 1], k ∈ Zn. (27)

In addition, for each set A ⊆ [N] where |A| = Nr, by receiv-
ing the linear combinations transmitted by the workers in A,

(24)

(25)
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the master should recover the desired linear combinations.
Hence, we should have

[sA(1),1; . . . ; sA(1),Kc ; sA(2),1; . . . ; sA(Nr),Kc ] is full rank,

(28)

∀A ⊆ [N] where |A| = Nr. Our objective is to determine
the elements in S (i.e., sn,j

i where n ∈ [N], j ∈ [Kc], i ∈
[(m + u− 1)Kc]; b

n,j
i where n ∈ [N], j ∈ [Kc], i ∈ [v]) and in

F′ (i.e., ai,k where i ∈ [v] and k ∈ [(m + u− 1)K]) such that
the constraints in (27) and (28) are satisfied.

We divide matrix F′ into m + u − 1 sub-matrices,
F′

1, . . . ,F′
m+u−1 each of which has the dimension NrKc×K,

as illustrated in (24). We also divide matrix S into m+u sub-
matrices, S1, . . . ,Sm+u−1 each of which has the dimension
NKc × Kc and Sm+u with dimension NKc × v, as illustrated
in (26). As an Example 2, the proposed computing scheme
contains three main steps:

• Step 1: We first choose the values for the elements in
Sm+u.

• Step 2: After determining the elements in Sm+u, the con-
straints in (27) become linear in terms of the remaining
variables, which are then determined by solving the
systems of linear equations.

• Step 3: After determining all the variables, we check
the constraints in (28) such that the proposed scheme
is decodable.

I. Step 1

We choose the values for Sm+u with the form in (29b),
shown at the bottom of the page, (as S4 in Example 2),
where each ‘∗’ represents a uniformly i.i.d. symbol on Fq.
More precisely, for the jth linear combination transmitted
by worker n where j ∈ [Kc] and n ∈ [N], we choose
each of bn,j

(j−1)v
Kc

+1
, . . . , bn,j

jv
Kc

uniformly i.i.d. over Fq, while

setting the other variables in this linear combination be 0.
The above choice on Sm+u will guarantee that the constraints

in (27) become linearly independent in terms of the remaining
variables to be determined in the next step.

J. Step 2

We then fix one t ∈ [m + u− 1] and one j ∈ [Kc]; thus the
constraints in (27) become

0 = sn,jdk+(t−1)K (30a)

=
�

i1∈[Kc]

fi1,k s
n,j
(t−1)Kc+i1

+
�

i2∈[v]

bn,j
i2

ai2,(t−1)K+k (30b)

=
�

i1∈[Kc]

fi1,k s
n,j
(t−1)Kc+i1

+
�

i3∈[ (j−1)v
Kc

+1: jv
Kc ]
bn,j
i3

ai3,(t−1)K+k, ∀n ∈ [N], k ∈ Zn.

(30c)

Notice that in (30c) the coefficients fi1,k are the elements in
the demand matrix F and bn,j

i3
have been already determined

in Step 1. Hence, the constraints (30c) are linear in terms of
the variables

sn,j
(t−1)Kc+i1

and ai3,k1 , ∀n ∈ [N], i1 ∈ [Kc],

i3 ∈
�
(j − 1)v

Kc
+ 1 :

jv

Kc

�
, k1 ∈ [(t− 1)K + 1 : tK]. (31)

Next, we determine the values of the variables in (31) by
solving the system of linear equations. In (31), there are totally

NKc +
v

Kc
K = N

K

N
u + (Nr − m − u + 1)K = K(Nr − m + 1)

variables while in (30c) there are totally

N
K

N
(Nr − m) = K(Nr − m)

constraints. Hence, in order to determine all the variables
in (31) while satisfying the constraints in (30c), we first fix

Sm+u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1,1
1 · · · b1,1

v
Kc

b1,1
v

Kc
+1 · · · b1,1

2v
Kc

b1,1
2v
Kc

+1
· · · b1,1

(Kc−1)v
Kc

b1,1
(Kc−1)v

Kc
+1

· · · b1,1
v

b1,2
1 · · · b1,2

v
Kc

b1,2
v

Kc
+1 · · · b1,2

2v
Kc

b1,2
2v
Kc

+1
· · · b1,2

(Kc−1)v
Kc

b1,2
(Kc−1)v

Kc
+1

· · · b1,2
v

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

b1,Kc
1 · · · b1,Kc

v
Kc

b1,Kc
v

Kc
+1 · · · b1,Kc

2v
Kc

b1,Kc
2v
Kc

+1
· · · b1,Kc

(Kc−1)v
Kc

b1,Kc
(Kc−1)v

Kc
+1

· · · b1,Kc
v

b2,1
1 · · · b2,1

v
Kc

b2,1
v

Kc
+1 · · · b2,1

2v
Kc

b2,1
2v
Kc

+1
· · · b2,1

(Kc−1)v
Kc

b2,1
(Kc−1)v

Kc
+1

· · · b2,1
v

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

bN,Kc
1 · · · bN,Kc

v
Kc

bN,Kc
v

Kc
+1 · · · bN,Kc

2v
Kc

bN,Kc
2v
Kc

+1
· · · bN,Kc

(Kc−1)v
Kc

bN,Kc
(Kc−1)v

Kc
+1

· · · bN,Kc
v

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(29a)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ · · · ∗ 0 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 ∗ · · · ∗ 0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0 0 · · · 0 ∗ · · · ∗
∗ · · · ∗ 0 · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0 0 · · · 0 ∗ · · · ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (29b)
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K(Nr − m + 1) − K(Nr − m) = K variables. More precisely,
for each n ∈ [N] and each i ∈ [K/N], we first choose each of

sn,j

(t−1)Kc+(i−1)u+(n mod u)
, (32)

uniformly i.i.d. over Fq. Note that sn,j

(t−1)Kc+(i−1)u+(n mod u)

is in the
�
(n − 1)Kc + j

�th
row and the

�
(t − 1)Kc + (i −

1)u + (n mod u)
�th

column of S. Hence, among all the
K(Nr−m+1) variables in (31), we have determined NK

N = K
variables. Thus there are K(Nr −m) variables to be solved by
K(Nr −m) linear equations in (30c). It will be proved by the
Schwartz-Zippel Lemma [25]–[27] in Appendix A that with
high probability, these K(Nr−m) linear equations are linearly
independent over these remaining K(Nr − m) variables.9 As
a result, by solving the system of linear equations we can
determine all the remaining variables in (31).

By considering all the pairs (t, j) where t ∈ [m + u − 1]
and j ∈ [Kc], we can determine all the elements in S and F′.

K. Step 3

It will be proved by the Schwartz-Zippel Lemma [25]–[27]
in Appendix A that the constraints in (28) hold
with high probability. Hence, we let each worker
n compute and send Kc linear combinations,
i.e., sn,jF′[W1,1; . . . ;WK,1;W1,2; . . . ;WK,m+t−1] where
j ∈ [Kc].

L. Decoding Phase

Assume that the set of responding workers is A where
A ⊆ [K] where |A| = Nr. The master receives

XA = [sA(1),1; . . . ; sA(1),Kc ; sA(2),1; . . . ; sA(Nr),Kc ]
× F′ [W1,1; . . . ;WK,1;W1,2; . . . ;WK,m+u−1].

Since [sA(1),1; . . . ; sA(1),Kc ; sA(2),1; . . . ; sA(Nr),Kc ] is full
rank, the master then computes

[sA(1),1; . . . ; sA(1),Kc ; sA(2),1; . . . ; sA(Nr),Kc ]−1XA

to obtain F′[W1,1; . . . ;WK,1;W1,2; . . . ;WK,m+u−1], which
contains its demanded linear combinations.

M. Performance

Since each worker sends KcL
m+u−1 symbols, the communica-

tion cost is NrKcL
(m+u−1)L = NrKc

m+u−1 , coinciding with (6a).
Remark 3: The proposed scheme works for the case where

N ≥ m + u − 1
u

+ u(Nr − m − u + 1), (33)

which can be explained intuitively in the following way.
It will be proved in Appendix A that if the proposed scheme
works for the

�
N,N,Nr, u,m

�
distributed linearly separable

computation problem (i.e., the number of messages is equal to
N) with high probability, then with high probability the pro-
posed scheme also works for the

�
K,N,Nr,

K
Nu,m

�
distributed

linearly separable computation problem where N divides K.

9Note that in Example 2, we focus on a specific demand and thus the
Schwartz-Zippel Lemma is not needed.

Hence, let us then analyse the case K = N. In this case, note
that Kc = u.

We fix one t ∈ [m+u−1] in the constraints (27). In Step 2 of
the computing phase, we should solve the following problem:

N. Problem t

Determine the values of the variables

sn,j
(t−1)u+i1

and ai3,k, ∀n ∈ [N], j ∈ [u], i1 ∈ [u],

i3 ∈ [v] , k ∈ [(t− 1)K : tK],

satisfying the constraints�
i1∈[u]

fi1,k s
n,j
(t−1)u+i1

+
�

i3∈[ (j−1)v
u +1: jv

u ]
bn,j
i3

ai3,(t−1)K+k = 0,

∀j ∈ [u], n ∈ [N], k ∈ Zn.
Notice that by solving Problem t, for each i ∈ [v], we can

determine

[s1,1
(t−1)u+i; . . . ; s

1,u
(t−1)u+i; s

2,1
(t−1)u+i; . . . ; s

N,u
(t−1)u+i],

which is the ((t− 1)u + i)th column of S. Another important
observation is that, Problem t1 is totally equivalent to Prob-
lem t2 for any t1 	= t2. Thus, we can introduce the following
unified problem.

O. Unified Problem

Determine the values of the variables

pn,j
i1

and qi3,k, ∀n ∈ [N], j ∈ [u], i1 ∈ [u], i3 ∈ [v] , k ∈ [K],

satisfying the constraints�
i1∈[u]

fi1,k p
n,j
i1

+
�

i3∈[ (j−1)v
u +1: jv

u ]
bn,j
i3

qi3,k = 0, (34)

∀j ∈ [u], n ∈ [N], k ∈ Zn.
In the unified problem, there are

Nuu + vK = Nu(u + Nr − m − u + 1) = Nu(Nr − m + 1)

variables and Nu(Nr − m) constraints. Hence, the number
of linearly independent solutions of the unified problem is no
less than Nu(Nr − m + 1) − Nu(Nr − m) = Nu, where the
equality holds when the constraints in the unified problem is
linearly independent. To guarantee that all the columns in S
are linearly independent, we should assign m+ u− 1 linearly
independent solutions to Problems 1, 2, . . . ,m + u − 1.

In addition, among all the linearly independent solutions of
the unified problem, there are uv trivial solutions which we
cannot pick. More precisely, for each i ∈ [v] and d ∈ [u],
one possible solution is to set (recall that fd represents the dth

demand vector)

(qi,1, qi,2, . . . , qi,K) = fd,

while setting qi3,k = 0 if i3 	= i. In addition, we set

pn,j
i = −bn,j

i , ∀n ∈ [N], j ∈ [u],

while setting pn,j
i1

= 0 if i1 	= i. It can be easily checked
that by the above choice of variables, the constraints in (34)
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hold. Hence, the above choice is one possible solution of
the unified problem. There are totally uv such possible solu-
tions. However, any combination of such uv solutions cannot
be chosen as a solution of Problem t. This is because in
each of the above solutions, there is a column of S (i.e.,
[p1,1

i ; . . . ; p1,u
i ; p1,2

i ; . . . ; pN,u
i ]), which can be expressed by a

fixed column of S (i.e., [b1,1
i ; . . . ; b1,u

i ; b1,2
i ; . . . ; bN,u

i ]). Hence,
the full rank constraints in (28) cannot hold.

As a result, if we have

Nu ≥ m + u − 1 + uv = m + u − 1 + u2(Nr − m − u + 1)

which is equivalent to (33), it can be guaranteed that we can
assign one linearly independent non-trivial solution to each
Problem t. �

For each K
N (u − 1) < Kc <

K
Nu where u ∈ [Nr − m + 1],

we first generate K
Nu−Kc demand vectors whose elements are

uniformly i.i.d. over Fq, and add these vectors into the demand
matrix F. Next, we use the above distributed computing
scheme with K′

c = K
Nu. Hence, the communication cost is

NrK
′
c

m+u−1 = NrKu
N(m+u−1) , coinciding with (6a).

Remark 4: For the proposed computing scheme for the case�
K
N : K

N (Nr − m + 1)
�
, the decoding complexity (i.e., the num-

ber of multiplications) of the master is O �Kc
K
NuNrL

�
. Simi-

larly, when Kc ∈
�

K
N

�
, the decoding complexity is O (KcNrL).

When Kc ∈
�

K
N (Nr − m + 1) : K

�
, the decoding complexity is

O
�
Kc

K
NN2

rL + Kc

� Kc−1
K
N Nr−1

�
L
�

. �

VI. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this paper, we studied the computation-communication
costs tradeoff for the distributed linearly separable computa-
tion problem. A converse bound under the constraint of the
cyclic assignment was proposed, and we also proposed a novel
distributed computing scheme under some parameter regimes.
Some exact optimality results were derived with or without the
constraint of the cyclic assignment. The proposed computing
scheme was also proved to be generally order optimal within a
factor of 2 under the constraint of the cyclic assignment. The
simplest open which the proposed scheme cannot work is the
case where K = N = Nr = 5, Kc = 2, and m = 2. Further
works include the design of the distributed computing scheme
for the open cases and the derivation of the converse bound
for any dataset assignment.

Ongoing works include the generalization of the proposed
scheme under any system parameters and the extension to the
systems with partial stragglers as in [17], [28] or/and with
partial computation recovery as in [29], [30].

APPENDIX A
FEASIBILITY PROOF OF THE PROPOSED COMPUTING

SCHEME IN SECTION V

In the following, we first show that for the
(K,N,Nr,Kc,m) =

�
N,N,Nr, u,m

�
distributed

linearly separable computation problem, where
N ≥ m+u−1

u + u(Nr − m − u + 1), the proposed computing
scheme works with high probability. Next we show that if the
proposed scheme works for the

�
N,N,Nr, u,m

�
distributed

linearly separable computation problem with high probability,
then with high probability the proposed scheme also works
for the

�
K,N,Nr,

K
Nu,m

�
distributed linearly separable

computation problem, where K
N is a positive integer.

A. K = N

The feasibility of the proposed computing scheme is proved
by the Schwartz-Zippel Lemma [25]–[27] as we used in [5,
Appendix C] for the computing scheme where m = 1. For the
sake of simplicity, in the following we provide the sketch of
the feasibility proof.

Recall that in Step 2 of the proposed computing scheme, for
each pair (t, j) where t ∈ [m + u− 1] and j ∈ [u], we need to
determine the values of the variables in (31) while satisfying
the linear constraints in (30c). In addition, among all the
variables in (31), we choose the values of the variables in (32)
uniformly i.i.d. over Fq. Then there are remaining K(Nr −m)
variables (the vector of these K(Nr −m) variables is assumed
to be b) and K(Nr −m) linear equations over these variables,
and thus we can express these linear equations as (recall that
(M)m×n indicates that the dimension of matrix M is m×n)
(A)K(Nr−m)×K(Nr−m) (b)K(Nr−m)×1 = (c)K(Nr−m)×1, where
the coefficients in A and c are composed of the elements in
F, Sm+u and (32) which are all generated uniformly i.i.d.
over Fq. Hence, the determinant of A can be seen as a
multivariate polynomial whose variables are the elements in
F, Sm+u and (32). Since the variables of the polynomial are
uniformly i.i.d. over Fq where q → ∞, by the Schwartz-Zippel
Lemma [25]–[27], if we can further show that this polynomial
is a non-zero multivariate polynomial (i.e., a multivariate
polynomial whose coefficients are not all 0), the probability
that the polynomial is equal to 0 over all possible realization
of the elements in F, Sm+u and (32), goes to 0. In other words,
the determinant of A is non-zero with high probability. So the
next step is to show this polynomial is non-zero. This means
that we need to find one realization of the elements in F,
Sm+u and (32), such that this polynomial is not equal to zero.
By random generation of the elements in F, Sm+u and (32),
we have tested all cases where N = K ≤ 40 satisfying the
constraint N ≥ m+u−1

u +u(Nr−m−u+1). Hence, for each pair
(t, j), the probability that Step 2 of the proposed computing
scheme is feasible goes to 1. By the probability union bound,
the probability that Step 2 of the proposed computing scheme
is feasible for all pairs of (t, j), also goes to 1.

Moreover, by using the Cramer’s rule, each element in b
can be seen as a ratio of two polynomials whose variables are
the elements in F, Sm+u and (32), where the polynomial in
the denominator is non-zero with high probability. As a result,
each element in S can be seen as ratio of two polynomials of
the elements in F, Sm+u and (32) for all pairs (t, j). So in
Step 3 for each A ⊆ [N] where |A| = Nr, the determinant of
the matrix [sA(1),1; . . . ; sA(1),Kc ; sA(2),1; . . . ; sA(Nr),Kc ] can be
expressed as YA =



i∈[(Nru)!]

Pi

Qi
, where Pi and Qi are poly-

nomial whose variables are the elements in F, Sm+u and (32)
for all pairs (t, j). We want to prove that YA

 
i∈[(Nru)!]

Qi

is a non-zero polynomial such that we can use the Schwartz-
Zippel Lemma [25]–[27] to show that the determinant YA is
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not equal to zero with high probability. Again, by random
generation of the elements in F, Sm+u and (32) for all pairs
(t, j), we have tested all cases where N = K ≤ 40 satisfying
the constraint N ≥ m+u−1

u +u(Nr−m−u+1). In these cases,
with the random choices, both

 
i∈[(Nru)!]

Qi and YA are not
equal to zero, and thus YA

 
i∈[(Nru)!]

Qi is not equal to 0.
In conclusion, we prove the feasibility of the proposed

computing scheme in Steps 2 and 3 with high probability, for
the case where m+u−1

u + u(Nr − m − u + 1) ≤ K = N ≤ 40.

B. N Divides K

We then consider the (K,N,Nr,Kc,m) =
�
K,N,Nr,

K
Nu,m

�
distributed linearly separable computation problem, where
N ≥ m+u−1

u + u(Nr − m− u + 1) and K
N is a positive integer.

Similar to the proof for the case where K = N, we also aim to
find a specific realization of the elements in F, Sm+u and (32)
for all pairs (t, j), such that Steps 2 and 3 of the proposed
scheme are feasible (i.e., the determinant polynomials are non-
zero).

We construct the demand matrix (i.e., F with dimension
K
Nu × K) as follows,

F =

⎡
⎢⎢⎢⎣

(F1)u×N 0u×N · · · 0u×N

0u×N (F2)u×N · · · 0u×N

...
...

...
...

0u×N 0u×N · · · (FK/N)u×N

⎤
⎥⎥⎥⎦ ,

where each element in Fi, i ∈
�

K
N

�
is generated uniformly i.i.d.

over Fq. In the above construction, the
�
K,N,Nr,

K
Nu,m

�
dis-

tributed linearly separable computation problem is divided into
K
N independent/disjoint

�
N,N,Nr, u,m

�
distributed linearly

separable computation sub-problems. Since the determinant
polynomials are non-zero with high probability for each sub-
problem as we proved in Appendix A-A, it can be seen that the
determinant polynomials for the

�
K,N,Nr,

K
Nu,m

�
distributed

linearly separable computation problem are also non-zero with
high probability.
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