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Compound Secure Groupcast: Key Assignment
for Selected Broadcasting

Hua Sun , Member, IEEE

Abstract—The compound secure groupcast problem is consid-
ered, where the key variables at K receivers are designed so that
a transmitter can securely groupcast a message to any N out
of the K receivers through a noiseless broadcast channel. The
metric is the information theoretic tradeoff between key storage
α, i.e., the number of bits of the key variable stored at each
receiver per message bit, and broadcast bandwidth β, i.e., the
number of bits of the broadcast information sent by the trans-
mitter per message bit. We have three main results. First, when
broadcast bandwidth is minimized, i.e., when β = 1, we show
that the minimum key storage is α = N. Second, when key
storage is minimized, i.e., when α = 1, we show that broadcast
bandwidth β = min(N, K − N + 1) is achievable and is optimal
(minimum) if N = 2 or K − 1. Third, when N = 2, the optimal
key storage and broadcast bandwidth tradeoff is characterized
as α + β ≥ 3, α ≥ 1, β ≥ 1.

Index Terms—Secure groupcast, selected broadcasting, broad-
cast bandwidth, key storage.

I. INTRODUCTION

SECURE groupcast [1] seeks the most efficient solution
to communicate with a group of qualified receivers over

a noiseless broadcast channel securely such that a group
of eavesdropping receivers do not learn anything about the
desired communication. The primary enabler for secure group-
cast is that each receiver is equipped with a correlated key and
the transmitter needs to exploit the keys available at the quali-
fied receivers for group communication. At the same time, the
keys available to the eavesdropping receivers are the funda-
mental challenge as each of the eavesdropping receivers also
has a correlated key and we need to prevent leakage under
such multiple intertwined views.

In the basic model of secure groupcast [1], the key vari-
ables are fixed and given, e.g., the joint distribution and the
sizes are not subject to design, and the identities of the exter-
nal eavesdropping receivers are known globally. In this work,
we relax the above two assumptions and consider the com-
pound1 secure groupcast problem, where we may design the
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1The terminology ‘compound’ comes from compound channel in

information theory (refer to [2, Ch. 7.2]), where the channel may have multiple
states. Here similarly, we are simultaneously considering multiple secure
groupcast instances (with different sets of qualified receivers) and wish to
find a common key assignment that works for all such instances.

key variables Zk of the K receivers (i.e., how to assign the
keys is our choice) such that we can communicate a mes-
sage W with any N (1 ≤ N ≤ K − 1) out of the K receivers
in a secure manner by broadcasting X (i.e., we do not know
which receivers are qualified or eavesdropping beforehand),
where the remaining K − N receivers are ignorant of the
desired message. An example of N = 2, K = 3 is shown in
Fig. 1.

The compound secure groupcast problem models an
interesting and challenging scenario where the eavesdropping
receivers are internal and their identities are not known in
the key set-up stage. The applications can range from pay
TV where the keys are distributed by a central controller
and the message represents a particular channel subscribed
by prime users, to a secure broadcasting system of an organi-
zation where the internal users may be compromised and are
classified as unqualified users when sensitive information is
later encrypted and heard by all users.

To understand the fundamental limits of compound secure
groupcast, we are interested in the following two metrics.

• Key Storage (α) - To communicate 1 bit of desired mes-
sage W (to any N users), how many bits of the key Zk

need to be stored at each receiver, denoted as α? For
example, consider Fig. 1, where α = 1 as the key size is
the same as the message size.

• Broadcast Bandwidth (β) - To communicate 1 bit of
desired message W (to any N users), how many bits of
the broadcast information X need to be sent, denoted as
β? For example, consider Fig. 1, where β = 2 as 2 bits
are broadcast to groupcast 1 bit of desired message.

There exists an interesting tradeoff between key storage α

and broadcast bandwidth β, i.e., if we are allowed to store
more key symbols (when α is large), then we may send less
information in the broadcast stage (β can be small), and vice-
versa, i.e., if the broadcast resource is abundant, then we may
need to store fewer key symbols. The main motivation of this
work is to understand such (α, β) tradeoff in the information
theoretic sense.

Next, we summarize the main results obtained. We mainly
focus on the extreme points where key storage is minimized,
i.e., α = 1 and where broadcast bandwidth is minimized,
i.e., β = 1, and wish to characterize the minimum resource
required for the other parameter. For both extreme points, there
are natural feasible solutions.

• When β = 1, we share an independent key for any size
N subset of receivers so that for any set of qualified
receivers, we use their exclusive shared key to send the
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Fig. 1. Compound secure groupcast to any N = 2 of K = 3 receivers. s1, s2 are 2 uniform i.i.d. symbols from any finite field. Keys are assigned as
Z1 = s1, Z2 = s2, Z3 = s1 + s2. The secure groupcast schemes are shown when 1) the first 2 receivers, 2) Receiver 1 and Receiver 3, and 3) the last 2
receivers are qualified. Note that the key assignment remains the same for all 3 scenarios.

Fig. 2. The s variables are independent. The key assignment is shown and transmitter knows all keys. 1) N = 2, K = 4. β = 1 is minimized and a scheme
of α = 3 is shown. 2) N = 3, K = 4. α = 1 is minimized and a scheme of β = 3 is shown. One possible set of qualified receivers is plotted and other cases
are similar.

desired message. The key storage achieved is α = (K−1
N−1

)
.

See Fig. 2.1 for an example when N = 2, K = 4.
• When α = 1, we set the keys to be independent, i.e.,

Zk = sk, ∀k ∈ {1, . . . , K} and sk are uniform i.i.d. sym-
bols. When any set of N receivers are qualified, we simply
send W + sq for every qualified Receiver q. The broad-
cast bandwidth achieved is β = N. See Fig. 2.2 for an
example when N = 3, K = 4.

Interestingly, we show that both schemes above are not
optimal.

• When β = 1, we can achieve α = N with a
generic2 vector linear scheme. Further, α = N is the
optimal information theoretic key storage, i.e., the min-
imum achievable by any linear or non-linear schemes.
For example, for the N = 2, K = 4 setting in
Fig. 2.1, α can be 2 < 3 and the scheme is presented
in Example 1. The general result is presented in
Theorem 2.

• When α = 1, we can achieve β = min(N, K−N+1) with
a generic scalar linear scheme. Further, β = min(N, K −
N + 1) is the optimal broadcast bandwidth when N = 2
or K − 1. For example, for the N = 3, K = 4 set-
ting in Fig. 2.2, β can be 2 < 3 and the scheme is
presented in Example 2. The general result is presented in
Theorem 3.

2‘Generic’ refers to a property that typically holds (see, e.g., [3, Ch. 3]).
Throughout this work, more specifically, ‘generic’ refers to code/matrix con-
structions that satisfy the desired properties when each element is drawn i.i.d.
and uniform from a sufficiently large field (but we do give small field con-
structions). In a vector linear scheme, each key variable contains multiple
linear combinations while in a scalar linear scheme, each key variable only
contains one linear combination.

Finally, the insights obtained from above results allow us to
characterize the optimal (α, β) tradeoff when N = 2 and K is
arbitrary, as α + β ≥ 3, α ≥ 1, β ≥ 1. Refer to Theorem 5.

Before proceeding to the problem statement, we discuss
connections of compound secure groupcast to prior work in
cryptography, mainly two lines - key predistribution and broad-
cast encryption. For related work on secure groupcast, we refer
to [1].

A. Related Work

The key (pre)-distribution problem refers to the assignment
of a number of key variables (each belongs to a user) such
that certain subsets (e.g., any N of K keys) can agree on
an independent key that is known exclusively to the given
subset of users. Key predistribution systems naturally pro-
vide an achievable scheme for compound secure groupcast,
where the qualified receivers (users) can extract an exclu-
sive secure key according to a key predistribution scheme and
use this key to securely groupcast the message with one-time
pad. Key predistribution based schemes turn out to be optimal
for the key storage α and broadcast bandwidth β tradeoff
for compound secure groupcast, when broadcast bandwidth is
minimized (refer to Theorem 2), and are strictly sub-optimal
in general (which is natural as the two problems have vastly
distinct goals), e.g., when key storage is minimized (refer to
Theorem 3). Specifically, in establishing the achievability part
of Theorem 2, we invoke elegant key predistribution schemes
from early works in the field [4], [5] (note that the converse
proof of Theorem 2 is new).

Key predistribution has been extensively studied in cryp-
tography since [4], [5], subject to both information theoretic
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security and computational security constriants. In particular,
under information theoretic security, [6] showed that for any
N out of K users to agree on an independent key (i.e., the
symmetric setting), the minimum storage per user is equal to
N times the key size. This result coincides with the mini-
mum key storage result (α = N) for the minimum broadcast
bandwidth extreme point (β = 1) for compound secure group-
cast, i.e., when β = 1, agreeing on an independent key for
each set of qualified receivers is optimal. While key pre-
distribution was originally studied in the symmetric any N
out of K setting and in the non-interactive setting, interesting
generalizations to allow asymmetric access structure and to
allow communication among the users, so that storage size is
reduced, have appeared in [7] and [8], respectively. For other
key predistribution works under information theoretic secu-
rity, we refer to survey papers [9], [10] and references therein.
Computational security works can be found in cryptography
textbooks [11], [12].

Another line of related work is referred to as broadcast
encryption [13], where the goal is to enable secure broad-
casting to selected sets of receivers with the major focus on
key management under dynamic changes of qualified users.
Since its introduction [13], broadcast encryption has grown
to a big umbrella that covers a wide array of themes, e.g.,
computational security (see, e.g., [14], [15]), key management
with multicast trees (see, e.g., [16]–[18]), and user revocation
(see, e.g., [19], [20]).

The topic within broadcast encryption that is most related
to our work is (information theoretically secure) one-time
broadcast encryption schemes [9], [21], which is essentially
the same as compound secure groupcast albeit it is not for-
mulated in Shannon theoretic framework (with some minor
difference). Entropy based approaches have been employed
in [21], [22], where the main focus is on the code construction
and analyzing the storage requirement for key predistribution
and one-time pad coding based schemes (which is efficient
only near the β = 1 extreme point). The tradeoff between key
storage and broadcast bandwidth has also been noted [9], [23],
where various tools from coding theory, design theory, and
secret sharing have been used to construct several classes of
achievable schemes while the information theoretic optimal-
ity of the proposed schemes is largely unknown due to the
lack of converse (notably one converse bound appeared in
[23, Th. 3] and it is equivalent to α + β ≥ 3 in our notation
(proof omitted though [23])). In contrast, in this work we focus
on establishing the optimality of extreme points (particularly,
the minimum key storage extreme point has never been con-
sidered in the literature) and the capacity region of elemental
systems, e.g., N = 2. The schemes in [9], [23] could be use-
ful for future studies on the overall (α, β) tradeoff of larger
compound secure groupcast systems (and generalizations to
arbitrary access structure that goes beyond the symmetric
any N of K setting and to include colluding eavesdropping
receivers).

Notation: For positive integers K1, K2, K1 ≤ K2, we use the
notation [K1 : K2] = {K1, K1 + 1, . . . , K2}. The notation |Q|
is used to denote the cardinality of a set Q. The notation A\B
denotes the difference of sets A,B, i.e., the set of elements

that are in A but not in B. In this work, a vector v denotes
a row vector by default and vT represents the transpose of v,
i.e., vT is a column vector. For a matrix V, the notation V(i, :)
is used to denote the i-th row of V and the notation V(Q, :)
is used to denote the sub-matrix of V formed by retaining
only the rows with indices in the vector formed by arranging
elements of the set of numbers Q in an increasing order.

II. PROBLEM STATEMENT

The compound secure groupcast problem has two stages -
the key assignment stage and the secure groupcast stage,
specified as follows.

In the key assignment stage, we design K key variables
Z1, . . . , ZK , each of which consists of LZ symbols from a
finite field3

Fp for a prime power p. Zk, k ∈ [1:K] is given
to Receiver k.

In the secure groupcast stage, a transmitter must be able to
send a message W securely to any N receivers, where N is
an arbitrary but fixed integer in [1 : K − 1]. The message W
consists of LW uniform i.i.d. symbols from Fp and is indepen-
dent of the key variables (because, e.g., W is available after
the keys are assigned).

H(W) = LW (in p-ary units) (1)

I(W; Z1, . . . , ZK) = 0. (2)

The entropy function is measured in p-ary units throughout
this paper.

When the message W is securely groupcast to receivers in
the set Q ⊂ [1 : K], |Q| = N, the transmitter broadcasts signal
XQ, where XQ consists of LX symbols4 from Fp and is heard
perfectly by every Receiver k. For any Receiver q that belongs
to the qualified set Q, the message must be recovered with no
error,5

[Correctness] H
(
W|XQ, Zq

) = 0,∀q ∈ Q. (3)

For any Receiver e that does not belong to the qualified set
Q, i.e., e ∈ [1 : K]\Q, no information about the message shall
be revealed.

[Security] I
(
W; XQ, Ze

) = 0,∀e ∈ [1 : K]\Q. (4)

We use the normalized key size (referred to as key storage
and denoted by α) and the normalized broadcast information

3To simplify the presentation of the coding scheme, we allow a free choice
of the field size p. This is consistent with an information theoretic formulation,
where the actual size of the message is allowed to approach infinity and
performance metrics are defined as ratios such that the effect of the field size
is normalized (refer to (5)).

4To avoid the explosion of parameters, we assume the scheme is symmetric,
i.e., the size of the broadcast information XQ does not depend on Q. Note
that this assumption does not have much loss of generality in the sense that
any asymmetric scheme can be transformed to a symmetric one (through
space sharing over permutations of the asymmetric scheme). Equivalently, we
measure the broadcast information size using the worst case. The situation
with the key size is similar, i.e., we assume the length of Zk does not depend
on k.

5As the achievable schemes in this work all have zero error and zero leak-
age, for simplicity we do not adopt the vanishing error and leakage framework,
under which our converse results do hold (the converse proofs generalize
straightforwardly).
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size (referred to as broadcast bandwidth and denoted by β) to
measure the performance, defined as follows.

α � LZ

LW
, β � LX

LW
. (5)

A key storage and broadcast information tuple (α, β) is said
to be achievable if there exists a compound secure group-
cast scheme (i.e., a design of the key variables Zk and the
broadcast signal variables XQ) such that the correctness con-
straint (3) and the security constraint (4) are satisfied for any
Q ⊂ [1 : K], |Q| = N, and key storage and broadcast band-
width are smaller than or equal to α and β, respectively. The
closure of the set of achievable (α, β) tuples is called the
capacity region C.

III. RESULTS, EXAMPLES, AND OBSERVATIONS

In this section, we present our results along with illustrative
examples and observations.

Let us start with a useful converse result. Note that a similar
bound has appeared6 in [1].

Theorem 1: For the compound secure groupcast problem
(to any N ∈ [1:K − 1] of K receivers), we have

LW ≤ H
(
Zq|Ze

)
, ∀q, e ∈ [1 : K], q �= e,

LX ≥ |Q|LW −
⎛

⎝
|Q|∑

i=1

H
(
Zqi

) − H
(
Zq1 , . . . , Zq|Q|

)
⎞

⎠, (6)

∀Q = {
q1, . . . , q|Q|

} ⊂ [1 : K], |Q| ≤ N. (7)

The extreme values of the key storage parameter α and the
broadcast bandwidth parameter β follow immediately from
Theorem 1.

(6) ⇒ LW ≤ H
(
Zq

) ≤ LZ ⇒ α = LZ/LW ≥ 1 (8)

(7)
|Q|=1=⇒ LX ≥ LW ⇒ β = LX/LW ≥ 1. (9)

That is, the minimum key storage is α = 1 and the minimum
broadcast bandwidth is β = 1. Next we proceed to our results
on the corresponding extreme points of the (α, β) region.

A. The Minimum Broadcast Bandwidth Extreme Point

The optimal (minimum) key storage α for the minimum
broadcast bandwidth extreme point (β = 1) is characterized
in the following theorem.

Theorem 2 (Minimum α for Minimum β): For the com-
pound secure groupcast problem (to any N ∈ [1 : K − 1] of
K receivers), when broadcast bandwidth is minimized, β = 1,
the minimum key storage is α = N.

min{α | (α, β = 1) ∈ C} = N. (10)

The proof of Theorem 2 is presented in Section IV-B and
we give an overview here.

For the converse, it suffices to consider only N + 1 ≤ K
receivers, say receivers 1 to N + 1. Focus on any receiver,

6The setting studied in [1] is secure groupcast, whose definitions are slightly
different from the compound setting, e.g., broadcast bandwidth is defined as
the scaling with respect to the key block length in secure groupcast, so we
give a self-contained proof of Theorem 1 in Section IV-A for completeness.

say Receiver N + 1, who may be a part of N different sets
of qualified receivers, i.e., Q1 = [1 : N + 1]\{1}, . . . ,QN =
[1 : N +1]\{N}. To securely groupcast the message to these N
sets of receivers, the transmit signals are XQ1 , . . . , XQN . When
β = 1, i.e., the transmit signal size is the same as the message
size, the essence is to realize that we can only use one-time pad
and each of the transmit signal shall contain an independent
key (formalized in Lemma 1). After this claim is established
in the information theoretic sense (more precisely, condi-
tioned on the message W, the mutual information between
XQ1 , . . . , XQN and ZN+1 is no less than N times the message
size), we obtain that α ≥ N.

For the achievability, the key of each receiver consists of
N generic linear combinations of N + 1 uniform i.i.d. basis
key symbols, i.e., we operate over an N + 1 dimensional
key space and each receiver is assigned an N dimensional
subspace. As such, every N receivers have an overlap of
N × N − (N − 1)(N + 1) = 1 dimension in generic position,
which serves as the exclusive key when these N receivers are
qualified. As this overlap is determined only by the N quali-
fied receivers, this key (and the one-time pad transmit signal) is
independent of the key known by any eavesdropping receiver
(an N dimensional generic subspace) such that the scheme is
secure. Interestingly, elegant and efficient constructions over
small field sizes exist for such generic spaces and an example
is given below to illustrate the main idea.

Example 1: Continuing from Fig. 2.1, we consider the com-
pound secure groupcast problem when N = 2, K = 4 and give
a scheme that achieves α = 2, β = 1. Following the intuitions
presented above, we will assign a generic 2 dimensional sub-
space over a 3 dimensional space to each receiver when we set
the keys. That is, define s1, s2, s3 as 3 uniform i.i.d. symbols
from Fp (the value of p will be specified later) and the key
assignments are

Z1 = V1[s1, s2, s3]T , Z2 = V2[s1, s2, s3]T ,

Z3 = V3[s1, s2, s3]T , Z4 = V4[s1, s2, s3]T (11)

where each of Vk, k ∈ {1, 2, 3, 4} is a 2 × 3 matrix7 over
Fp such that for any distinct elements q1, q2, e1, e2 from
{1, 2, 3, 4},

dim
(
rowspan

(
Vq1

) ∩ rowspan
(
Vq2

)) = 1, (12)

rowspan
(
Vq1

) ∩ rowspan
(
Vq2

)
is independent of

rowspan
(
Ve1

)
, (13)

rowspan
(
Vq1

) ∩ rowspan
(
Vq2

)
is independent of

rowspan
(
Ve2

)
. (14)

The above constraints are easily satisfied by random matri-
ces, e.g., when every element of Vk is drawn independently
and uniformly from Fp for a sufficiently large p (proved by
Schwartz-Zippel lemma [24]–[26]). However, an elegant solu-
tion exists due to Blom [4] and is presented below (using a
slightly different yet equivalent description that aligns with
our intuition of generic spaces). Set p = 5 and consider

7All encoding and decoding functions (e.g., the encoding matrices Vk) are
globally known (akin to codebooks).
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4 distinct elements v1, v2, v3, v4 from Fp, e.g., we may set
v1 = 1, v2 = 2, v3 = 3, v4 = 4.

V1 =
[

1 v1 0
0 1 v1

]
, V2 =

[
1 v2 0
0 1 v2

]
,

V3 =
[

1 v3 0
0 1 v3

]
, V4 =

[
1 v4 0
0 1 v4

]
. (15)

The generic overlaps are as follows. For example, consider
rowspan(V1) ∩ rowspan(V2). The vector

v{1,2} = [1 v1 + v2 v1v2] (16)

is a linear combination of the rows of both V1 and V2, e.g., the
first row plus v2 times the second row for V1. Other choices
of two Vk matrices are similar. Now when Receiver 1 and
Receiver 2 are qualified, the transmit signal is

X{1,2} = W + v{1,2}[s1, s2, s3]T . (17)

Correctness holds as v{1,2} can be obtained locally at both
Receiver 1 and Receiver 2. To guarantee security, we need that
v{1,2} is independent of V3 and V4, respectively. For example,
consider V3.

V{1,2}∪{3} =
[

V3
v12

]
=

⎡

⎣
1 v3 0
0 1 v3
1 v1 + v2 v1v2

⎤

⎦

⇒ det
(
V{1,2}∪{3}

) = (v3 − v1)(v3 − v2) �= 0

(18)

as vk are distinct.

I
(
W; X{1,2}, Z3

) = H
(
X{1,2}, Z3

) − H
(
X{1,2}, Z3|W

)
(19)

(2)= H
(
X{1,2}, Z3

) − H
(
V{1,2}∪{3}[s1, s2, s3]T)

(20)

≤ 3 − 3 = 0 (21)

where in the last step, the first term follows from the fact
that X{1,2}, Z3 consists of only 3 symbols from Fp and uni-
form distributions maximize entropy, and the second term
follows from (18) stating that V{1,2}∪{3} has full rank. Hence,
the security constraint (4) is satisfied. Finally, the achieved
performance is as desired because α = 2 = N (2 key symbols
are stored for a 1 symbol message), and β = 1 (1 symbol is
broadcast to groupcast a 1 symbol message).

Interestingly, the generic space assignment when N = 2
introduced by Blom is generalized to arbitrary N by
Matsumoto and Imai [5], in the context of key predistri-
bution. The details can be found in Section IV-B and the
connection of compound secure groupcast to prior work
in key predistribution (and other problems) is discussed in
Section I-A.

B. The Minimum Key Storage Extreme Point

A scalar linear achievable scheme for the minimum key
storage extreme point (α = 1) is presented in the following
theorem.

Theorem 3 (Achievable β for Minimum α): For the com-
pound secure groupcast problem (to any N ∈ [1 : K − 1] of K

receivers), when key storage is minimized, α = 1, broadcast
bandwidth β = min(N, K − N + 1) is achievable for any N, K
and is optimal when N = 2 or K − 1.

min {β | (α = 1, β) ∈ C} ≤ min(N, K − N + 1). (22)

min {β | (α = 1, β) ∈ C} = 2,

when N = 2, K − 1(K ≥ 3). (23)

The converse proof (when min(N, K − N + 1) = 2) follows
from Theorem 5. Note that N ≥ 2 and K ≥ 3.

(33) ⇒ α + β ≥ 3
α=1=⇒ β ≥ 2. (24)

The achievability proof of Theorem 3 is presented in
Section IV-C. A proof outline is as follows. The case where
min(N, K − N + 1) = N is trivial as the independent key
solution will work (refer to Fig. 2.2). We only need to con-
sider the case where min(N, K − N + 1) = K − N + 1. Here
the key of each receiver is 1 generic linear combination of
K − N + 1 uniform i.i.d. basis key symbols, i.e., we operate
over a K − N + 1 dimensional key space and each receiver is
assigned a 1 dimensional subspace. The transmit signal X for
any N qualified receivers is a length K − N + 1 vector, where
each element is a sum of the message W scaled by a constant
and a basis key symbol. To ensure that the K − N eavesdrop-
ping receivers learn nothing about the message, we precode
the message to the direction that is orthogonal to the key space
of each eavesdropping receiver (by choosing the K − N + 1
constants before W in X). This precoding vector can be chosen
as the null space of the K−N dimensional subspace seen by all
the eavesdropping receivers, which exists and has 1 dimension
over a K−N+1 dimensional space. Further, the subspaces are
generic so that the projection of the precoded message to the
1 dimensional subspace held by any qualified receiver is not
empty, and correctness follows. It turns out that MDS matri-
ces suffice for the above coding scheme. An example is given
below to illustrate this idea.

Example 2: Continuing from Fig. 2.2, we consider the com-
pound secure groupcast problem when N = 3, K = 4 and give
a scheme that achieves α = 1, β = 2. The generic key assign-
ment is as follows. Define s1, s2 as 2 uniform i.i.d. symbols
from F3.

Z1 = s1, Z2 = s2, Z3 = s1 + s2, Z4 = s1 + 2s2. (25)

Suppose receivers 1 to 3 are qualified. The transmit signal is
set as

X{1,2,3} =
[−2

1

]
W +

[
s1
s2

]
(26)

where for W, the precoding vector [ − 2, 1]T is orthogonal to
the key space of the eavesdropping Receiver 4, [1, 2], so that
security is guaranteed. For correct decoding, take Receiver 3
as an example, who will project the transmit signal to the key
space.

(−2W + s1) + (W + s2) = −W + s1 + s2 = −W + Z3 (27)

so that the knowledge of Z3 ensures that W can be decoded
with no error. The transmit signals for other cases are designed
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similarly.

X{1,2,4} =
[−1

1

]
W +

[
s1
s2

]
,

X{1,3,4} =
[

1
0

]
W +

[
s1
s2

]
,

X{2,3,4} =
[

0
1

]
W +

[
s1
s2

]
. (28)

Finally, key storage α = 1 and broadcast bandwidth β = 2 =
K − N + 1 are achieved, as desired.

We next improve the result in Theorem 3 for the simplest
setting where the optimal broadcast bandwidth for the min-
imum key storage extreme point (α = 1) is open. For this
setting (N = 3, K = 5), we have the following upper and
lower bounds.

Theorem 4: [N = 3, K = 5] For the compound secure
groupcast problem (to any 3 of 5 receivers), when key stor-
age is minimized, α = 1, the minimum broadcast bandwidth
satisfies 2.5 ≤ β ≤ 2.9.

2.5 ≤ min {β | (α = 1, β) ∈ C} ≤ 2.9,

when N = 3, K = 5. (29)

The converse proof of Theorem 4 is deferred to
Section IV-D, where we translate the lower bound on broad-
cast bandwidth to a lower bound on joint key size for 3
receivers, H(Z1, Z2, Z3) ≥ 2.5LW . The achievable scheme is
presented now, where we improve the achievability of β = 3 in
Theorem 3 to that of β = 2.9 by introducing some correlation
into the generic spaces used in Theorem 3.

We first present a scalar linear scheme that achieves average
broadcast bandwidth 2.9. The keys are assigned as

Z1 = s1, Z2 = s2, Z3 = s3, Z4 = s4, Z5 = s1 + s2 (30)

where s1, s2, s3, s4 are 4 uniform i.i.d. symbols from F3. There
are

(K
N

) = (5
3

) = 10 distinct choices of the qualified receivers,
out of which 1 can be achieved with 2 symbols of broadcast
signal and the remaining cases require 3 symbols of broadcast
signal, to groupcast LW = 1 message symbol. The design
principle is the same as that of the achievability proof of
Theorem 3. Specifically, ∀i ∈ {3, 4}, ∀j ∈ {1, 2, 5},

X{1,2,i} =
⎡

⎣
W + s1

−W + s2
W + si

⎤

⎦, X{1,2,5} =
[

W + s1
W + s2

]
,

X{j,3,4} =
⎡

⎣
W + Zj

W + s3
W + s4

⎤

⎦, X{1,i,5} =
⎡

⎣
W + s1

s2
W + si

⎤

⎦, (31)

X{2,i,5} =
⎡

⎣
s1

W + s2
W + si

⎤

⎦ (32)

where correctness and security are easy to verify. Next, we
symmetrize the above scheme by applying it to any all per-
mutations of the 5 receivers and concatenation, i.e., the size
of each of W, Zk, XQ is scaled by 5! and now broadcast band-
width becomes symmetric and β = 0.9 × 3 + 0.1 × 2 = 2.9.
The achievability proof is complete now.

Fig. 3. The key storage and broadcast bandwidth region (α, β) of compound
secure groupcast - 1) when N = 1 and K ≥ 2 is arbitrary, and 2) when N = 2
and K ≥ 3 is arbitrary.

C. Key Storage and Broadcast Bandwidth Region

In this section, we present our results on the capacity region
(α, β).

When N = 1, the capacity region is characterized as
C = {(α, β):α ≥ 1, β ≥ 1} and is plotted in Fig. 3.1. Here
we only have one extreme point, where the minimum key
storage and the minimum broadcast bandwidth are simultane-
ously attained. The proof is immediate, e.g., converse is proved
in (8), (9) and achievability may follow from either Theorem 2
or Theorem 3.

Next we consider the case where N = 2. It turns out that the
capacity region is characterized fully by the two extreme points
considered in previous sections (see Fig. 3.2). This result is
stated in the following theorem.

Theorem 5 ((α, β) Region when N = 2): For the compound
secure groupcast problem (to any N = 2 of K receivers),
the capacity region has and only has two extreme points -
one corresponding to minimum key storage, (α, β) = (1, 2)

and the other corresponding to minimum broadcast bandwidth,
(α, β) = (2, 1).

C = {(α, β) : α + β ≥ 3, α ≥ 1, β ≥ 1},
when N = 2 and K ≥ 3 is arbitrary. (33)

The proof of Theorem 5 is presented in Section IV-E.

IV. PROOFS

Note that in the proofs, the relevant equations needed to
justify each step are specified by the equation numbers set on

top of the (in)equality symbols (e.g.,
(3)= means that (3), given

in Section II, is used to derive the equality).

A. Proof of Theorem 1

First, consider (6). For any q, e ∈ [1 : K], q �= e, suppose
Receiver q is qualified and Receiver e is not (i.e., eavesdrop-
ping), which is possible for any q, e in the compound secure
groupcast problem. Consider any qualified set of receivers, Q
such that q ∈ Q, e /∈ Q, |Q| = N.

LW = H(W)
(2)= H(W|Ze) (34)
(3)= I

(
W; XQ, Zq|Ze

)
(35)

(4)= I
(
W; Zq|Ze, XQ

) ≤ H
(
Zq|Ze

)
(36)
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where (34) follows from the independence of the message
W and the key variable Ze (refer to (2)) and (35) follows
from the fact that from the broadcast signal XQ and the key
variable available to a qualified receiver Zq, we can recover
the message W with no error (refer to (3)). In (36), we use
the security constraint (4), which states that an eavesdropping
receiver (equipped with Ze, XQ) learns nothing about W.

Second, consider (7). Without loss of generality, we set Q =
{1, . . . , Q}, Q ≤ N and suppose receivers 1 to N are qualified.

LX ≥ H
(
X[1:N]

) ≥ I
(
X[1:N]; W, Z1, . . . , ZQ

)
(37)

= I
(
X[1:N]; W, Z1

) +
Q−1∑

q=1

I
(
X[1:N]; Zq+1|W, Z1, . . . , Zq

)
(38)

(2)≥ I
(
X[1:N]; W|Z1

) +
Q−1∑

q=1

I
(
X[1:N], W; Zq+1|Z1, . . . , Zq

)
(39)

(2)= I
(
X[1:N], Z1; W

) +
Q−1∑

q=1

(
I
(
X[1:N], W, Z1, . . . , Zq; Zq+1

)

− I
(
Z1, . . . , Zq; Zq+1

))
(40)

(3)≥ H(W) +
Q−1∑

q=1

(
I
(
W; Zq+1|X[1:N]

) − I
(
Z1, . . . , Zq; Zq+1

))

(41)

(3)= H(W) +
Q−1∑

q=1

(
H

(
W|X[1:N]

) − I
(
Z1, . . . , Zq; Zq+1

))
(42)

(4)= H(W) +
Q−1∑

q=1

(
H(W) − I

(
Z1, . . . , Zq; Zq+1

))
(43)

= QLW −
⎛

⎝
Q∑

q=1

H
(
Zq

) − H
(
Z1, . . . , ZQ

)
⎞

⎠ (44)

where in (42), note that Zq+1, q ∈ [1 : Q−1] belongs to a qual-
ified receiver and (43) follows from the security constraint (4),
stating that X[1:N] must be independent of W.

B. Proof of Theorem 2: αmin = N When β = 1

We present the achievability proof and the converse proof
in the following two sections.

1) Achievability: We show that α = N, β = 1 is achiev-
able. The coding scheme is as follows.

Denote by s1, . . . , sN+1 a basis set of independent uniform
symbols from Fp, where p is any prime power that is greater
than or equal to K. Define s = [s1, . . . , sN+1] ∈ F

1×(N+1)
p .

The keys are assigned according to

Zk = VksT , ∀k ∈ [1 : K] (45)

where Vk =

⎡

⎢
⎢⎢
⎣

1 vk 0 · · · 0
0 1 vk · · · 0
... · · · ... · · · 0
0 0 · · · 1 vk

⎤

⎥
⎥⎥
⎦

N×(N+1)

(46)

and v1, . . . , vK are distinct elements from Fp.

(47)

Note that the above elegant construction was introduced by
Matsumoto and Imai [5].

For any set of N qualified receivers, Q = {q1, . . . , qN} ⊂
[1 : K], the transmit signal is

XQ = W + zQ = W + vQsT (48)

where vQ =
⎡

⎣1
∑

i

vqi

∑

i,j,i�=j

vqi vqj · · ·
∏

i

vqi

⎤

⎦

1×(N+1)

. (49)

Note that the n-th element of vQ, n ∈ [1 : N + 1] has degree
n − 1 and is the sum of the product of all distinct n − 1 terms
from vq1 , . . . , vqN . Note also that W ∈ Fp, XQ ∈ Fp.

We verify correctness. To this end, we show that every qual-
ified receiver can recover vQsT such that W can be decoded
with no error. For any q ∈ Q,

vQ = Vq(1, :) + Vq(2, :)
∑

i �=q

vqi

+ Vq(3, :)
∑

i,j,i �=j,i �=q,j �=q

vqivqj + · · · + Vq(N, :)
∏

i �=q

vqi .

(50)

Hence, vQ is a linear combination of the rows of Vq and
correctness holds. We consider security next. Consider any
eavesdropping Receiver e ∈ [1 : K]\Q.

VQ∪{e} =
[

Ve

vQ

]

=

⎡

⎢⎢⎢⎢⎢⎢
⎣

1 ve 0 · · · 0
0 1 ve · · · 0
... · · · ... · · · 0
0 0 · · · 1 ve

1
∑

i vqi

∑
i,j,i�=j vqi vqj · · · ∏

i vqi

⎤

⎥⎥⎥⎥⎥⎥
⎦

(N+1)×(N+1)

(51)

⇒ det
(
VQ∪{e}

) = (−1)N
∏

i

(
ve − vqi

) �= 0

as vk are distinct. (52)

Note that we have omitted the detailed steps of the derivation
of the determinant formula (52), which is straightforward to
verify (e.g., using Laplace expansion along the last row as the
matrix is sparse). We show that the security constraint (4) is
satisfied.

I
(
W; XQ, Ze

) = H
(
XQ, Ze

) − H
(
XQ, Ze|W

)
(53)

(2)(51)≤ (N + 1) − H
(
VQ∪{e}sT) (52)= 0. (54)

Finally, each key Zk has N symbols and each broadcast signal
XQ has 1 symbol, so we have achieved α = N, β = 1. The
achievability proof of Theorem 2 is thus complete.

2) Converse: We prove that when β = 1, the inequality
α ≥ N holds.

Let us start with a useful lemma.
Lemma 1: When β = 1, for any Q ⊂ [1 : K], |Q| = N, we

have

H
(
XQ

) = H
(
XQ|W) = LX = LW , (55)

H
(
XQ|W, Zq

) = 0,∀q ∈ Q, (56)

I
(
XQ; Ze

) = I
(
XQ; Ze|W

) = 0,∀e /∈ Q. (57)
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Remark 1: The interpretation of Lemma 1 is that when
β = 1, every qualified set must agree on a key, and we
essentially have to use one-time pad coding with such a key
(see (55), (56)). Further, the key of any qualified set must be
secure to any eavesdropping receiver (see (57)).

Proof: First consider (55) and (56). Consider any q ∈ Q.
Note that β = LX/LW = 1.

LX = LW = H(W)
(2)= H

(
W|Zq

)
(58)

(3)= I
(
W; XQ|Zq

)
(59)

≤ H
(
XQ

) − H
(
XQ|W, Zq

)
(60)

≤ H
(
XQ

) ≤ LX (61)

and we have

H
(
XQ

) = LX = LW (62)

H
(
XQ|W, Zq

) = 0 (63)

⇒ H
(
XQ|W) (4)= H

(
XQ

) = LX = LW . (64)

Then consider (57). Consider any e /∈ Q and any q ∈ Q.
Note that β = LX/LW = 1.

H
(
XQ|Ze

) ≥ H
(
XQ|Ze, Zq

)
(65)

= I
(
XQ; W|Ze, Zq

) + H
(
XQ|W, Ze, Zq

)
(66)

(3)(56)= H
(
W|Ze, Zq

)
(67)

(2)= H(W) (68)
(1)= LW (69)

= LX (70)

≥ H
(
XQ

)
(71)

where the second term of (66) is 0 as XQ is uniquely
determined given W, Zq (see (56)) and we have

I
(
XQ; Ze

) = 0 as mutual information is non-negative

(72)

I
(
XQ; Ze|W

) (4)= I
(
XQ; Ze, W

)
(73)

(72)= I
(
XQ; W|Ze

)
(74)

(4)= 0. (75)

Next, we consider only the first N + 1 receivers. Note that
K ≥ N + 1 and removing users cannot enlarge the capacity
region. Consider all qualified sets that include Receiver N + 1
and there are N such qualified sets, i.e., Q1 = [1 : N + 1]\
{1}, . . . ,QN = [1 : N + 1]\{N}.
LZ ≥ H(ZN+1)

(2)= H(ZN+1|W) (76)

≥ I
(
ZN+1; XQ1 , XQ2 , . . . , XQN |W)

(77)

=
N∑

i=1

I
(
ZN+1; XQi |W, XQ1 , . . . , XQi−1

)
(78)

(56)=
N∑

i=1

H
(
XQi |W, XQ1 , . . . , XQi−1

)
(79)

=
N∑

i=1

(
H

(
XQi |W

) − I
(
XQi; XQ1 , . . . , XQi−1 |W

))

(80)

≥
N∑

i=1

(
H

(
XQi |W

) − I
(
XQi; Zi, XQ1 , . . . , XQi−1 |W

))

(81)

(56)=
N∑

i=1

H
(
XQi |W

) −
N∑

i=1

I
(
XQi; Zi|W

)
(82)

(55) (57)= NLW − 0 (83)

⇒ α = LZ/LW ≥ N (84)

where (79) follows from the observation that N + 1 ∈ Qi.
In (82), we use the fact that i ∈ Q1, . . . ,Qi−1, i ≥ 2, and
in (83), we use the fact that i /∈ Qi. The converse proof of
Theorem 2 is now complete.

C. Achievability Proof of Theorem 3: β ≤ min
(N, K − N + 1) When α = 1

We present a coding scheme that achieves α = 1, β =
min(N, K − N + 1). We have two cases, depending on
min(N, K − N + 1) is equal to N or K − N + 1.

First, consider the case where min(N, K − N + 1) = K −
N + 1, and we show that β = K − N + 1 is achievable. Define
s = [s1, . . . , sK−N+1] ∈ F

1×(K−N+1)
p , where s1, . . . , sK−N+1

are K − N + 1 uniform i.i.d. symbols from Fp and p is a
prime power that is greater than or equal to K. The keys are
assigned as

Zk = V(k, :)sT (85)

where V(k, :) ∈ F
1×(K+N−1)
p is the k-th row of the matrix V,

and

V is a K × (K − N + 1) MDS matrix. (86)

For our scheme, the only requirement on the field size p is that
an MDS matrix V exists over Fp. So p ≥ K suffices as we
may set V as the Vandermonde matrix. For any N receivers
from the qualified set Q ⊂ [1 : K], |Q| = N, the transmit
signal is set as

XQ = vT
WW + sT (87)

where W ∈ Fp is LW = 1 symbol, XQ ∈ F
(K−N+1)×1
p is a

column vector and vT
W ∈ F

(K−N+1)×1
p is chosen such that

V([1 : K]\Q, :) × vT
W = �0(K−N)×1, (88)

i.e., vT
W may be set as the right null space of the (K − N) ×

(K −N +1) matrix V([1 : K]\Q, :). Such a column vector vT
W

exists because V is MDS and V([1 : K]\Q, :) has rank K −N.
Further,

V(q, :) × vT
W �= 0,∀q ∈ Q (89)

because otherwise V([1 : K]\Q ∪ {q}, :) × vT
W = 0, which

leads to that a (K − N + 1) × (K − N + 1) sub-matrix of V,
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V([1 : K]\Q∪ {q}, :), is rank deficient, violating the fact that
V has been set as an MDS matrix.

To show that zero error decoding is guaranteed, consider
any qualified Receiver q ∈ Q, who will project the received
signal XQ to the key space.

V(q, :) × XQ = V(q, :) × vT
WW + V(q, :) × sT

= (
V(q, :) × vT

W

)
W + Zq (90)

such that from (89), V(q, :) × vT
W is a non-zero scalar and

W can be recovered. We now verify security. Consider any
eavesdropping Receiver e ∈ [1 : K]\Q.

I
(
W; XQ, Ze

) = I
(
W; vT

WW + sT , V(e, :)sT)
(91)

(88)= I
(
W; vT

WW + sT)
(92)

= H
(
vT

WW + sT) − H
(
vT

WW + sT |W)
(93)

(2)≤ (K + N − 1) − H
(
sT) = 0 (94)

where (92) follows from the fact that V(e, :)sT is a determin-
istic function of vT

WW + sT , i.e.,

V(e, :) × (
vT

WW + sT) = (
V(e, :) × vT

W

)
W + V(e, :)sT

(88)= V(e, :)sT . (95)

Hence the security constraint is satisfied. Finally, we have
achieved α = 1 as each Zk has 1 symbol and β = K − N + 1
as each XQ has K + N − 1 symbols.

Second, consider the case where min(N, K − N + 1) = N.
While the simple scheme that uses fully independent keys will
work (refer to Fig. 2.1), we present a scheme with smaller joint
key size.

Define s = [s1, . . . , sN+1] ∈ F
1×(N+1)
p , where s1, . . . , sN+1

are N+1 uniform i.i.d. symbols from Fp and p is a prime power
that is greater than or equal to K. The keys are assigned as

Zk = V(k, :)sT , where V is a K × (N + 1) MDS matrix

(96)

and the transmit signal XQ,∀Q ⊂ [1 : K], |Q| = N is set as

XQ = �1N×1W + V(Q, :)sT (97)

where �1 is an N × 1 column vector such that every element
is 1 and XQ has dimension N × 1. To see correctness, note
that any qualified receiver q ∈ Q can decode W with no error
from W + V(q, :)sT = W + Zq, which is one row of XQ. To
see security, note that any eavesdropping receiver cannot learn
anything about W because

I
(
W; XQ, Ze

) = H
(
XQ, Ze

) − H
(
XQ, Ze|W

)
(98)

(2)≤ (N + 1) − H
(
V(Q ∪ {e}, :)sT) = 0 (99)

where the last step follows from the fact that V is an MDS
matrix such that any N + 1 rows have full rank. Finally, we
have achieved α = 1 and β = N, as desired.

The achievability proof of Theorem 3 is now complete.

D. Converse Proof of Theorem 4: β ≥ 2.5 When
α = 1, N = 3, K = 5

Let us start with a useful lemma.
Lemma 2: When α = 1, for any q, e ∈ [1 : K], q �= e, we

have

H
(
Zq

) = LW , (100)

H
(
Zq, Ze

) = 2LW . (101)

Remark 2: The interpretation of Lemma 2 is that when
α = 1, the key at any receiver is uniform and the keys at
any two receivers are independent.

Proof: Note that α = LZ/LW = 1. From (6) in Theorem 1,
we have

LZ = LW ≤ H
(
Zq|Ze

) ≤ H
(
Zq

) ≤ LZ (102)

⇒ H
(
Zq

) = LW and symmetrically, H(Ze) = LW

(103)

H
(
Zq|Ze

) = H
(
Zq

) ⇒ I
(
Zq; Ze

) = 0

⇒ H
(
Zq, Ze

) = H
(
Zq

) + H(Ze)
(103)= 2LW . (104)

We next show that H(Z1, Z2, Z3) ≥ 2.5LW . To this end,
we consider only the first 4 receivers (which cannot help for
the converse) and assume that Receiver 1 and Receiver 3 are
qualified while Receiver 2 and Receiver 4 are eavesdropping.
From submodularity of entropy functions, we have

H(Z1, Z2, Z3) + H
(
Z1, Z3, X{1,3}, W

)

≥ H(Z1, Z3) + H
(
Z1, Z2, Z3, X{1,3}, W

)
(105)

≥ H(Z1, Z3) + H
(
Z2, X{1,3}, W

)
(106)

(4)= H(Z1, Z3) + H
(
Z2, X{1,3}

) + H(W) (107)

Similarly,

H(Z1, Z2, Z4) + H
(
Z2, Z4, X{1,3}

)

≥ H(Z2, Z4) + H
(
Z1, Z2, Z4, X{1,3}

)
(108)

(3)= H(Z2, Z4) + H
(
Z1, Z2, Z4, X{1,3}, W

)
(109)

≥ H(Z2, Z4) + H
(
Z4, X{1,3}, W

)
(110)

(4)= H(Z2, Z4) + H
(
Z4, X{1,3}

) + H(W). (111)

Adding (107) and (111), we have

H(Z1, Z2, Z3) + H
(
Z1, Z3, X{1,3}, W

)

+ H(Z1, Z2, Z4) + H
(
Z2, Z4, X{1,3}

)

≥ H(Z1, Z3) + H(Z2, Z4) + 2H(W)

+ H
(
Z2, X{1,3}

) + H
(
Z4, X{1,3}

)
(112)

≥ H(Z1, Z3) + H(Z2, Z4) + 2H(W)

+ H
(
X{1,3}

) + H
(
Z2, Z4, X{1,3}

)
(113)

(1) (101)= 6LW + H
(
X{1,3}

) + H
(
Z2, Z4, X{1,3}

)
. (114)

Note that by symmetry, we may assume H(Z1, Z2, Z3) =
H(Z1, Z2, Z4) without loss of generality. Plugging this above,
we have

H
(
Z1, Z3, X{1,3}, W

) + 2H(Z1, Z2, Z3)

≥ 6LW + H
(
X{1,3}

)
. (115)
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A upper bound of H(Z1, Z3, X{1,3}, W) can be obtained as
follows.

2LW + 2H
(
X{1,3}

)

(100)= H(Z1) + H
(
X{1,3}

) + H(Z3) + H
(
X{1,3}

)
(116)

≥ H
(
Z1, X{1,3}

) + H
(
Z3, X{1,3}

)
(117)

(3)= H
(
Z1, X{1,3}, W

) + H
(
Z3, X{1,3}, W

)
(118)

≥ H
(
X{1,3}, W

) + H
(
Z1, Z3, X{1,3}, W

)
(119)

(4)= H
(
X{1,3}

) + H(W) + H
(
Z1, Z3, X{1,3}, W

)
(120)

(115) + (120) ⇒ H(Z1, Z2, Z3) ≥ 2.5LW . (121)

Finally, we invoke (7) in Theorem 1 to translate the joint key
size bound above to the desired broadcast bandwidth bound.
Consider the N = 3, K = 5 compound secure groupcast
problem and set Q = {1, 2, 3}. From (7), we have

LX ≥ 3LW − (H(Z1) + H(Z2) + H(Z3)

− H(Z1, Z2, Z3)) (122)
(100)= H(Z1, Z2, Z3) (123)
(121)≥ 2.5LW (124)

⇒ β = LX/LW ≥ 2.5. (125)

1) Minimum Joint Key Size Is 2.5 When (N, K, α, β) = (2,
4, 1, 2): In this section, we show that for the compound secure
groupcast problem to any N = 2 of K = 4 receivers, when
(α, β) = (1, 2) (i.e., the minimum key storage extreme point),
the minimum normalized joint key size H(Z1, Z2, Z3, Z4)/LW

is 2.5. We present this result because the minimum joint key
size could be a useful auxiliary parameter, e.g., it is used to
prove the broadcast bandwidth converse of Theorem 4. In addi-
tion, the minimum joint key size is an interesting parameter by
itself as it captures the minimum randomness resource required
for compound secure groupcast.

The converse H(Z1, Z2, Z3, Z4) ≥ H(Z1, Z2, Z3) ≥ 2.5LW

follows from (121), proved in the previous section, and the
achievability is presented below. The keys are assigned as

Z1 = (s1, s2), Z2 = (s3, s4), Z3 = (s5, s1 + s3),

Z4 = (s2 + s4, s1 + s2 + s5) (126)

where s1, s2, s3, s4, s5 are 5 uniform i.i.d. symbols from any
field Fp. The message W has 2 symbols, W = (W1, W2). The
transmit broadcast signals are

X{1,2} =

⎡

⎢⎢
⎣

W1 + s1

W2 + s2

−W1 + s3

−W2 + s4

⎤

⎥⎥
⎦, X{1,3} =

⎡

⎢⎢
⎣

W1 + s1

W2 + s2

−W1 − W2 + s5

W1 + s1 + s3

⎤

⎥⎥
⎦,

X{1,4} =

⎡

⎢⎢
⎣

W1 + s1

W2 + s2

W2 + s2 + s4

W1 + W2 + s1 + s2 + s5

⎤

⎥⎥
⎦, X{2,3} =

⎡

⎢⎢
⎣

W1 + s3

W2 + s4

W2 + s5

W1 + s1 + s3

⎤

⎥⎥
⎦,

X{2,4} =

⎡

⎢⎢
⎣

W1 + s3

W2 + s4

W2 + s2 + s4

−W1 + s1 + s2 + s5

⎤

⎥⎥
⎦, X{3,4} =

⎡

⎢⎢
⎣

W1 + s5

W2 + s1 + s3

−W2 + s2 + s4

W1 + s1 + s2 + s5

⎤

⎥⎥
⎦

(127)

where the first (second) qualified receiver will use the first
(last) two rows of X to decode W and security is guaranteed
because the projection of W in X to the key space known
by any eavesdropping receiver is empty. We finally calculate
the performance of this scheme. Note that LW = 2, LZ = 2,
LX = 4, H(Z1, Z2, Z3, Z4, Z5) = H(s1, s2, s3, s4, s5) = 5, so
we have achieved

α = LZ/LW = 1, β = LX/LW = 2,

H(Z1, Z2, Z3, Z4, Z5)/LW = 2.5 (128)

and the proof is thus complete.

E. Proof of Theorem 5

Achievability of the two extreme points follows from
Theorem 2 and Theorem 3, respectively. For the converse, we
only need to prove α+β ≥ 3 as α ≥ 1 has been proved in (8)
and β ≥ 1 has been proved in (9). The proof of α + β ≥ 3 is
presented next, which is a simple consequence of the bounds
in Theorem 1. Consider (6) and set q = 1, e = 2.

LW ≤ H(Z1|Z2). (129)

Consider (7) and set Q = {1, 2}.
LX ≥ 2LW − (H(Z1) + H(Z2) − H(Z1, Z2)) (130)

= 2LW − H(Z1) + H(Z1|Z2) (131)
(129)≥ 2LW − LZ + LW (132)

⇒ α + β = (LZ + LX)/LW ≥ 3. (133)

V. CONCLUSION

Motivated by the need to enable secure groupcast with
demand uncertainty and inspired by related work in cryp-
tography (especially broadcast encryption), we consider the
compound secure groupcast problem that studies how to assign
keys to efficiently and securely communicate with any N of
K receivers through noiseless broadcasting, and focus on the
tradeoff between key storage α and broadcast bandwidth β

from an information theoretic perspective.
Complete answers are found when broadcast bandwidth

is minimized, i.e., when β = 1, the minimum key storage
is α = N, while the results are not tight when key stor-
age is minimized, e.g., when α = 1, broadcast bandwidth
β = min(N, K − N + 1) is achievable yet not optimal in gen-
eral (i.e., settings with N ≥ 3, K ≥ N+2 are open). Regarding
the general α, β tradeoff, i.e., the (α, β) region, while N = 2
cases are settled fully by the two extreme points where either
α = 1 or β = 1, settings with N ≥ 3 remain open.

The solutions of this work mainly rely on generic spaces
(matrices) and are found with an alignment (signal space) view
of the problem (which also appears useful in several secu-
rity and privacy primitives [27]–[29]). To further improve the
achievable schemes, more structured spaces are in demand and
remain an interesting future research direction. Particularly,
the necessity of non-linear codes (that go beyond the linear
codes used in this work) for achievability and non-Shannon
information inequalities (that go beyond Shannon information
inequalities, or sub-modularity of entropy functions, used in
this work) for converse remains intriguing open problems.
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