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Capacity-Achieving Private Information Retrieval
Codes From MDS-Coded Databases With
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Abstract— We consider constructing capacity-achieving linear
codes with minimum message size for private information
retrieval (PIR) from N non-colluding databases, where each
message is coded using maximum distance separable (MDS)
codes, such that it can be recovered from accessing the contents
of any T databases. It is shown that the minimum message size
(sometimes also referred to as the sub-packetization factor) is
significantly, in fact exponentially, lower than previously believed.
More precisely, when K > T/ gcd(N, T) where K is the total
number of messages in the system and gcd(·, ·) means the
greatest common divisor, we establish, by providing both novel
code constructions and a matching converse, the minimum
message size as lcm(N − T, T), where lcm(·, ·) means the least
common multiple. On the other hand, when K is small, we show
that it is in fact possible to design codes with a message size even
smaller than lcm(N − T, T).

Index Terms— Data storage, information retrieval, privacy.

I. INTRODUCTION

THE problem of private information retrieval (PIR), since
its introduction [1], has attracted significant attention

from researchers in the fields of theoretical computer science,
cryptography, information theory, and coding theory. In the
classical PIR model, a user wishes to retrieve one of the K
available messages, from N non-colluding databases, each of
which has a copy of these K messages. User privacy needs
to be preserved during message retrieval, which requires that
the identity of the desired message not be revealed to any
single database. To accomplish the task efficiently, good codes
should be designed to download the least amount of data per-
bit of desired message, the inverse of which is referred to as
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the capacity of the PIR system. This capacity problem in the
classical setting was settled recently [2].

In practical systems, the databases may suffer from failures,
and are also constrained on the storage space. Erasure codes
can be used to improve both storage efficiency and failure
resistance. This consideration motivated the investigation of
PIR from MDS-coded databases [3]–[6], with coding parame-
ter (N,T ), i.e., the messages can be recovered by accessing
any T databases. The capacity of PIR from MDS-coded
databases (MDS-PIR) was characterized [4] as

C =

�
1 +

T

N
+ · · · +

�
T

N

�K−1
�−1

. (1)

In a given code, the smallest required number of symbols
in each message is called the message size L (sometimes
also referred to as the sub-packetization factor), which is
an important factor impacting the practicality and efficiency
of the code. A large message size implies that the message
(or the data file in practice systems) needs to be large for
such code to be applicable, which significantly restricts the
possible usage scenarios. Moreover, a large message size also
usually implies that the encoding and the decoding functions
are more complex, which not only requires more engineering
efforts to implement but also hinders the efficiency of the
system operation. From a theoretical point of view, a code
with a smaller message size usually implies a more transparent
coding structure, which can be valuable for related problems;
see, e.g., [7] for such an example. Thus codes with a smaller
message size are highly desirable in both theory and practice.

The capacity-achieving code given in [4] requires
L = TNK , which can be extremely large for a system with
even a moderate number of messages. The problem of reduc-
ing the message size of capacity-achieving codes was recently
considered by Xu and Zhang [6], and it was shown that
under the assumption that all answers are of the same length,
the message size must satisfy L ≥ T (N/ gcd(N,T ))K−1.
These existing results may have left the impression that
capacity-achieving codes would necessitate a message size
exponential in the number of messages.

In this work, we show that the minimum message
size for capacity-achieving PIR codes can in fact be sig-
nificantly smaller than previously believed, by providing
capacity-achieving linear codes with message size L = lcm
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(N − T, T ). Two linear code constructions, referred to as
Construction-A and Construction-B, respectively, are given.
The two constructions have the same download cost and
message size, however Construction-B has a better upload cost
(i.e., a lower communication cost for the user to send the
queries), at the expense of being slightly more sophisticated
than Construction-A. The key difference between the two
proposed constructions and existing codes in the literature is
that the proposed codes reduce the reliance on the so-called
variety symmetry [8], which should be distinguished from
the asymmetry discussed in [9], and the answers may be of
different lengths.1 We further show that this is in fact the
minimum message size when K > T/ gcd(N,T ), the proof
of which requires a careful analysis of the converse proof of
the information-theoretic MDS-PIR capacity. Finally, we show
that, when K is small, it is in fact possible to design codes
with a message size even smaller than lcm(N − T, T ).

The code constructions and converse proof reflect a
reverse engineering approach which further extends [8], [11].
Particularly, in [8], a similar approach was used to tackle
the canonical PIR setting with replicated databases and a
capacity-achieving PIR code with the minimum message size
and upload cost was discovered, and in the current work
the databases are instead MDS-coded. The analysis technique
and the code construction in the current work, however,
are considerably more involved due to the additional coding
requirements and the several integer constraints.

The rest of the paper is organized as follows. In Section II,
a formal problem definition is given. Construction-A and
Construction-B are then given in Section III and Section IV,
respectively, where the correctness and performance are also
proved and analyzed. The optimality of message size is
established by first identifying several critical properties of
capacity-achieving codes in Section V-A, then lower-bounding
the minimum message size when K > T/ gcd(N,T ) in
Section V-B. A special code is given in Section V-C to
show that when K ≤ T/ gcd(N,T ), the message size can
be even lower than lcm(N − T, T ). Finally, Section VI
concludes the paper. Several technical proofs are relegated to
the Appendices.

II. SYSTEM MODEL

There are a total of K mutually independent messages
W 0,W 1, . . . ,WK−1 in the system. Each message is uni-
formly distributed over XL, i.e., the set of length-L sequences
in the finite alphabet X . All the messages can be collected
and written as a single length-LK row vector W 0:K−1. Each
message is MDS-coded and then distributed to N databases,
such that from any T databases, the messages can be fully

1The download cost is measured in this work as the expected number of
downloaded symbols (over all random queries), which is in line with the
prevailing approach in the literature when PIR capacity is concerned [2], [4],
where the download cost is viewed as being equivalent to certain entropy
term. However, if we instead measure the download cost by the maximum
number of downloaded symbols (among all possible queries), which was the
alternative and more stringent approach used in [10] and [6], then the optimal
minimum message sizes will need to be much larger. In a sense, having the
more stringent requirement that the maximum download cost needs to match
the PIR capacity forces certain symmetrization to be built in the code, which
necessitates a significant increase in the message size.

recovered. Since the messages are (N,T ) MDS-coded, it is
without loss of generality to assume that L = M ·T for some
integer M .

When a user wishes to retrieve a particular message W k∗
,

N queries Q
[k∗]
0:N−1 = (Q[k∗]

0 , . . . , Q
[k∗]
N−1) are sent to the

databases, where Q
[k∗]
n is the query for database-n. The

retrieval needs to be information theoretically private, i.e., any
database is not able to infer any knowledge as to which
message is being requested. For this purpose, a random key F
in the set F is used together with the desired message index
k∗ to generate the set of queries Q[k∗]

0:N−1. Each query Q
[k∗]
n

belongs to the set of allowed queries for database-n, denoted
as Qn. After receiving query Q[k∗]

n , database-n responds with
an answer A[k∗]

n . Each symbol in the answers also belongs to
the finite field X , and the answers may have multiple (and

different numbers of) symbols. Using the answers A
[k∗]
0:N−1

from all N databases, together with F and k∗, the user then
reconstructs Ŵ k∗

.
A more rigorous definition of the linear information retrieval

process we consider in this work can be specified by a set
of coding matrices and functions as follows. For notational
simplicity, we denote the cardinality of a set A as |A|.

Definition 1: A linear private information retrieval code
from linearly MDS-coded databases (a linear MDS-PIR code)
consists of the following coding components:

1) A set of MDS encoding matrices:

G̃n := diag(G̃0
n, G̃

1
n, . . . , G̃

K−1
n ),

n ∈ {0, 1, . . . , N − 1}, (2)

where G̃k
n, k ∈ {0, 1, . . . ,K − 1} is an L×M matrix in

X for encoding message W k, i.e., each message is not
mixed with other messages during storage, and each G̃n

encodes the messages into the information to be stored
at database-n, denoted as Vn = W 0:K−1 · G̃n;

2) A set of MDS decoding recovery functions:

ΨT : XLK → XLK , (3)

for each T ⊆ {0, 1, . . . , N−1} such that |T | = T , whose
outputs are denoted as W̃ 0:K−1

T = ΨT ({Vn : n ∈ T });
3) A set of query functions

φn : {0, 1, . . . ,K − 1} × F → Qn,

n ∈ {0, 1, . . . , N − 1},

i.e., for retrieving message W k∗
, the user sends the query

Q
[k∗]
n = φn(k∗,F) to database-n;

4) A set of answer length functions

�n : Qn → {0, 1, . . .}, n ∈ {0, 1, . . . , N − 1}, (4)

i.e., the length of the answer from each database, a non-
negative integer, is a deterministic function of the query,
but not the particular realization of the messages;

5) A set of answer generating matrices

Ĝ(qn)
n ∈ XMK×�n , qn ∈ Qn, n ∈ {0, 1, . . . , N − 1},

(5)
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i.e., the answer A[k∗]
n = A

(qn)
n := Vn · Ĝ(qn)

n , when qn =
Q

[k∗]
n is the query received by database-n;

6) A reconstruction function

ψ :
N−1�
n=0

X �n × {0, 1, . . . ,K − 1} × F → XL, (6)

i.e., after receiving the answers, the user reconstructs the
message as Ŵ k∗

= ψ(A[k∗]
0:N−1, k

∗,F).
These functions satisfy the following three requirements:

1) MDS recoverable: For any T ⊆ {0, 1, . . . , N − 1} such
that |T | = T , we have W̃ 0:K−1

T = W 0:K−1.
2) Retrieval correctness: For any k∗ ∈ {0, 1, . . . ,K − 1},

we have Ŵ k∗
= W k∗

.
3) Privacy: For every k, k� ∈ {0, 1, . . . ,K − 1}, n ∈

{0, 1, . . . , N − 1} and q ∈ Qn,

Pr(Q[k]
n = q) = Pr(Q[k′]

n = q). (7)

Note that Q[k∗]
n is in fact a random variable, since F is the

random key. It follows that even when the messages are viewed
as deterministic, A[k∗]

n is still not deterministic. In contrast, for
any specific query realization Q

[k∗]
n = qn, the corresponding

answer A(qn)
n is deterministic when the messages are viewed

as deterministic. The distinction between A
[k∗]
n and A

(qn)
n is

indicated by the bracket [·] and the parenthesis (·).
In order to measure the performance of an MDS-PIR code,

we consider the following two metrics, with the focus on
minimizing the latter while keeping the former optimal:

1) The retrieval rate, which is defined as

R :=
L�N−1

n=0 �(�n)
. (8)

This is the number of bits of desired message information
that can be privately retrieved per bit of downloaded data.
It was shown [4] that the maximum retrieval rate, i.e., the
capacity of such MDS-PIR systems, is as given in (1).

2) The message size L, which is the number of symbols to
represent each individual message. This quantity should
be minimized, because in practical applications, a smaller
message size implies a more versatile code.

A third metric, the upload cost, is also of interest in practical
systems (also particularly in computer science literature, e.g.,
[1]), although it is not our main focus in this work. The upload
cost can be defined as

N−1�
n=0

log2 |Qn|, (9)

which is roughly the total number of bits that the user needs
to send to the servers during the query phase.

We will need several more parameters before proceeding.
Define p := gcd(N,T ), then

N − T = p · r, T = p · s, (10)

for some positive integers r and s, which are co-prime.

III. NEW MDS-PIR CODE: CONSTRUCTION-A

In this section, we provide the first MDS-PIR code con-
struction with message length L = lcm(N −T, T ), which we
refer to as Construction-A.

A. The Coding Components of Construction-A

Each message W k can be divided into r sub-messages,
denoted as W k = (W k,0,W k,1, . . . ,W k,r−1), and each sub-
message contains T symbols in the alphabet X . The construc-
tion relies on two novel ingredients: a new indexing on the
key (query) and the introduction of pseudo code symbols. The
two elements were not present in other constructions in the
literature such as [2], [4], [6]. A simpler version of these two
ingredients were first used in [8] for replicated databases. The
generalized version used in the current work requires a more
complex translation between indexing and the answer, as well
as the introduction of more than one pseudo code symbol.

The first novel ingredient in the construction, which is
different from previous ones in the literature, is the random key
F = (F0,F1, . . . ,FK−1), which is a length-K vector uniformly
distributed in the set

F :=
	

(f0, . . . , fK−1) ∈ {0, . . . , r + s− 1}K






�

K−1�
k=0

fk

�
r+s

= 0
�
, (11)

where (·)r+s indicates modulo (r+ s). In this code construc-
tion, we need to first choose a (in fact, any) linear (N,T )-MDS
code �, in the alphabet X as our base code. There are
many known techniques to construct such codes, such as
Reed-Solomon codes and Cauchy matrix based constructions;
see [12]. The coding functions can then be given as follows:

1) Each sub-message W k,m, m = 0, 1, . . . , r − 1 and k =
0, 1, . . . ,K − 1, is encoded by � into N coded sym-
bols V k,m

0:N−1 = (V k,m
0 , V k,m

1 , . . . , V k,m
N−1), with V k,m

n =
W k,m · G̃∗

n ∈ X placed at database-n, where G̃∗
n is the

n-th column of the T × N generator matrix of code �

operated on each sub-message, which produces the stored
information at database-n.

2) The MDS decoding function is obvious which is naturally
induced by that of �.

3) For any n ∈ {0, 1, . . . , N − 1}, the query generating
function produces a length-K column vector as

φn(k∗,F) = Q[k∗]
n =

(F0, . . . ,Fk∗−1, (Fk∗ + n)r+s ,Fk∗+1, . . . ,FK−1)T .

(12)

4) Database-n first produces a K × s query matrix Q̃n

Q̃n =
�
Q[k∗]

n · 1T
s + 1K · [0, 1, . . . , s− 1]


r+s

, (13)

where 1t is the all-one column vector of length t, and
T indicates matrix transpose; the element of Q̃n on the
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Fig. 1. The queries to different databases are illustrated. The parts of the
queries related to the interference signals are of the same pattern. As a
consequence, the induced interference signals in the answers will have the
same pattern, and T of them can be isolated to remove the interference signals
in all the answers.

k-th row and i-th column is denoted as Q̃k,i
n . The query

length function is then defined as:

�n =
s−1�
i=0

�

�
min

k=0,1,...,K−1
Q̃k,i

n < r

�
, (14)

where �(·) is the indicator function, i.e., �n is the number
of columns in Q̃n which have an element less than r.

5) The second novel ingredient, which is different from
previous ones in the literature, is the introduction of
pseudo code symbols and pseudo message symbols in
the sub-messages: V k,i

n = W k,i = 0 for i ≥ r. For
n ∈ {0, 1, . . . , N − 1}, an intermediate answer vector
Ã

[k∗]
n of length-s is formed as

Ã[k∗]
n :=

�
K−1�
k=0

V
k,Q̃k,0

n
n ,

K−1�
k=0

V
k,Q̃k,1

n
n ,

. . . ,

K−1�
k=0

V
k,Q̃k,s−1

n
n

�
, (15)

each component of which is the finite field addition of
some components of the vector Vn that are indicated by
the corresponding column of Q̃n. The eventual answer
A

[k∗]
n of length �n is formed by concatenating the com-

ponents of Ã[k∗]
n which are not constantly zero, i.e., those

corresponding to the positions indicated in (14).
6) For any i ∈ {0, 1, . . . , s − 1}, define the interference

database set Ti := {n| Q̃k∗,i
n ≥ r}. The i-th component

of Ã[k∗]
n , n ∈ Ti, can be written as

K−1�
k=0

V
k,Q̃k,i

n
n =

K−1�
k=0

�
W k,Q̃k,i

n · G̃∗
n



=

�
K−1�
k=0

W k,Q̃k,i
n

�
· G̃∗

n = W̄ [k∗],i · G̃∗
n, n ∈ Ti,

where the length-T row vector W̄ [k∗],i is defined as

W̄ [k∗],i :=

�
k∗−1�
k=0

W k,Q̃k,i
n ⊕

K−1�
k=k∗+1

W k,Q̃k,i
n

�
.

Note that W̄ [k∗],i is not a function of n, since Q̃k,i
n = Q̃k,i

n′

unless k = k∗. Thus as long as |Ti| ≥ T , the vector
W̄ [k∗],i can be fully recovered by the MDS property of

the code �; see Fig. 1 for an illustration. Further note that
the i-th component of Ã[k∗]

n for n ∈ {0, 1, . . . , N−1}\Ti

can be written as�
W̄ [k∗],i · G̃∗

n


⊕
�
W k∗,Q̃k∗,i

n · G̃∗
n


, (16)

from which, since W̄ [k∗],i is known, we can recover�
W k∗,Q̃k∗,i

n · G̃∗
n


, n ∈ {0, 1, . . . , N − 1} \ Ti. (17)

Denote Nm :=
�
n


∃i, Q̃k∗,i

n = m
�

. As long as |Nm| ≥
T , we can recover the vector W k∗,m by again invoking
the property of the MDS code �.

B. An Example for Construction-A

Let us first consider an example (N,T,K) = (3, 2, 3),
which induces (p, r, s, L) = (1, 1, 2, 2) in the code. We omit
the index i since here r = 1. The possible queries Q0, Q1,
and Q2 are listed in the corresponding columns in Table I.
With a given query Qn, the expanded query Q̃n is given to
its right, the second column of which is by adding 1 to each
component and then taking modulo-3, as specified in Step-4
of the protocol. The answer An is then simply constructed by
taking each column of Q̃n, and forming the addition of the
corresponding V symbols, by however, taking advantage of
the fact that V k,i

n = 0 whenever i ≥ 1.
Consider the case to retrieve message k∗ = 1, and the key

is F = (0, 1, 2)T . Then the queries are

Q0 = (0, 1, 2)T , Q1 = (0, 2, 2)T , Q2 = (0, 0, 2)T . (18)

The corresponding queries (and query matrices such induced)
and answers are marked bold in Table I. In these Q̃ matrices,
each column has at least one element being 0, and thus the
total number of transmission symbols is 6. It is seen that
from (V 0

0 , V
0
1 ), the symbol V 0

2 can be recovered by the MDS
property, and thus V 1

2 . Similarly, we can recover V 1
1 . Using

both (V 1
1 , V

1
2 ), we can then recover the original message W1

by decoding the MDS code �.

C. Correctness, Privacy, and Communication Costs

According to the last coding component function (the recon-
struction function) in Construction-A, the correctness of the
proposed code hinges on two conditions: |Ti| ≥ T for all
i = 0, 1, . . . , s− 1 and |Nm| ≥ T for all m = 0, 1, . . . , r− 1.
We establish these two conditions in the following lemma,
whose proof can be found in Appendix A.

Lemma 1: In Construction-A, for any request of message-k∗

and any random key F,

1) |Ti| = T for any i ∈ {0, 1, . . . , s− 1};
2) |Nm| = T for any m ∈ {0, 1, . . . , r − 1}.

We have the following main theorem for Construction-A.
Theorem 1: Codes obtained by Construction-A are both

private and capacity-achieving.
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TABLE I

QUERIES AND ANSWERS FOR (N, T, K) = (3, 2, 3)

Proof: The fact that the code is private is immediate,
by observing that Q[k∗]

n is uniformly distributed on the set

Qn =
	

(f0, . . . , fK−1)T ∈ {0, . . . , r + s− 1}K






�

K−1�
k=0

fk − n

�
r+s

= 0
�
, (19)

regardless of the value of k∗.
The expected lengths of the answers is
N−1�
n=0

�(�n) =
N−1�
n=0

s−1�
i=0

Pr
�

min
k=0,1,...,K−1

Q̃k,i
n < r

�

=
s−1�
i=0

N−1�
n=0

Pr
�

min
k=0,1,...,K−1

Q̃k,i
n < r

�
, (20)

assuming an arbitrary message k∗ is being requested. The
probabilities involved in the summand i = i∗ depend on�

Q̃0:K−1,i∗
0 , Q̃0:K−1,i∗

1 , . . . , Q̃0:K−1,i∗
N−1


. (21)

By the definition of Q̃k,i
n , it is clear that if any item in

(F0 + i∗, . . . ,Fk∗−1 + i∗,Fk∗+1 + i∗, . . . ,FK−1 + i∗)r+s

is less than r, then mink=0,1,...,K−1 Q̃
k,i∗
n < r for all n =

0, 1, . . . , N − 1, which will induce N transmitted symbols in
the retrieval from all databases for i = i∗; this event E occurs
with probability 1− (s/(r+s))K−1. On the other hand, when
the event E does not occur, in the vector

(Fk∗ + i∗ + 0,Fk∗ + i∗ + 1, . . . ,Fk∗ + i∗ +N − 1)r+s

the number of elements that are less than r is N − T , which
induces (N − T ) symbols being transmitted. Therefore

N−1�
n=0

�(�n) = s [Pr(E)N + (1 − Pr(E)) (N − T )]

= sN − sT

�
T

N

�K−1

= sN

�
1 −

�
T

N

�K
�
, (22)

from which it follows that the code is indeed capacity achiev-
ing, by taking into account (10).

The following result is also immediate, and we state it as a
lemma below.

Lemma 2: The upload cost of Construction-A is N(K−1)
log [N/ gcd(N,T )].

Proof: Consider any k∗. By (12), we see that |Qn| =
|F| = (N/ gcd(N,T ))K−1, and it follows that the upload

cost is
�N−1

n=0 log(|Qn|) = N(K−1) log [N/ gcd(N,T )].

IV. NEW MDS-PIR CODE: CONSTRUCTION-B

In this section, we provide an alternative code construction,
namely Construction-B. This construction requires a lower
upload cost than Construction-A, however, it relies on two
different coding strategies for the two cases of high rate codes
T ≥ N − T and low rate codes T ≤ N − T . The high rate
code construction is essentially built on a product code, while
the low rate codes bear more similarity to Construction-A.

A. Construction-B for T ≥ N − T

In this construction, the same random key F =
(F0,F1, . . . ,FK−1) as in Construction-A is used, and the MDS
encoding matrices and decoding functions are also exactly
the same as in Construction-A. We need a second generic
(s, r)-MDS code �c in the alphabet X in this construction.
Construction-B essentially utilizes a product code with row
code � and column code �c [12]. In this context, it is more
convenient to view the message W k as being represented as
an r × T matrix, denoted as W̆ k

W̆ k =

⎡
⎢⎢⎢⎣
W k,0

W k,1

...
W k,r−1

⎤
⎥⎥⎥⎦ . (23)

Next we provide the coding components (3 − 6) in
Construction-B.
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3) The query generating function at server-n produces the
following K × 1 query vector

φn(k∗,F) = Q[k∗]
n = (Q[k∗]

0,n , Q
[k∗]
1,n , . . . , Q

[k∗]
K−1,n)T

= 	(F0,F1, . . . ,Fk∗−1, (Fk∗ + n)s+r ,

Fk∗+1, . . . ,FK−1)T 
s, (24)

where 	x
s := min(x, s), and it operates on a vector by
operating on each component individually.

4) Define an s× (s+ 1) query pattern matrix P as

P :=

⎡
⎢⎢⎢⎣

1 1 1 · · · 1 0 0 · · · 0 0
0 1 1 · · · 1 1 0 · · · 0 0
...

...
...

...
...

...
... 0

1 1 · · · 1 0 0 · · · 0 1 0

⎤
⎥⎥⎥⎦ ,

(25)

where the first row has the first r elements being 1’s and
the rest (s − r + 1) being 0’s, and the remaining rows
are obtained by cyclically shifting the first s elements in
the first row but keeping the last 0 in place. The query
length function is then defined as

�n =
s−1�
i=0

�

�
K−1�
k=0

P
i,Q

[k∗ ]
k,n

> 0

�
, (26)

i.e., it is the number of columns in the matrix P selected
by the vector Q[k∗]

n that have non-zero elements.
5) Recall that coded message W k at database-n is a length-r

vector V k
n

V k
n =

⎡
⎢⎢⎢⎣
V k,0

n

V k,1
n
...

V k,r−1
n

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
W k,0

W k,1

...
W k,r−1

⎤
⎥⎥⎥⎦ · G̃∗

n. (27)

In order to generate the answer, each V k
n vector is

encoded by �c into a length-s intermediate code vector

Ṽ k
n = (Ṽ k

n,0, Ṽ
k
n,1, . . . , Ṽ

k
n,s−1) = (Ĝ∗)T · V k

n , (28)

where Ĝ∗ is the generator matrix of the code �c.
An intermediate answer vector is then produced

Ã[k∗]
n :=

�
K−1�
k=0

Ṽ k,0
n · P

0,Q
[k∗]
k,n

,

K−1�
k=0

Ṽ k,1
n · P

1,Q
[k∗]
k.n

,

· · · ,
K−1�
k=0

Ṽ k,s−1
n · P

s−1,Q
[k∗ ]
k,n

�T

. (29)

The eventual answer A[k∗]
n of length �n is formed by

concatenating the components of Ã[k∗]
n which are not

constantly zero, i.e., those indicated by (26).
6) For any i ∈ {0, 1, . . . , s − 1}, define the interference

database set T̃i := {n| P
i,Q

[k∗ ]
k∗,n

= 0}. For n ∈ T̃i, the i-th

symbol in the intermediate answer is

Ã
[k∗]
n,i =

K−1�
k=0

Ṽ k,i
n · P

i,Q
[k∗]
k,n

=
K−1�
k=0

(Ĝ∗
i )

T · V k
n · P

i,Q
[k∗]
k,n

=
K−1�
k=0

(Ĝ∗
i )

T · W̆ k · G̃∗
n · P

i,Q
[k∗]
k,n

=
K−1�
k=0

(Ĝ∗
i )

T ·
�
W̆ k · P

i,Q
[k∗ ]
k,n


· G̃∗

n

= (Ĝ∗
i )

T ·
�

K−1�
k=0

W̆ k · P
i,Q

[k∗ ]
k,n

�
· G̃∗

n

= (Ĝ∗
i )

T · W̄ [k∗]
i · G̃∗

n,

where the r × T matrix W̄ [k∗]
i is defined as

W̄
[k∗]
i :=

�
k∗−1�
k=0

W̆ k · P
i,Q

[k∗]
k,n

�

⊕
�

K−1�
k=k∗+1

W̆ k · P
i,Q

[k∗]
k,n

�
.

Note that W̄ [k∗]
i is not a function of n, since Q

[k∗]
k,n =

Q
[k∗]
k,n′ unless k = k∗. Thus as long as |T̃i| ≥ T ,

the vector (Ĝ∗
i )

T · W̄ [k∗]
i can be fully recovered by the

MDS property of the code �. Further note that Ã[k∗]
n,i for

n ∈ {0, 1, . . . , N − 1} \ T̃i can be written as�
(Ĝ∗

i )
T · W̄ [k∗]

i · G̃∗
n


⊕
�
(Ĝ∗

i )
T · W̆ k∗

· G̃∗
n


, (30)

from which, since (Ĝ∗
i )

T ·W̄ [k∗]
i is known, we can recover

(Ĝ∗
i )

T · W̆ k∗ · G̃∗
n, n ∈ {0, 1, . . . , N − 1} \ T̃i. (31)

Denote Sn :=
	
i



Pi,Q

[k∗]
k∗,n

= 1
�

and N :=

{n | |Sn| ≥ r}, the latter of which is the set of databases
that provide at least r symbols of the requested messages
in the form (31). For any n ∈ N , we can recover W̆ k∗ ·G̃∗

n

by invoking the property of MDS code �c. Then as long
as |N | ≥ T , W̆ k∗

can be fully recovered by invoking the
MDS property of code �.

1) An Uncompressed Description of Construction-B: The
description of the coding components above is in a compressed
form, and offers little intuition. The following equivalent
description, on the other hand, can provide better intuition at
the expense of more redundant items. Let the extended pattern
matrix P̄ of size s× (s+ r) be defined as

P̄ = [P |0s×(r−1)], (32)

i.e., expanding the original pattern matrix P by appending
an all-0 matrix of size s × (r − 1). The same query answer
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can now be equivalently produced at each server by using the
following auxiliary query

Q̄[k∗]
n = (F0,F1, . . . ,Fk∗−1,

(Fk∗ + n)s+r ,Fk∗+1, . . . ,FK−1)T , (33)

i.e., without using the 	·
s function mapping, and then follow-
ing the same manner in answer generating, using the extended
patter matrix P̃ . The stored contents of message W k across
all the databases can be visualized as follows⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ṽ k,0
0 Ṽ k,0

1 · · · Ṽ k,0
N−1

Ṽ k,1
0 Ṽ k,1

1 · · · Ṽ k,1
N−1

...
...

...
...

Ṽ k,r−1
0 Ṽ k,r−1

1 · · · Ṽ k,r−1
N−1

Ṽ k,r
0 Ṽ k,r

1 · · · Ṽ k,r
N−1

...
...

...
...

Ṽ k,s−1
0 Ṽ k,s−1

1 · · · Ṽ k,s−1
N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (34)

where each column corresponds to a database, and the contents
below the horizontal line are not stored physically, but can be
generated as part of the answer computation.

It is straightforward to verify that with the auxiliary query
Q̄

[k∗]
n as the queries, the extended pattern matrix P̄ in the

answer generation, and the uncompressed stored contents Ṽ k,0
0

as the stored content, the answer is precisely the same as the
compressed version described above.

2) An Example of Construction-B: Consider an example
N = 5, T = 3, K = 4, which induces the parameters
(p, r, s, L) = (1, 2, 3, 6). The pattern matrix P and the
extended pattern matrix P̄ are

P =

⎡
⎣1 1 0 0
0 1 1 0
1 0 1 0

⎤
⎦ , P̄ =

⎡
⎣1 1 0 0 0
0 1 1 0 0
1 0 1 0 0

⎤
⎦ . (35)

Let the messages be W 0:3 = (A,B,C,D). Consider the case
when message W 0 = A is being requested, and the key is
F = (3, 4, 1, 2). Then the auxiliary queries are

[Q̄0, Q̄1, Q̄2, Q̄3, Q̄4] =

⎡
⎢⎢⎣
3 4 0 1 2
4 4 4 4 4
1 1 1 1 1
2 2 2 2 2

⎤
⎥⎥⎦ , (36)

and the compressed queries are

[Q0, Q1, Q2, Q3, Q4] =

⎡
⎢⎢⎣
3 3 0 1 2
3 3 3 3 3
1 1 1 1 1
2 2 2 2 2

⎤
⎥⎥⎦ . (37)

The answers from the five databases are then⎡
⎢⎣ C0

0 C0
1 A0

2 + C0
2 A0

3 + C0
3 C0

4

C1
0 + D1

0 C1
1 + D1

1 C1
2 + D1

2 A1
3 + C1

3 + D1
3 A1

4 + C1
4 + D1

4

D2
0 D2

1 A2
2 + D2

2 D2
3 A2

4 + D1
4

⎤
⎥⎦ ,

(38)

where we have used Am
n to denote Ṽ 0,m

n , as the correspond-
ing coded message W 0 = A, and similarly for B,C,D.

Observer that in the first row (C0
0 , C

0
1 , C

0
4 ) can be used to

recover C0
n, n = 0, 1, . . . , 4, and thus to obtain (A0

2, A
0
3);

similarly, in the second row and third row, we can recover
information on the A message. The information on A we can
recover is thus as given in the following message matrix where
each column corresponds to a database⎡

⎣ ∗ ∗ A0
2 A0

3 ∗
∗ ∗ ∗ A1

3 A1
4

∗ ∗ A2
2 ∗ A2

4

⎤
⎦ . (39)

It is now straightforward to see that through the product code
based on the (5, 3) MDS code � and the (3, 2) MDS code �c,
the message A can be fully recovered.

3) Correctness, Privacy, and Communication Costs:
Similar to Construction-A, the correctness of Construction-B
relies on the following two facts established as Lemma 3,
whose proof can be found in Appendix A.

Lemma 3: In Construction-B, for any request of message-k∗

and any random key F,
1) |T̃i| = T for any i ∈ {0, 1, . . . , s− 1};
2) |N | = T .
We also have the follow main theorem for Construction-B.
Theorem 2: The codes obtained by Construction-B for T ≥

N − T are both private and capacity-achieving.
Proof: To see that the code is private, observe that for

database-n, the auxiliary query vector Q̄[k∗]
n follows a uniform

distribution in the set defined in (19) for any requested
message k∗ ∈ {0, 1, . . . ,K − 1}. The query Q[k∗]

n is obtained
through an additional mapping 	·
s regardless of k∗, and thus
the query at database-n follows the same distribution for all k∗.

The expected lengths of the answers can be written as
N−1�
n=0

�(�n) =
N−1�
n=0

s−1�
i=0

Pr

�
K−1�
k=0

P
i,Q

[k∗ ]
k,n

> 0

�

=
s−1�
i=0

N−1�
n=0

Pr

�
K−1�
k=0

P
i,Q

[k∗]
k,n

> 0

�

=
s−1�
i=0

N−1�
n=0

Pr

�
K−1�
k=0

P̄
i,Q̄

[k∗]
k,n

> 0

�
, (40)

assuming an arbitrary message k∗ is being requested. The
probabilities involved in the summand for i = i∗ depend on
the vector�

Q̄
[k∗]
0:K−1,0, Q̄

[k∗]
0:K−1,1, . . . , Q̄

[k∗]
0:K−1,N−1


. (41)

By the definition of Q̄[k∗]
0:K−1,n, it is clear that if P̄i∗,Fk

=
1 for any k ∈ {0, 1, . . . , k∗ − 1, k∗ + 1, . . . ,K − 1}, then�K−1

k=0 P
i,Q

[k∗ ]
k,n

> 0 for all n = 0, 1, . . . , N − 1. This will

induce N transmissions in the retrieval from all databases for
i = i∗. This event, denoted as E, occurs with probability
1− (s/(r+ s))K−1, since the i∗-th row of the matrix P̄ has r
entries of value 1, and Q̄[k∗]

k,n = Fk, k = 0, 1, . . . , k∗ − 1, k∗ +
1, . . . ,K−1, are mutually independent, identically distributed,
and each follows a uniform distribution on {0, 1, . . . , r+s−1}.

On the other hand, when the event E does not occur,
the vector

(Fk∗ + 0,Fk∗ + 1, . . . ,Fk∗ +N − 1)r+s
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is a permutation of the p-replicated vector of (0, 1, . . . ,
s + r − 1), and thus the number of elements that satisfying
P̄i∗,(Fk∗+n)r+s

= 1, n = 0, 1, . . . , N − 1, is exactly N − T ,
implying that (N −T ) symbols will be transmitted for i = i∗.
Therefore, we have

N−1�
n=0

�(�n) = s [Pr(E)N + (1 − Pr(E)) (N − T )]

= sN − sT

�
T

N

�K−1

= sN

�
1 −

�
T

N

�K
�
, (42)

from which it follows that the code is indeed capacity
achieving.

Lemma 4: The upload cost of Construction-B for
T ≥ N − T is upper-bounded by

min[N(K − 1) log(s+ r), NK log(s+ 1)].

Proof: For datebase-n, the query Q[k∗]
n has K symbols,

and each symbol is from the alphabet {0, 1, . . . , s}, and thus
the the upload cost is clearly upper bounded by N log(s+1)K .
However, observe that the query Qn is calculated by mapping
the random key F with log |F| = N(K−1) log(s+r) through
an surjective function 	·
s, whose image size is upper bounded
by log(s + r)K−1. If (s + 1)K > (s + r)K−1, then we can
simply use the auxiliary query Q̄[k∗]

n . Thus the upload cost is
at most the less of the two terms as given above.

If r > 1, the quantity NK log(s + 1) is clearly the less
of the two when K is large, and thus may lead to significant
savings in terms of the upload cost.

B. Construction-B for T ≤ N − T

Here the same random key F = (F0,F1, . . . ,FK−1) as
in Construction-A is again used, and the MDS encoding
matrices and decoding functions are also exactly the same as
in Construction-A. The other components of the codes are as
follows.

3) For any n ∈ {0, 1, . . . , N − 1}, the query generating
function produces a query with K symbols

φn(k∗,F) = Q[k∗]
n = (Q[k∗]

0,n , Q
[k∗]
1,n , . . . , Q

[k∗]
K−1,n)T =

	(F0, . . . ,Fk∗−1, (Fk∗ + n)s+r ,Fk∗+1, . . . ,FK−1)T 
r.

(43)

4) The query length function is then defined as

�n = s · �
�

min
k=0,...,K−1

Q
[k∗]
k,n < r

�
. (44)

5) Let V k,r
n = W k,r = 0. Database-n first produces a K×s

query matrix Q̃n for i = 0, 1, . . . , s− 1

Q̃k,i
n =

⎧⎨
⎩

r if Q[k∗]
k,n = r�

Q
[k∗]
k,n + i


r

otherwise
. (45)

For n ∈ {0, 1, . . . , N − 1}, an intermediate answer

vector Ã
[k∗]
n of length-s is formed (similar to

Construction-A) as

Ã[k∗]
n :=

�
K−1�
k=0

V
k,Q̃k,0

n
n ,

K−1�
k=0

V
k,Q̃k,1

n
n ,

. . . ,

K−1�
k=0

V
k,Q̃k,s−1

n
n

�T

. (46)

The eventual answer A[k∗]
n of length �n is formed by

concatenating the components of Ã[k∗]
n which are not

constantly zero, as indicated by (44).
6) The reconstruction function is the same as that of

Construction-A, and the desired message can be correctly
reconstructed as long as |Ti| ≥ T and |Nm| ≥ T .

For better visualization, we can again consider the
(uncompressed) auxiliary query

Q̄[k∗]
n = (F0,F1, . . . ,Fk∗−1, (Fk∗ + n)s+r ,

Fk∗+1, . . . ,FK−1)T . (47)

The query vectorQ[k∗]
n is a compressed version of the auxiliary

query Q̄[k∗]
n .

1) An Example for Construction-B: Consider an example
N = 5, T = 2, K = 4, which induces the parameters
(p, r, s, L) = (1, 3, 2, 6). Let the messages be W 0:3 =
(A,B,C,D). Consider the case when message W0 = A is
being requested, and the key is F = (3, 4, 1, 2). Then the
auxiliary queries and the queries are as given in (36) and (37),
respectively. The intermediate query matrix at all the databases
are

[Q̃0, Q̃1, Q̃2, Q̃3, Q̃4]

=

⎡
⎢⎢⎣

3 3 3 3 0 1 1 2 2 0
3 3 3 3 3 3 3 3 3 3
1 2 1 2 1 2 1 2 1 2
2 0 2 0 2 0 2 0 2 0

⎤
⎥⎥⎦ . (48)

The answers from the five databases are then�
C1

0 + D2
0 C1

1 + D2
1 A0

2 + C1
2 + D2

2 A1
3 + C1

3 + D2
3 A2

4 + C1
4 + D2

4

C2
0 + D0

0 C2
1 + D0

1 A1
2 + C2

2 + D0
2 A2

3 + C2
3 + D0

3 A0
4 + C2

4 + D0
4

�
.

(49)

In the first row, (C1
0 +D2

0, C
1
1 +D2

1) can be used to recover
(C1

n +D2
n) for any n = 0, 1, . . . , 4, using the MDS property

of code �. Similarly, C2
n + D0

n can be recovered. Therefore,
the following information on the requested message A can be
obtained �

∗ ∗ A0
2 A1

3 A2
4

∗ ∗ A1
2 A2

3 A0
4

�
, (50)

from which message A can clearly be reconstructed.
2) Correctness, Privacy, and Communication Costs: The

following lemma establishes the correctness of Construction-
B when T ≤ N − T , the proof of which can be found in
Appendix A.

Lemma 5: In the construction above, for any request of
message-k∗ and any random key F,

1) |Ti| = T for any i ∈ {0, 1, . . . , s− 1};
2) |Nm| = T for any m ∈ {0, 1, . . . , r − 1}.
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Theorem 3: Construction-B is both private and capacity-
achieving for T ≤ N − T .

Proof: The fact that the code is private is immediate for
the same reason for the case T ≥ N−T . The expected length
of the answers is

N−1�
n=0

�(�n) = s
N−1�
n=0

Pr
�

min
k=0,1,...,K−1

Q
[k∗]
k,n < r

�
,

assuming an arbitrary message k∗ is being requested. By the
definition of Q[k∗]

n , if any item in

	(F0, . . . ,Fk∗−1,Fk∗+1, . . . ,FK−1)r+s
r

is less than r, then mink=0,1,...,K−1Q
[k∗]
k,n < r for all n =

0, 1, . . . , N − 1, which will induce sN transmitted symbols
in the retrieval from all databases; this event E occurs with
probability 1 − (s/(r + s))K−1.

On the other hand, when the event E does not occur, in the
vector

	(Fk∗ + 0,Fk∗ + 1, . . . ,Fk∗ +N − 1)r+s
r

the number of elements that are less than r is exactly N −T ,
which induces s(N−T ) symbols being transmitted. Therefore

N−1�
n=0

�(�n) = Pr(E)sN + (1 − Pr(E)) s(N − T )

= sN − sT

�
T

N

�K−1

= sN

�
1 −

�
T

N

�K
�
, (51)

from which it follows that Construction-B is indeed capacity
achieving.

Lemma 6: The upload cost of Construction-B for
T ≤ N − T is upper-bounded by

min[N(K − 1) log(s+ r), NK log(r + 1)].

The proof follows the same argument as that of Lemma 4,
and it is omitted here for brevity.

V. MINIMUM MESSAGE SIZE FOR

CAPACITY-ACHIEVING

LINEAR CODES

In this section, we establish the minimum message size as
lcm(N −T, T ) when K is above a threshold, then shows that
it is in fact possible to use an even smaller message size when
K is below this threshold.

A. Properties of Capacity-Achieving Linear MDS-PIR Codes

In this section, we provide two key properties of capacity-
achieving linear MDS-PIR codes, which play an instrumental
role in our study of the minimum message size.

Lemma 7: Any linear MDS-PIR code must have:

P0 For any T ⊆ {0, 1, . . . , N − 1} satisfying |T | = T ,
{A[k]

n }n∈T are mutually independent, given any subset
of messages W 0:K−1.

Lemma 8: Let π : {0, 1, . . . ,K−1} → {0, 1, . . . ,K−1} be
a permutation function. We have for any k = 0, 1, . . . ,K − 2,

N

�
N−1�
n=0

H(A[π(k)]
n |Wπ(0:k−1),F) − L log |X |

�

≥ T

N−1�
n=0

H(A[π(k+1)]
n |Wπ(0:k),F). (52)

Moreover, for any linear MDS-PIR code for which the equality
holds for any k and π(·) in (52), let q0:N−1 be a combination
of queries such that Pr(q0:N−1) > 0 for the retrieval of W k∗

,
then the code must have:
P1 For any T ⊆ {0, 1, . . . , N − 1} such that |T | = T , and

J ⊆ {0, 1, . . . ,K − 1} satisfying k∗ ∈ J

H
�
A

(qn′ )
n′ , n� ∈ T̄ |WJ , A(qn)

n , n ∈ T


= 0,

where T̄ is the complement of T .
Property P0 is a direct consequence of the linear MDS-PIR

code definition. Property P1 states that the interference signals
from the answers of any T databases in a capacity-achieving
code can fully determine all interference signals in other
answers. The inequalities in Lemma 8 are the key steps in
deriving the capacity of MDS-PIR codes; the proofs of these
properties are can be found in Appendix B. Conversely, for any
capacity-achieving linear MDS-PIR code, these inequalities
must hold with equality, implying the following theorem.

Theorem 4: Any capacity-achieving linear MDS-PIR code
must have the properties P0 and P1.

Proof: Let π : {0, 1, . . . ,K − 1} → {0, 1, . . . ,K − 1}
be a permutation. By applying Lemma 8 recursively, we can
write

L log |X |
R

≥
N−1�
n=0

H(A[π(0)]
n | F) (53)

≥ L log |X | + T

N

N−1�
n=0

H(A[π(1)]
n |Wπ(0),F) (54)

≥ · · · (55)

≥ L log |X |
�

1 +
T

N
+ · · · +

�
T

N

�K−1
�
, (56)

and it follows that R ≥ C. For any capacity-achieving linear
MDS-PIR code, all the inequalities in Lemma 8 must be
equality. Therefore, any capacity-achieving linear MDS-PIR
code must have properties P0 and P1.

A similar set of properties for capacity-achieving PIR codes
on replicated databases was derived in [8], which holds for a
more general code class and in a more explicit form. For MDS
coded databases, firstly it is more meaningful to consider only
linear codes, and secondly, it is not clear whether the properties
stated in Lemma 7 and 8 can be extended to the more general
class of codes considered in [8].

B. Bounding the Minimum Message Size

The main result of this section is the following theorem.
Theorem 5: When K > T/ gcd(N,T ), the message size

of any capacity-achieving linear MDS-PIR code satisfies
L ≥ lcm(N − T, T ).
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From Theorem 5, we can conclude that codes obtained
by Construction-A and Construction-B indeed have the min-
imum message size when K > T/ gcd(N,T ). The proof
of Theorem 5 relies on the delicate relation among a set of
auxiliary quantities Hk

n’s and Ik
n’s which we define next. For

any given capacity-achieving linear MDS-PIR code, let (k̆, f̆)
be the maximizer for the following optimization problem for
n = 0:

max
k=0,1,...,K−1

max
f∈F

H(A[k]
n |W k,F = f). (57)

Define for k = 0, 1, . . . ,K − 1 and n = 0, 1, . . . , N − 1,

Hk
n :=

H(A[k̆]
n |W k,F = f̆)

log |X | , Ik
n :=

I(A[k̆]
n ;W k | F = f̆)

log |X | .

The following lemma implies that the optimization problem
in (57) has the same maximizer for all n ∈ {0, 1, . . . , N −1}.

Lemma 9: For any capacity-achieving linear MDS-PIR
code, ∀n� = n�� where n�, n�� ∈ {0, 1, . . . , N − 1}, any
k∗ ∈ {0, 1, . . . ,K − 1}, any f ∈ F ,

H(A[k∗]
n′ |W k∗

,F = f) = H(A[k∗]
n′′ |W k∗

,F = f).

This lemma also implies that we can define H k̆ := H k̆
0 =

. . . = H k̆
N−1. The next two lemmas establish a critical property

of, and relevant relations between, Hk
n’s and Ik

n’s.
Lemma 10:

L− (N − T )H k̆ =
N−1�
n=0

I k̆
n . (58)

Lemma 11: For any k ∈ {0, 1, . . . ,K − 1} and n ∈
{0, 1, . . . , N − 1}, Hk

n and Ik
n are integers; moreover

H k̆
n ≥

�
k �=k̆

Ik
n , (59)

and when K > s,

H k̆ ≥ s (60)

The proofs of Lemma 9-11 are given in Appendix B. We are
now ready to prove Theorem 5.

Proof of Theorem 5: When K > s, by (60) in Lemma 11
and Lemma 10, we have

L− (N − T )s ≥ L− (N − T )H k̆ =
N−1�
n=0

I k̆
n ≥ 0. (61)

Substituting L = Mps and (N − T ) = pr into the left hand
side leads to the conclusion M ≥ r, implying that L ≥MT ≥
rT = lcm(N − T, T ).

C. Message Size Reduction for Small K

The following theorem confirms that for small K , it is in
fact possible to construct a capacity-achieving code with an
even smaller message size.

Theorem 6: When K = 2 and T ≥ N − T , the minimum
message size of capacity-achieving codes is T .

Proof of Theorem 6: Since L = MT > 0, it is trivial
to see that L ≥ T , and thus it only remains to provide a
construction of a capacity-achieving linear MDS-PIR code
with such a message size.

Let database-n store two symbols V 0
n , V

1
n ∈ X , which are

MDS-coded symbols of messages W 0 and W 1, respectively.
When the user wishes to retrieve message W k∗

where k∗ ∈
{0, 1}, two query strategies are used.

• With probability T
N , randomly partition N databases into

3 disjoint sets G(0), G(1) and G(2), with |G(0)| = N − T ,
|G(1)| = 2T −N and |G(2)| = N − T . The user requests
V 0

n ⊕V 1
n from databases in G(0), (V 0

n , V
1
n ) from those in

G(1), and V 1−k∗
n in G(2).

• With probability N−T
N , randomly partition N databases

into 2 disjoint sets G(3) and G(4), with |G(3)| = T and
|G(4)| = N − T . The user requests V k∗

n from databases
in G(3), but no information from those in G(4).

It is straightforward to verify that the code is indeed correct,
private, and capacity-achieving.

Theorem 6 provides a code construction with a small
message size for the special case of K = 2 and T ≥ N − T ,
however, we suspect codes with small message sizes also
exist for other parameters when K is below the threshold,
but they may require certain more sophisticated combinatorial
structure. A systematic approach to construct such codes and
a converse result appear rather difficult to find.

VI. CONCLUSION

We proposed two code constructions for private informa-
tion retrieval from MDS-coded databases with message size
lcm(N − T, T ), and show that this is the minimum message
size for linear codes when K is above a threshold. For smaller
K it is in fact possible to design PIR codes with an even
smaller message size, which we show by a special example for
K = 2. This work generalizes our previous result on private
information retrieval from replicated databases [8] in a highly
non-trivial manner. We expect the code constructions and the
converse proof approach to be also applicable and fruitful in
other privacy-preserving primitives.

Independent of this work and inspired by our previous result
[8], Zhu et al. [13] discovered a different code construction,
and also derived a lower bound on the message size similar
to the one reported here. All three code constructions have
the same message size, however, the two constructions we
provided have a lower upload cost due to the queries being
better compressed. It is worth noting that in our previous work
[8], the proposed code was also shown to be optimal in terms
of the upload cost, however, proving the proposed codes in
the current work to be optimal appears more difficult due to
the more complex dependence stipulated by the MDS code.

APPENDIX A
PROOFS OF LEMMA 1, LEMMA 3, AND LEMMA 5

Proof of Lemma 1: Fix a particular k∗. It is convenient
to represent the Q̃k∗,i

n as a matrix given below⎡
⎢⎢⎢⎢⎣
Q̃k∗,0

0 Q̃k∗,0
1 . . . Q̃k∗,0

N−1

Q̃k∗,1
0 Q̃k∗,1

1 . . . Q̃k∗,1
N−1

...
...

...
...

Q̃k∗,s−1
0 Q̃k∗,s−1

1 . . . Q̃k∗,s−1
N−1

⎤
⎥⎥⎥⎥⎦ . (62)
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Since Q̃k∗,i
n = (Fk∗ + i + n)s+r, N = p · (s + r), and T =

p · s, for any i and any given realization of key F, there are
exactly T elements in Q̃k∗,i

0:N−1, which is a row of (62), that
are greater than or equal to r. This proves the first statement
that |Ti| ≥ T . For the second statement, consider a fixed m ∈
{0, 1, . . . , r + s − 1}. It is clear that each row in the matrix
(62) has exactly p positions being m. Therefore, there are a
total of p · s = T elements in the matrix being m. Since for
any i = i� where 0 ≤ i, i� < s, we have Q̃k∗,i

n = Q̃k∗,i′
n , due to

Q̃k∗,i
n = (Fk∗ +i+n)s+r, these T positions are all in different

columns, implying |Nm| = T .
Proof of Lemma 3: For each fixed i ∈ {0, 1, 2, . . . ,

s− 1}, we have

T̃i =
	
n


 P

i,Q
[k∗]
k∗,n

= 0
�

=
	
n


 P̄

i,Q̄
[k∗ ]
k∗,n

= 0
�
, (63)

however, the vector

(Q̄[k∗]
k∗,0, Q̄

[k∗]
k∗,1, . . . , Q̄

[k∗]
k∗,n−1) (64)

is simply a permutation (in fact, a cyclic shift) of p-replicated
vector of (0, 1, . . . , r + s− 1), and thus�

P̄
i,Q̄

[k∗ ]
k∗,0

, P̄
i,Q̄

[k∗]
k∗,1

, . . . , P̄
i,Q̄

[k∗ ]
k∗,N−1

�
(65)

is in fact is a permutation of [P̄i, P̄i, . . . , P̄i], i.e., a p-replicated
version of the i-th row of P̄ . It is now clear that |T̃i| = T ,
because each row of P̄ has exactly s zeros, and the replication
gives a total of ps = T zeros in the vector in (65).

To see that |N | = T , let us focus on any single database-
n such that |Sn| > 0, i.e., P̄

i,Q̄
[k∗]
k∗,n

= 1 for some i ∈

{0, 1, . . . , s − 1}. This condition is equivalent to Q̄
[k∗]
k∗,n < s,

and moreover, it also implies |Sn| = r because the vector�
P̄

0,Q̄
[k∗]
k∗,n

, P̄
1,Q̄

[k∗]
k∗,n

, . . . , P̄
s−1,Q̄

[k∗]
k∗,n

�T

, (66)

is the j = Q̄
[k∗]
k∗,n-th column of the extended pattern matrix P̄ ,

and for any j < s, such a column has exact r positions being
1. It is also immediately clear that among the N databases,
there are a total of sp = T of them with Q̄

[k∗]
k∗,n < s, again

because the vector (64) is a permutation of the p-replicated
vector of (0, 1, . . . , r + s− 1).

Proof of Lemma 5: Define T :=
�
n|Q[k∗]

k∗,n = r
�

, and
notice that in Construction-B, Ti = T for all i = 0, 1, . . . ,
s− 1. Moreover

T =
�
n


Q[k∗]

k∗,n = r
�

=
�
n


Q̄[k∗]

k∗,n ≥ r
�
. (67)

Notice that the vector�
Q̄

[k∗]
k∗,0, Q̄

[k∗]
k∗,1, . . . , Q̄

[k∗]
k∗,N−1


(68)

is a permutation of p-replicated vector (0, 1, . . . , r + s − 1),
and thus it has exactly ps = T items that are greater or equal
to r. This directly implies |T | = T .

By definition, for any Q̃k∗,i
n = m where m < r, to hold,

we must have (Fk∗ + n)s+r < r. It is also clear that Q̃k∗,i
n =

((Fk∗ +n)s+r + i)r. For any m ∈ {0, 1, . . . , r− 1}, there are

in fact exactly ps = T pairs of (n, i)’s such that Q̃k∗,i
n = m.

This can be seen as follows: the vector

(Fk∗ + 0,Fk∗ + 1, . . . ,Fk∗ +N − 1)s+r (69)

has rp = (N − T ) items less than r, and these items are
a permutation of p-replicated vector (0, 1, . . . , r − 1). The
symmetry of these values indeed implies that there are (N−T )
s/r = T such (n, i) pairs for each m ∈ {0, 1, . . . , r − 1}.
We next show that such pairs do not have any common n.
To see this, suppose there are two distinct pairs (n, i) and
(n, i�), which satisfy

((Fk∗ + n)s+r + i)r = ((Fk∗ + n)s+r + i�)r = m, (70)

for certain m ∈ {0, 1, . . . , r − 1}. However, notice that 0 ≤
i, i� < s ≤ r, we therefore must have i = i�, which contradicts
our supposition. It follows that indeed |Nm| = T for any
m ∈ {0, 1, . . . , r − 1}.

APPENDIX B
PROOFS OF LEMMAS 8-11

Proof of Lemma 8:

N

�
N−1�
n=0

H(A[π(k)]
n | Wπ(0:k−1),F) − L log |X |

�
(71)

≥ N
�
H(A[π(k)]

0:N−1 |Wπ(0:k−1),F) − L log |X |
�

(72)

= N
�
H(A[π(k)]

0:N−1 |Wπ(0:k−1),F)

− I(Wπ(k);A[π(k)]
0:N−1 |Wπ(0:k−1),F)

�
(73)

= NH(A[π(k)]
0:N−1 |Wπ(0:k),F) (74)

(b)

≥
N−1�
n=0

H(A[π(k)]
ρ((n:n+T−1)N ) |W

π(0:k),F) (75)

(c)
=

N−1�
n=0

T−1�
s=0

H(A[π(k)]
(n+s)N

|Wπ(0:k),F) (76)

= T

�
N−1�
n=0

H(A[π(k)]
n | Wπ(0:k),F)

�
(77)

= T

�
N−1�
n=0

H(A[π(k+1)]
n |Wπ(0:k),F)

�
, (78)

where ρ : {0, 1, . . . , N−1} → {0, 1, . . . , N−1} in inequality
(75) is a permutation over {0, 1, . . . , N − 1}. Equality (78) is
due to the privacy constraint, which is

H(A[π(k)]
n |Wπ(0:k),F) (79)

=
�
f∈F

Pr(F = f)H(A[π(k)]
n |Wπ(0:k),F = f) (80)

=
�

qn∈Qn

Pr(Qn = qn)H(A(qn)
n |Wπ(0:k)) (81)

= H(A[π(k+1)]
n |Wπ(0:k),F) (82)

For the equality (b) to hold for an MDS-PIR code, i.e.,

H(A[π(k)]
0:N−1 | Wπ(0:k),F) = H(A[π(k)]

ρ((n:n+T−1))N
|Wπ(0:k),F).
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the equality must hold for each F = f , which concludes the
proof of property P1.

Proof of Lemma 9: Let T �, T �� ⊆ {0, 1, . . . , N−1} such
that |T �| = |T ��| = T , and n� ∈ T �, T �� = T � \ {n�} ∪ {n��}.
By P1, any capacity-achieving linear code must have

H(A[k∗]
T ′ | A[k∗]

T ′′ ,W
k∗
,F = f)

= H(A[k∗]
T ′′ | A[k∗]

T ′ ,W
k∗
,F = f) = 0, (83)

which implies

H(A[k∗]
T ′ |W k∗

,F = f) = H(A[k∗]
T ′′ |W k∗

,F = f). (84)

Invoking P0 leads to�
n∈T ′

H(A[k∗]
n |W k∗

,F = f) =
�

n∈T ′′
H(A[k∗]

n |W k∗
,F = f),

which further implies that

H(A[k∗]
n′ |W k∗

,F = f) = H(A[k∗]
n′′ | W k∗

,F = f).

This completes the proof.
Proof of Lemma 10: For any capacity-achieving code,

(71) must equal to (76). The equality should also hold when
F = f̆ , k = 0 and π(0) = k̆. Substituting the definition of H k̆

n

and I k̆
n directly, we have

N

�
N−1�
n=0

�
H k̆ + I k̆

n


− L

�
=

N−1�
n=0

T−1�
s=0

H k̆,

which simplifies to the desired equality.
Proof of Lemma 11: Let qn = φn(k̆, f̆). The linearity of

the code implies that

Hk
n =

H(A[k̆]
n |W k,F = f̆)

log |X | =
H(A(qn)

n |W k)
log |X | (85)

is an integer. Notice that Ik
n + Hk

n is also an integer by the
same argument, from which we conclude that Ik

n is also an
integer.

To see the inequality in (59), we write

H(A(qn)
n ) ≥ I(A(qn)

n ;W 0:K−1)

=
K−1�
k=0

I(A(qn)
n ;W k|W 0:k−1)

(a)

≥
K−1�
k=0

I(A(qn)
n ;W k) = log |X |

K−1�
k=0

Ik
n , (86)

where (a) is because

I(A(qn)
n ;W k|W 0:k−1)

= H(W k|W 0:k−1) −H(W k|W 0:k−1, A(qn)
n )

≥ H(W k) −H(W k|A(qn)
n )

= I(A(qn)
n ;W k). (87)

It follows that

H k̆
n log |X | = H(A(qn)

n ) − I k̆
n log |X |

≥ log |X |
�
k �=k̆

Ik
n . (88)

Next we prove the inequality (60). First define the following
query support set at database-n

Q∗
n = {qn|qn = φn(k = 0, f) for some f ∈ F}, (89)

and since the code is privacy preserving, it is also the query
support set for all other k = 1, . . . ,K − 1. We can then write

H k̆ log |X | = max
k=0,1,...,K−1

max
f∈F

H(A[k]
n | W k,F = f)

= max
k=0,1,...,K−1

max
qn∈Q∗

n

H(A(qn)
n |W k)

≥ max
qn∈Q∗

n

H(A(qn)
n |W k) ≥ H(A[k̆]

n | W k,F = f̆)

= Hk
n log |X | (90)

for any n = 0, 1, . . . , N − 1 and k = 0, 1, . . . ,K − 1.
Plugging T = ps, N − T = pr, and L = MT into (58)

gives

N−1�
n=0

I k̆
n = L− (N − T )H k̆ = p[Ms− rH k̆]. (91)

Since I k̆
n ≥ 0, the left hand side is strictly positive unless

(N − T ) is a factor of L. If the left hand side is zero, then
L ≥ lcm(T,N − T ), implying H k̆ ≥ s. If (N − T ) is not a
factor of L, implying that the left hand side is indeed strictly
positive, then there exists at least one n∗ ∈ {0, 1, . . . , N − 1}
such that I k̆

n∗ ≥ 1. For any k = 0, 1, . . . ,K − 1,

Ik
n∗ +Hk

n∗ = H(A[k̆]
n∗ | F = f̆)/ log |X |, (92)

however, the right hand side of (92) is independent of k, and
thus Ik

n∗ +Hk
n∗ is in fact a constant. Furthermore, H k̆ ≥ Hk

n∗

by (90), it follows that Ik
n∗ ≥ I k̆

n∗ for all k = 0, 1, . . . ,K − 1.
By (59), we can write

H k̆
n∗ ≥

�
k �=k∗

Ik
n∗ ≥ (K − 1)I k̆

n∗ ≥ (K − 1) ≥ s, (93)

when K > s.
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