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Genie Chains: Exploring Outer Bounds on
the Degrees of Freedom of MIMO

Interference Networks
Chenwei Wang, Member, IEEE, Hua Sun, Student Member, IEEE, and Syed Ali Jafar, Fellow, IEEE

Abstract— In this paper, we propose a novel “genie chains”
approach to obtain information theoretic degrees of free-
dom (DoF) outer bounds for MIMO wireless interference net-
works. This new approach creates a chain of mappings from
genie signals provided to a receiver to the exposed signal spaces
at that receiver, and then the exposed signal spaces serve as the
genie signals for the next receiver in the chain subject to certain
linear independence requirements. Our approach essentially
converts an information theoretic DoF outer bound problem into
a linear algebra problem. Several applications of the genie chains
approach are presented.

Index Terms— Capacity, degrees of freedom (DoF), MIMO,
interference networks, outer bounds.

I. INTRODUCTION

RECENTLY, Wang et al. characterized the spatially
normalized degrees of freedom (DoF) for the K = 3 user

MT ×MR interference channel in [2] where each transmitter is
equipped with MT antennas, each receiver with MR antennas,
and MT , MR can take arbitrary positive integer values.1

The DoF characterization is comprised of a piece-wise linear
mapping with infinitely many linear intervals over the range
of the parameter γ = M/N where M = min(MT , MR ),
N = max(MT , MR), shedding light on several interest-
ing elements such as redundant antenna dimensions,
decomposability, subspace alignment chains and the feasibility
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1A strictly weaker set of DoF results for the 3 user MT × MR wireless

interference channel, restricted to linear precoding schemes without symbol
extensions, is obtained independently by Bresler et al. in [3] in parallel work.
The information theoretic outer bounds of Wang et al. in [2] match the linear
outer bounds of Bresler et al. in [3], and the achievability in both [2] and [3]
is based on linear schemes. Since information theoretic outer bounds imply
linear outer bounds (but not vice versa), the results of Bresler et al. are strictly
contained in the results of Wang et al..

Fig. 1. The DoF counting outer bound (on linear DoF with no symbol
extensions) [4] and the decomposition inner bound (on information
theoretic DoF) [7] of the K -user M × N MIMO interference channel.

of linear interference alignment. However, existing insights
do not suffice beyond the 3-user MT × MR interference
channel. In particular, finding good DoF outer bounds for
K -user MIMO wireless interference networks continues to
be a challenge. It is this challenge of finding good DoF outer
bounds that motivates this work.

In order to clarify what we expect from good DoF outer
bounds, it is worthwhile to summarize our expectation of the
DoF results of MIMO wireless interference networks. This is
simply our projection based on all previously known results,
re-affirmed by our results in this work, and may be seen as
a weak conjecture for the general results that remain elusive.
We will focus on the K -user MT × MR wireless interference
network and use the Figure 1 as an illustration. In this figure,
the horizonal axis denotes the ratio γ = M/N , and the vertical
axis denotes the DoF per user normalized by N . As in the
3-user setting, we use the notation M = min(MT , MR),
N = max(MT , MR ). There are two curves in the figure.
The red straight line, which we label as the “counting” outer
bound, plots the value d = M+N

K+1 , and the green curve,
which we label as the “decomposition” inner bound, plots
the value d = M N

M+N . An understanding of these two curves is
essential to the understanding the DoF of the K -user MT ×MR

interference channel.
A dichotomy is evident in the existing DoF results for

K -user MIMO wireless interference networks. On the one
hand, we have the question of linear DoF, i.e., the DoF
achievable (almost surely) by linear precoding without symbol
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extensions in time/frequency. Spatial extension, i.e., scaling
of antennas at every node by the same factor, is allowed in
this setting. The key distinction between spatial extensions
and time/frequency extensions is that the former can only
produce generic (structureless) channels whereas the latter
give rise to structured (block-diagonal) channel matrices. The
linear schemes studied along this research avenue are designed
mainly for unstructured generic channels, so they do not
benefit from the channel structure, but they may be hurt by
it if the channel structure causes an overlap of desired and
interfering signals. The key to the linear DoF question is the
distinction of proper versus improper systems, introduced by
Yetis et al. in [4] through the counting bound. A system is
proper if d ≤ M+N

K+1 and improper otherwise. The counting
bound is obtained simply by counting the number of alignment
constraints and comparing it to the number of design variables.
If the number of constraints exceeds the number of variables
the system is labeled improper. It is labeled proper otherwise.
Yetis et al. conjecture that improper systems are infeasible
(when restricted to linear schemes over unstructured channels),
whereas proper systems are feasible (through linear schemes
over unstructured channels) provided they are information
theoretically feasible, i.e., that they satisfy the information
theoretic DoF bounds. The first conjecture of Yetis et al. is
proved by Bresler et al. in [3] and by Razaviyayn et al. in [5].
The second conjecture of Yetis et al. is consistent with all
DoF results known so far, including the 3-user case, but has
not been proved in general.

On the other hand, we have the question of information
theoretic DoF, i.e., DoF achievable (almost surely) by linear
and non-linear schemes, with no constraints on symbol exten-
sions. It has been observed, and indeed it has been conjectured
by Jafar in [6] that linear schemes over arbitrarily long
symbol extensions are still sufficient to achieve the optimal
DoF, if generic time-variations are allowed. In the absence of
time-variations, more sophisticated schemes, e.g., those based
on rational alignments, may be involved. As far as spatial
extensions are concerned, there is the spatial scale invariance
conjecture by Jafar in [2] and [6] that claims that if the number
of antennas at every node is scaled by a certain factor, then
the information theoretic DoF will scale by the same factor.
The spatial scale invariance conjecture is consistent with all
known results but has not been proved in general. This is in
part because few good information theoretic outer bounds are
known. However, the most important aspect of this discussion
is the achievability result by [7], that shows that in a K -user
MT × MR wireless interference channel, each user is able
to achieve M N

M+N DoF by first decomposing multiple antenna
nodes into multiple single antenna nodes, and then using
the asymptotic alignment scheme of Cadambe and Jafar [8]
(the CJ scheme) over the resulting SISO network, precoding
over linear vector space dimensions if channels are time-
varying, and over rational scalar dimensions if the channels
are constant.

The counting bound is an outer bound on the linear DoF,
thus restricted to linear precoding schemes with no symbol
extensions. The decomposition bound is an inner bound on
information theoretic DoF, thus with no restrictions on the type

of coding scheme or the use of symbol extensions. At first
sight, the two have little to do with each other. And yet,
the two seem to play an important joint role as we explain
next. First, note that there are two distinct regimes, labeled
Regime 1 and Regime 2 in Figure 1, where the counting bound
dominates the decomposition bound and the decomposition
bound dominates the counting bound, respectively. Regime 1 is
relatively well understood, especially because of the recent
insights from the DoF characterization of the 3-user MT ×MR

MIMO interference channel by Wang et al. [2]. Note that the
3-user setting contains only Regime 1. This is easily seen
because when K = 3, the counting bound M+N

K+1 = M+N
4 is

always greater than or equal to the decomposition bound M N
M+N .

That is,

M + N

4
− M N

M + N
= (N − M)2

4(M + N)
≥ 0. (1)

As we will see in this work, the insights from the 3-user case
generalize in a relatively straightforward manner to most of
Regime 1 of the K user setting: in both cases the optimal DoF
curve (for both information theoretic DoF and linear DoF) is
piecewise linear, with the linear segments bouncing between
the counting bound and the decomposition bound, as they do
in the 3-user interference channel.

For this work, it is Regime 2 that is most intriguing.
Some interesting observations can be made here. First, note
that because the decomposition bound dominates the counting
bound, the second conjecture of Yetis et al. would suggest
that proper systems in this regime should be feasible with
linear precoding and no symbol extensions. Because improper
systems are already known to be infeasible, if the conjecture
holds, it would settle the linear feasibility question for all
systems in Regime 2, i.e., the counting bound would be opti-
mal for linear DoF. This is indeed an interesting observation.
However, the main question that interests us in this work has
to do with the information theoretic DoF, and the information
theoretic optimality of the decomposition bound in Regime 2.
To test such a hypothesis, we need better information theo-
retic DoF outer bounds. So we will develop a novel “genie
chains” approach that will give us an information theoretic
outer bound in terms of a linear algebra problem, specifically
requiring the computation of the ranks of certain matrices. The
downside is that these matrices become large as the MIMO
dimensions MT , MR increase, so that we face computational
bottlenecks. The upside, however, is that for most practically
reasonable values of MT , MR , as well as for certain sub-
regimes of Regime 2, we are able to compute the outer bound,
and indeed verify that it matches the decomposition inner
bound. We summarize these observations in a loosely stated
conjecture, that the decomposition bound is DoF optimal in
most of Regime 2.

II. SYSTEM MODEL

Consider a fully connected K -user MIMO interference
channel where there are MT and MR antennas at each trans-
mitter (TX) and receiver (RX), respectively, and each TX
has one independent message, intended for its correspond-
ing RX. Denote by H[ j i] the MR × MT channel matrix from
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TX i to RX j where i, j ∈ K � {1, · · · , K }. For simplicity,
we assume that the channel coefficients are independently
drawn from a continuous distribution. While we will assume
that the channels are constant for simplicity, we note that it is
straightforward to extend our DoF outer bounds to the setting
where the channel coefficients are varying in time/frequency.
Global channel knowledge is assumed to be available at all
nodes. For codebooks spanning n channel uses, at time index
t ∈ {1, 2, · · · , n}, TX i sends a complex-valued MT ×1 signal
vector X[i](t), which satisfies an average power constraint
1
n

∑n
t=1 E[‖X[i](t)‖2] ≤ ρ. At the RX side, RX j observes

an MR × 1 signal vector Ȳ[ j ](t) at time index t , which is
given by:

Ȳ[ j ](t) =
K∑

i=1

H[ j i]X[i](t)

︸ ︷︷ ︸
�Y[ j ](t)

+Z[ j ](t) (2)

where Z[ j ](t) is an MR × 1 column vector representing the
i.i.d. circularly symmetric complex additive white Gaussian
noise (AWGN) at RX j , each entry of which is an i.i.d.
Gaussian random variable with zero-mean and unit-variance.

As a function of the signal-to-noise ratio (SNR) para-
meter ρ, let Rk(ρ) = R(ρ) denote the symmetric capac-
ity, i.e., the highest rate simultaneously achievable by each
user. We define d(K , MT , MR) � limρ→∞ R(ρ)/ log ρ as
the symmetric DoF per user. Here, the user index k is
interpreted modulo K so that, e.g., User 1 is the same as
User K + 1, etc. The dependence on K , MT , MR may be
dropped for compact notation when no ambiguity would be
caused. Moreover, we use o(x) to represent any function f (x)
such that limx→∞ f (x)/x = 0. Furthermore, we define
M = min(MT , MR ), N = max(MT , MR).

III. A VECTOR SPACE PERSPECTIVE

In this section, we introduce a vector space perspective, and
its associated notation, terminology and basic properties, that
we will later use for information theoretic DoF outer bounds.

Consider a TX with MT antennas, which transmits the
MT × 1 vector X(i) over the i th channel use, and satisfies
an average transmit power constraint 1

n

∑n
i=1 E[‖X(i)‖2] ≤ ρ

across n channel uses. We will denote by Xn = {X(1),
X(2), · · · , X(n)}, the n vectors sent over the n channel
uses. When referring to the vector transmitted over a single
channel use, we will suppress the channel use index for
brevity (whenever the particular channel use index is not
significant) and simply refer to it as the MT × 1 vector
X = [X1, X2, · · · , X MT ]T .

The vector X lies in the MT -dimensional vector space
spanned by the columns of the MT × MT identity matrix.
We are interested in the projections of X into vector subspaces,
and the differential entropies of the projections under additive
Gaussian noise. The notation and the underlying concepts
are best explained through examples. Suppose MT = 3,
i.e., we are operating in a 3-dimensional vector
space, and let us consider the following 2-dimensional

vector subspace:

L = column span

⎛

⎝

⎡

⎣
1 2
1 0
0 3

⎤

⎦

⎞

⎠. (3)

Choosing a basis for this subspace, such as the one shown
in (3), let us project X into this basis, say B1(L), giving us:

B1(L)T X =
⎡

⎣
1 2
1 0
0 3

⎤

⎦

T ⎡

⎣
X1
X2
X3

⎤

⎦ =
[

X1 + X2
2X1 + 3X3

]

. (4)

Note that a different choice of basis for the same subspace, say
B2(L)T = A2×2 B1(L)T , where A2×2 is an arbitrary 2 ×2 full
rank matrix, will give us a different projected vector, such as:

A2×2 B1(L)T X =
[

1 1
−1 2

]
⎡

⎣
1 2
1 0
0 3

⎤

⎦

T ⎡

⎣
X1
X2
X3

⎤

⎦

=
⎡

⎣
3 3
1 −1
3 6

⎤

⎦

T ⎡

⎣
X1
X2
X3

⎤

⎦ =
[

3X1 + X2 + 3X3
3X1 − X2 + 6X3

]

.

(5)

However, as we will soon establish, since we are interested
only in DoF, the choice of basis is not important for our
purpose. Only the span of the space itself is significant.

Next, let us also bring in additive noise into the picture.
Given any vector of random variables U = [U1, U2, · · · , Uk]T ,
let us define the differential entropy of its noisy version as

h̄(U) � h(U + Z) = h(U1 + Z1, · · · , Uk + Zk) (6)

where h(·) is the standard differential entropy function,
Z = [Z1, Z2, · · · , Zk]T is a circularly symmetrically additive
white Gaussian noise vector that is independent of U and
Z ∼ CN (0, I). Similar definitions are used for joint and
conditional differential entropies, i.e.,

h̄(U, V)

� h(U + Z, V + Z′)
= h(U1 + Z1, · · · , Uk + Zk, V1 + Z ′

1, · · · , Vk + Z ′
k)

h̄(U|V)

� h̄(U, V) − h̄(V)

= h(U + Z, V + Z′) − h(V + Z′)
= h(U + Z|V + Z′)
= h(U1 + Z1, · · · , Uk + Zk|V1 + Z ′

1, · · · , Vk + Z ′
k),

where V = [V1, V2, · · · , Vk]T is another vector of random
variables and Z′ = [Z ′

1, Z ′
2, · · · , Z ′

k]T ∼ CN (0, I), which is
independent of U, V and Z.

Lemma 1: Consider an arbitrary subspace L of the
MT -dimensional vector space C

MT and let Bi (L), B j (L) be
two arbitrary choices for the basis of L. We have

h̄(Bi (L)T X) = h(B j (L)T X + Z̃) + o(log ρ), (7)

where Z̃ ∼ CN (0, K̃), and K̃ is a non-singular covariance
matrix. We require that L, Bi (L), B j (L), K̃ are held fixed as
ρ → ∞.

Proof: We defer the proof to Appendix A.
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According to Lemma 1, as long as the subspace L, its basis
representation B(L) and the additive noise terms Z̃ do not
depend on the SNR, ρ, and the noise in the projected subspace
is non-singular, then all that matters is the subspace L within
which X is projected. Neither the particular choice of basis
representation, nor the specific form of the noise covariance
matrix is relevant.

In light of this observation, we will henceforth simplify our
notation by referring to h̄(B(L)T X) as h̄(L◦X) instead, where
the symbol “◦” denotes the projection operation, with the
understanding that the given representation of L is equivalent
to any other basis representation of the same space for our
purpose.

Lemma 1 extends easily to joint and conditional differential
entropies as well, for which still only the space matters,
not the specific basis representation chosen. For two sub-
spaces L[1], L[2] of C

M , we define h̄(L[1] ◦ X, L[2] ◦ X) and
h̄(L[1] ◦ X|L[2] ◦ X) in a similar way to refer to the joint and
conditional differential entropies of X projected in correspond-
ing spaces, respectively.

It is useful to further familiarize ourselves with the vector
space representations, for instance, with unions and intersec-
tion operations. Once again, we illustrate these with a simple
example. Consider the following subspaces:

L[1]
1 = span([1 1 0]T ), (8)

L[1]
2 = span([2 0 3]T ), (9)

L[2]
1 = span([2 − 1 4]T ), (10)

L[2]
2 = span([−2 − 3 1]T ), (11)

and let L[1], L[2] be defined as the vector spaces spanned by
the unions:

L[1] = {L[1]
1 , L[1]

2 }, (12)

L[2] = {L[2]
1 , L[2]

2 }. (13)

Note that since the union of vector spaces is not generally a
vector space, what is meant here is that L[i] is the vector space
spanned by the union of the vector subspaces L[i]

1 , L[i]
2 .

Next let us consider the intersection of L[1] and L[2]. Note
that given L[i], we can compute L[i]c

which is the subspace

orthogonal to the span of (L[i]
1 , L[i]

2 ). That is,

L[1]c = span([3 − 3 − 2]T ), (14)

L[2]c = span([−5.5 5 4]T ). (15)

Thus, the intersection L[1]∩L[2] can be obtained by computing
the subspace orthogonal to both L[1]c

and L[2]c
, and thus it

can be written as:

L[1] ∩ L[2] = ([L[1]c
L[2]c ])c = span([4 2 3]T ). (16)

Similarly, we define L[1] \ L[2] to be the subspace of L[1],
which is orthogonal to L[1] ∩ L[2], i.e.,

L[1] \ L[2] = L[1] \ (L[1] ∩ L[2]) = L[1] ∩ (L[1] ∩ L[2])c

= span([5 17 − 18]T ). (17)

With this definition, we can also write L[1] as

L[1] = {L[1] ∩ L[2], L[1] \ L[2]}. (18)

A set of MT × 1 vectors is generic if and only if any m of
them are linearly independent whenever m ≤ MT . A generic
subspace is the subspace spanned by the column vectors of a
matrix, where the column vectors are generic.

In this paper, because we are primarily interested in the
notion of DoF, we will use the notations x(ρ, n) =: y(ρ, n),
x(ρ, n) ≤: y(ρ, n), x(ρ, n) ≥: y(ρ, n) to represent x(ρ, n) =
y(ρ, n)+n o(log ρ), x(ρ, n) ≤ y(ρ, n)+n o(log ρ), x(ρ, n) ≥
y(ρ, n) + n o(log ρ), respectively. Next we summarize the
basic properties associated with the vector subspace repre-
sentations. The properties are stated in the multi-letter form,
which is used in the information theoretic proofs. As such,
we extend the vector space terminologies introduced above to
their corresponding multi-letter forms.

Ln � L(1) × L(2) × · · · × L(n) is used to represent
the collection of n subspaces L(1), L(2), · · · , L(n) of the
MT -dimensional vector space C

MT . If the dimension of the n
subspaces L(t), t ∈ {1, 2, . . . , n} is the same, we will denote it
as |L|. The basis representation B(Ln) of Ln is the collection
of the basis representations of each subspace, i.e., B(Ln) �
B(L(1))×· · ·× B(L(n)). Also, C

Mn
T � C

MT ×· · ·×C
MT . For

two multi-letter subspaces L[1]n
and L[2]n

, their intersection
L[1]n ∩ L[2]n

is defined as

L[1]n ∩ L[2]n � L[1](1) ∩ L[2](1) × · · · × L[1](n) ∩ L[2](n).

(19)

Similar definitions are employed for L[1]n \L[2]n
, Ln ◦ Xn and

B(Ln)T Xn ,

L[1]n \ L[2]n � L[1](1) \ L[2](1) × · · · × L[1](n) \ L[2](n),

Ln ◦ Xn � L(1) ◦ X(1) × · · · × L(n) ◦ X(n),

B(Ln)T Xn � B(L(1))T X(1) × · · · × B(L(n))T X(n).

Equipped with these definitions, following (18), we can write

L[1]n = {L[1]n ∩ L[2]n
, L[1]n \ L[2]n }. (20)

Next, we proceed to the statement of the properties.
Lemma 2: We have the following properties:

(P1) h̄(Bi (Ln)T Xn) =: h̄(B j (Ln)T Xn) for any basis repre-
sentations Bi (Ln), B j (Ln) of Ln .

Justified by this property, we will write h̄(B(Ln)T Xn) simply
as h̄(Ln ◦ Xn).

(P2) h̄(Ln ◦ Xn) ≤: n|L| log ρ.
(P3) For generic subspaces L[1](t), L[2](t), t ∈

{1, 2, · · · , n} of C
MT with |L[1]| + |L[2]| ≥ MT ,

we have:

P3a) h̄(L[1]n ◦ Xn, L[2]n ◦ Xn) =: h̄(Xn).
P3b) h̄(L[1]n ◦ Xn|L[2]n ◦ Xn) =: h̄((CMn

T \ L[2]n
) ◦

Xn|L[2]n ◦ Xn).
P3c) min(h̄(L[1]n ◦Xn|L[2]n ◦Xn), h̄(L[2]n ◦Xn|L[1]n ◦Xn)) ≤:

1
2 h̄(Xn).

Proof: We will show the proofs for each property
sequentially.

Property (P1): This property is the multi-letter version of
Lemma 1, whose proof follows directly.
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Property (P2):

h̄(Ln ◦ Xn)

=
n∑

t=1

h̄(L(t) ◦ X(t)|L(1) ◦ X(1), · · · , L(t − 1) ◦ X(t − 1))

≤
n∑

t=1

h̄(L(t) ◦ X(t)) (21)

=
n∑

t=1

|L|∑

i=1

h̄(Li (t) ◦ X(t)|Li−1(t) ◦ X(t), · · · , L1(t) ◦ X(t))

(22)

≤
n∑

t=1

|L|∑

i=1

h̄(Li (t) ◦ X(t)) (23)

≤: n|L| log ρ (24)

where (21) follows from the fact that removing conditional
terms does not decrease the differential entropy; (22) is
obtained due to the chain rule and Li (t) denotes the space
spanned by the i -th basis vector of L(t); (24) is obtained
because one dimension can contribute upto one log ρ+o(log ρ)
term.

In addition, incorporating (P1), we can also see that
if |L| = MT , then h̄(Xn) = h̄(CMn ◦ Xn) =: h̄(Ln ◦ Xn) ≤:
nMT log ρ.

Property (P3a):

h̄(L[1]n ◦ Xn, L[2]n ◦ Xn)

= h̄({L[1]n ∩ L[2]n
, L[1]n \ L[2]n } ◦ Xn, L[2]n ◦ Xn) (25)

= h̄((L[1]n ∩ L[2]n
) ◦ Xn, (L[1]n \ L[2]n

) ◦ Xn, L[2]n ◦ Xn)

(26)

= h̄((L[1]n ∩ L[2]n
) ◦ Xn, {L[1]n \ L[2]n

, L[2]n } ◦ Xn) (27)

=: h̄((L[1]n ∩ L[2]n
) ◦ Xn, C

Mn
T ◦ Xn) (28)

= h̄((L[1]n ∩ L[2]n
) ◦ Xn, Xn) (29)

= h̄(Xn) + h̄((L[1]n ∩ L[2]n
) ◦ Xn|Xn) (30)

= h̄(Xn) + n o(log ρ) (31)

=: h̄(Xn) (32)

where (25) follows directly from (20); both (26) and (27) are
obtained due to the fact that the two subspaces participating the
splitting or the union operations are orthogonal to each each
other; (28) follows from the assumption |L[1]| + |L[2]| ≥ MT

and Property (P1); and (31) is obtained because the subspace
L[1]n ∩ L[2]n

is contained in C
Mn

T . Basically, it implies that
the MT variables comprising the vector X can be used to
construct any linear combination of X subject to the bounded
noise distortion.

Property (P3b):

h̄(L[1]n ◦ Xn|L[2]n ◦ Xn)

= h̄((L[1]n \ L[2]n
) ◦ Xn, (L[1]n ∩ L[2]n

) ◦ Xn|L[2]n ◦ Xn)

= h̄({L[1]n \ L[2]n
, L[2]n } ◦ Xn, (L[1]n ∩ L[2]n

) ◦ Xn| · · ·
· · · L[2]n ◦ Xn)

=: h̄(Xn, (L[1]n ∩ L[2]n
) ◦ Xn|L[2]n ◦ Xn)

= h̄(Xn|L[2]n ◦ Xn)

+ h((L[1]n ∩ L[2]n
) ◦ Xn|L[2]n ◦ Xn, Xn)

= h̄((CMn
T \ L[2]n

) ◦ Xn|L[2]n ◦ Xn) + n o(log ρ)

=: h̄((CMn
T \ L[2]n

) ◦ Xn|L[2]n ◦ Xn).

The intuition of this property is that adding h̄(L[2]n ◦ Xn) to
both sides of the equation produces the h̄(Xn) term on both
sides.

Property (P3c):

min(h̄(L[1]n ◦ Xn|L[2]n ◦ Xn), h̄(L[2]n ◦ Xn|L[1]n ◦ Xn))

≤ 1

2

[
h̄(L[1]n ◦ Xn|L[2]n ◦ Xn) + h̄(L[2]n ◦ Xn|L[1]n ◦ Xn)

]

≤ 1

2

[
h̄(L[1]n ◦ Xn|L[2]n ◦ Xn) + h̄(L[2]n ◦ Xn)

]
(33)

= 1

2
h̄(L[1]n ◦ Xn, L[2]n ◦ Xn) (34)

=: 1

2
h̄(Xn) (35)

where (35) is obtained owing to Property (P3a).

A. Multiple Subspaces of the Vector Space

In this section, we introduce important properties associated
with vector subspaces.

Suppose we have K n subspaces L[k](t), t ∈ {1, 2, · · · , n},
k ∈ {1, 2, · · · , K } of the MT -dimensional vector space C

MT .
The dimension of L[k](t) is lk,∀t and we define l∗ �

∑K
k=1 lk .

Over the t th channel use, we enumerate all the l∗ basis
vectors contained in the K subspaces, L[k](t) and denote the
span of these vectors as L1(t), L2(t), · · · , Ll∗ (t), so that the
basis representation of L[1](t) is comprised of the first l1
basis vectors, the basis representation of L[2](t) the next l2
basis vectors and so forth. Repeating such enumeration for all
channel uses, we have

L[1]n = {Ln
1, Ln

2, · · · , Ln
l1}, (36)

L[2]n = {Ln
l1+1, · · · , Ln

l1+l2
}, (37)

...

L[K ]n =
{

Ln∑K−1
i=1 li +1

, · · · , Ln
l∗

}

. (38)

Now, let us start sequentially in the order of L[1]n
, L[2]n

, . . .
to collect subspaces into a set and go as far as we can
without the total number of linear independent basis vectors
exceeding MT . There are two possibilities. If we happen to
collect exactly MT independent vectors then we set these
aside and start building the next set of vectors, proceeding
sequentially again from where the first set terminated. On the
other hand, if we fall short of MT vectors, i.e., we cannot
include the next subspace in the set without exceeding a total
of MT independent vectors in the set, then we need to split
the next subspace into two parts. This is done by taking the
intersection of the next subspace in the sequence with the
space spanned by the basis vectors in the current set to form
the intersecting space. The intersecting part is separated out
as the remainder of the subspace, and the non-intersecting
part is incorporated into the set to complete the desired MT
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independent vectors. The process then continues with the
remaining subspaces, starting with the remainder of the most
recently split subspace. The process is terminated when we
run out of basis vectors. The number of complete sets (sets
of MT linearly independent basis vectors) that are generated
through this process is denoted as L� . The remaining basis
vectors are discarded if they are insufficient to create another
complete basis.

We now proceed to the statement of the properties on vector
subspaces.

Lemma 3: The following bound on the entropy holds:

K∑

k=1

h̄
(

L[k]n ◦ Xn
)

≥: L� h̄(Xn). (39)

Intuitively, Lemma 3 implies that when a collection of l∗
linear combinations of the MT variables comprising X can
reconstruct X L� times, the equations must carry at least their
proportional share of the total entropy of X. Note that when

the subspaces are generic, L� = ⌊ l∗
MT

⌋
.

We start with two simple cases, and then present the general
proof.

Case 1: K = 1, l1 = MT .
In this case, l∗ = l1 = MT and L� = 1. Property (P1) of

Lemma 2 gives us

h̄
(

L[1]n ◦ Xn
)

=: h̄
(
C

Mn
T ◦ Xn

)
= h̄(Xn) (40)

which implies (39).
Case 2: K = MT + 1, MT > 1, lk = 1, ∀k ∈ {1, 2, . . . , K }

and all the subspaces are generic.
In this case, we want to create L� = 1 set with M basis

vectors with MT + 1 generic vectors. Then we have

K∑

k=1

h̄
(

L[k]n ◦ Xn
)

= h̄
(

L[1]n ◦ Xn
)

+ · · · + h̄
(

L[MT ]n ◦ Xn
)

+ h̄
(

L[MT +1]n ◦ Xn
)

(41)

≥ h̄
(

L[1]n ◦ Xn, . . . , L[MT ]n ◦ Xn
)

+ h̄
(

L[MT +1]n ◦ Xn
)

= h̄
(
{L[1]n

, . . . , L[MT ]n } ◦ Xn
)

+ h̄
(

L[MT +1]n ◦ Xn
)

︸ ︷︷ ︸
≥:0

(42)

≥: h̄(Xn) (43)

where (43) follows from Case 1, i.e., the space spanned by
the union of MT generic vectors, {L[1], . . . , L[MT ]}, is the
MT -dimensional vector space C

MT . Note that the second term
of (42) contains no less differential entropy than the noise
therein and the differential entropy of noise normalized by
n log ρ is non-negative.

Now we present the proof for the general setting of
Lemma 3.

Proof: The collection of vectors and the splitting of the
subspaces are consistent with the chain rule of entropy, so
that the same direction of inequalities is obtained. In the end,
we have collected L� sets, each with MT basis vectors and
the projection of Xn to the space spanned by the vectors in

each set would contribute entropy h̄(Xn), which is guaranteed
by Property (P1) of Lemma 2. Finally, the entropy of the
discarded equations is no less than the entropy of the noise
contained thus its normalization by n log ρ is non-negative.
This completes the proof.

We illustrate this lemma with the following example.
Example: MT = 3, K = 6, (l1, l2, l3, l4, l5, l6) =

(1, 2, 1, 1, 3, 2). We assume n = 1 and the subspaces are given
by:

L[1] = span{[1 1 1]T }, (44a)

L[2] = span{[0 2 3]T , [0 1 − 1]T }, (44b)

L[3] = span{[1 − 1 0]T }, (44c)

L[4] = span{[1 0 1]T }, (44d)

L[5] = span{[1 − 1 3]T , [1 0 0]T , [0 1 0]T }, (44e)

L[6] = span{[0 0 1]T , [1 2 − 4]T }. (44f)

Note that l∗ = ∑6
k=1 lk = 10. It turns out that we can

build 3 sets whose vector-elements collectively build full
rank matrices. We start the proof by building the first set
up to {L[1], L[2]}. At this stage we have collected exactly
l1 + l2 = 3 = MT independent vectors. So we terminate
this set and start building the next set. Now we can go up to
{L[3], L[4]} which contains l3+l4 = 2 independent vectors, i.e.,
short of MT = 3, but we cannot include L[5] entirely because
l3 + l4 + l5 = 5 will exceed MT = 3. So we will split L[5] into
a part, L[5]

a that overlaps with {L[3], L[4]} and the remainder
that does not overlap with {L[3], L[4]}. Specifically,

|L[5]| = l5 = 3, (45)

|{L[3], L[4]}| = l3 + l4 = 2, (46)

MT = 3, (47)

|L[5]
a | = |L[5] ∩ {L[3], L[4]}| = 3 + 2 − MT = 2, (48)

|L[5] \ L[5]
a | = 3 − 2 = 1, (49)

|{L[3], L[4], L[5] \ L[5]
a }| = MT , (50)

L[5] = {L[5]
a , L[5] \ L[5]

a }. (51)

Thus, we obtain

L[5]
a = span

⎧
⎨

⎩

⎡

⎣
1 1

−1 0
0 1

⎤

⎦

⎫
⎬

⎭
∩ span

⎧
⎨

⎩

⎡

⎣
1 1 0

−1 0 1
3 0 0

⎤

⎦

⎫
⎬

⎭

= span

⎧
⎨

⎩

⎡

⎣
1 1

−1 0
0 1

⎤

⎦

⎫
⎬

⎭
,

L[5] \ L[5]
a = span{[1 1 − 1]T }.

The union of these three vectors spans C
3, i.e.,

{L[3], L[4], L[5] \ L[5]
a } = C

3. Thus, our second set becomes

{L[3], L[4], L[5] \ L[5]
a } which contains MT = 3 linearly

independent vectors. Finally, we start to build the third set
starting with L[5]

a and continuing on to L[6]. Again, since
|L[5]

a | < 3 and |L[5]
a | + l6 > 3, we need to split L[6] into

two parts, one L[6]
a that overlaps with L[5]

a and the other

that does not overlap with L[5]
a . Therefore, our final set

becomes {L[5]
a , L[6] \ L[6]

a } with dimension MT = 3, where
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L[6]
a = L[6] ∩ L[5]

a has dimension 2 + 2 − MT = 1, and is
given by

L[6]
a = span

⎧
⎨

⎩

⎡

⎣
1 1

−1 0
0 1

⎤

⎦

⎫
⎬

⎭
∩ span

⎧
⎨

⎩

⎡

⎣
0 1
0 2
1 −4

⎤

⎦

⎫
⎬

⎭

= span

⎧
⎨

⎩

⎡

⎣
1
2
3

⎤

⎦

⎫
⎬

⎭
,

L[6] \ L[6]
a = span{[3 6 − 5]T }.

This construction can be translated to the following informa-
tion theoretical proof:

6∑

k=1

h̄(L[k] ◦ X) (52)

≥ h̄(L[1] ◦ X, L[2] ◦ X) +
6∑

k=3

h̄(L[k] ◦ X) (53)

=: h̄(X) +
6∑

k=3

h̄(L[k] ◦ X) (54)

≥ h̄(X) + h̄(L[3] ◦ X, L[4] ◦ X) + h̄(L[5] ◦ X) + h̄(L[6] ◦ X)

= h̄(X) + h̄(L[3] ◦ X, L[4] ◦ X)

+ h̄(L[5]
a ◦ X, (L[5] \ L[5]

a ) ◦ X) + h̄(L[6] ◦ X) (55)

= h̄(X) + h̄(L[3] ◦ X, L[4] ◦ X) + h̄(L[5]
a ◦ X)

+ h̄((L[5] \ L[5]
a ) ◦ X|L[5]

a ◦ X) + h̄(L[6] ◦ X) (56)

≥ h̄(X) + h̄(L[3] ◦ X, L[4] ◦ X) + h̄(L[5]
a ◦ X)

+ h̄((L[5] \ L[5]
a ) ◦ X|L[5]

a ◦ X, L[3] ◦ X, L[4] ◦ X)

+ h̄(L[6] ◦ X) (57)

= h̄(X) + h̄(L[3] ◦ X, L[4] ◦ X) + h̄(L[5]
a ◦ X)

+ h̄((L[5] \ L[5]
a ) ◦ X|L[3] ◦ X, L[4] ◦ X)

+ h̄(L[6] ◦ X) (58)

= h̄(X) + h̄({L[3], L[4], L[5] \ L[5]
a } ◦ X) + h̄(L[5]

a ◦ X)

+ h̄(L[6] ◦ X) (59)

=: 2h̄(X) + h̄(L[5]
a ◦ X) + h̄(L[6] ◦ X) (60)

= 2h̄(X) + h̄(L[5]
a ◦ X) + h̄(L[6]

a ◦ X, (L[6] \ L[6]
a ) ◦ X) (61)

≥ 2h̄(X) + h̄(L[5]
a ◦ X)

+ h̄((L[6] \ L[6]
a ) ◦ X|L[6]

a ◦ X, L[5]
a ◦ X) + h̄(L[6]

a ◦ X)

(62)

= 2h̄(X) + h̄(L[5]
a ◦ X)

+ h̄((L[6] \ L[6]
a ) ◦ X|L[5]

a ◦ X) + h̄(L[6]
a ◦ X) (63)

= 2h̄(X) + h̄({L[5]
a , L[6] \ L[6]

a } ◦ X) + h̄(L[6]
a ◦ X) (64)

≥: 3h̄(X) (65)

where (57) follows from the property that adding condition-
ing terms does not increase the entropy; (58) is obtained
because L[6]

a is the intersection of L[5] and {L[3], L[4]}, thus
it is also contained in {L[3], L[4]}. This means L[5]

a ◦ X can be
reconstructed from {L[3] ◦ X, L[4] ◦ X}, within bounded noise
distortion. In (54), (60) and (65), we use the fact that the
construction produces each set with MT independent vectors
and the argument that their differential entropy is no less than

h̄(X) follows from Case 1. Thus we have the desired result.
Note that the derivations from (60) to (65) also follow from
Property (P3) of Lemma 2.

When each subspace L[k](t) is generic, we have the follow-
ing corollary.

Corollary 1: For generic subspaces L[k](t) of C
MT , we

have

K∑

k=1

h̄
(

L[k]n ◦ Xn
)

≥: � l∗

MT
�h̄(Xn). (66)

Proof: According to Lemma 3, with l∗ = ∑K
k=1 lk

generic vectors, we can build � l∗
MT

� sets, each with MT basis
vectors.

In case that one may be also interested in Lemma 3 with
conditional terms, we have the following corollary.

Corollary 2: For an arbitrary random variable Q, we have

K∑

k=1

h̄
(

L[k]n ◦ Xn|Q
)

≥: L� h̄(Xn|Q). (67)

Proof: The proof follows along the same lines as Lemma 3
and thus we omit it here.

IV. FOUR IDEAS COMPRISING THE

GENIE CHAINS APPROACH

To keep the presentation complete and as intuitive as
possible, we need additional terminologies, particularly the
notion of the exposed subspace, some notations for the generic
subspace and the interference subspace available to a RX
after decoding and removing the signal carrying its desired
message. Here, we remind the reader that although they are
called subspaces for convenience, in fact they represent the
linear combinations of signals projected to those subspaces.

• Exposed Subspace: An exposed subspace, e.g., from
TX 1 to RX 2, denoted as X̄[1∼2], refers to the linear com-
binations involving only X[1] variables that are obtained
at RX 2 after subtracting the signal carrying its desired
message (for RX 2 this would be X[2]) and zero forcing
(i.e., projecting into the null space, or simply using
Gaussian elimination to remove) the other interference (in
this case X[3], X[4]). For example, consider the exposed
subspace X̄[1∼2] in the (MT , MR) = (2, 5) setting.
At RX 2, after removing desired signal X[2], we have
5 equations involving 6 variables X[1], X[3], X[4] (Since
MT = 2, each X[k] represents 2 variables). Eliminating
4 variables, X[3], X[4], leaves only one equation involving
the two variables X[1]. This remaining linear combination,
involving X[1] only is the exposed subspace at RX 2
from TX 1. The dimensionality of the exposed space is
indicated with a subscript, e.g., X̄[1∼2]

1 in this example.
As the AWGN terms are always presented in the received
signal, the exposed subspace is always noisy. When we
refer to the noise-free exposed subspace, we omit the bar
notation on the top, e.g., X[1∼2] is the noise-free version
of X̄[1∼2].

• Generic Subspace: We use X[k]
(m) to denote m generic

linear combinations of the M variables in X[k],
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where the coefficients of the linear combinations are
drawn from a continuous distribution. When the linear
combinations are added with bounded variance indepen-
dent noise, we denote them as X̄[k]

(m).
• Interference Subspace: We use the notation S̄[k] to

refer to the received signal at RX k, after the desired
variables X[k] are set to zero. This is meaningful because
the RX is always guaranteed to be able to reliably decode,
and therefore subtract out, its desired signals, leaving it
with a view of only the interference subspace from which
it may attempt to resolve undesired signal dimensions.
Similarly, the noise-free interference space is denoted
as S[k].

Note that the extension of these subspaces from the single-
letter to the multi-letter form is immediate.

A. Ideas Illustrated Through the 4-User
MIMO Interference Channel

The starting point of our outer bound is the common princi-
ple of providing a RX enough additional linear combinations
of transmitted symbols to allow it to resolve all of the interfer-
ers, so that subject to noise distortion (which is inconsequential
for DoF), it can decode all the messages. In general, because
we are proving a converse, which means that we start with a
reliable coding scheme, a RX is already guaranteed to reliably
decode its desired message, which also allows the RX to
subtract its desired symbols from its received signal. Now, the
question remains whether the RX can decode all messages. For
the K = 4 user MIMO interference channel, with MR receive
antennas, if 3MT > MR , then we have fewer equations and
more unknowns, so that resolution of interfering symbols is
not guaranteed.2 So, we provide 3MT − MR genie dimensions,
i.e., |Ḡ| = 3MT − MR linearly independent combinations of
interference symbols where Ḡ represents the genie symbols
set. G denotes the noise-free version of Ḡ. This provides
the RX enough equations to resolve all transmitted symbols.
Equivalently, the undesired signal vectors X[i], i ∈ K \ {k}
are now invertible (within noise distortion) from the RX’s own
observations combined with the genie dimensions. Since noise
distortion is irrelevant for DoF arguments, the ability to resolve
all symbols is equivalent to the ability to decode all symbols
for DoF purposes. This forms the general basis for the outer
bound, and is so far not a novel concept at all.

The challenging aspect, and where the novelty of our
approach comes in, is to determine which genie dimensions to
provide so that a useful DoF outer bound results. We propose
a series of steps where we continue to cycle through various
receivers in a chain of genie aided outer bounds containing
entropies of various subspace equations introduced above,
following four basic principles, that lead us to a cancelation of
successive entropy terms, producing the desired outer bound.
The four basic principles of the “genie chains” approach are
highlighted next through simple examples.

2The receiver with MR antennas sees MR linear combination equations of
the interfering transmit symbols. There are 3 interfering transmitters and each
has MT antennas. So we have 3MT unknown variables in the MR equations.
When 3MT > MR , we have fewer equations than unknowns.

Idea 1: Use the exposed space from one RX as a genie for
the next.

Example 1: (MT , MR) = (2, 5) ⇒ d ≤ 10/7
In this example, |Ḡ| = 3MT − MR = 1, so we need to

provide a one-dimensional genie. Suppose we start with the
generic subspace Ḡ1 = X̄[1]

(1) and give it as genie to RX 2. Since
this genie allows RX 2 to decode all the messages subject to
the noise distortion, we have

n(R1 + R2 + R3 + R4) − nεn

≤: I (W1, W2, W3, W4; Ȳ[2]n
, Ḡn

1) (68)

= h̄(Y[2]n
, X[1]n

(1) ) − h̄(Y[2]n
, X[1]n

(1) |W1, W2, W3, W4)

=: h̄(Y[2]n
) + h̄(X[1]n

(1) |Y[2]n
, W2) (69)

= h̄(Y[2]n
) + h̄(X[1]n

(1) |S[2]n
) (70)

= h̄(Y[2]n
) + h̄(X[1]n

(1) |[H[23]n
H[24]n ]T S[2]n

, · · ·
· · · ([H[23]n

H[24]n ]c)T S[2]n
) (71)

≤ h̄(Y[2]n
) + h̄(X[1]n

(1) |([H[23]n
H[24]n ]c)T S[2]n

) (72)

≤ h̄(Y[2]n
) + h̄(X[1]n

(1) |X[1∼2]n

1 ) (73)

= h̄(Y[2]n
) + h̄(X[1]n

(1) , X[1∼2]n

1 ) − h̄(X[1∼2]n

1 ) (74)

≤: 5n log ρ + n R − h̄(X[1∼2]n

1 ). (75)

In the derivations above, (68) follows from Fano’s inequality.
(69) is obtained because from all the four messages, one can
reconstruct the received signal vector and the genie signal
subject to bounded noise distortion. Since RX 2 can decode
its own message W2, it can subtract the signal contributed by
X[2] from Ȳ[2], and then produce the interference space S̄[2].
Note that the subtracted part is a linear function of X[2] and
thus is independent of X[1]

(1), as shown in (70). (71) follows
from the fact that we can separate the space S̄[2] into two
orthogonal subspaces, a one-dimensional projection that is
orthogonal to the channels from TX 3 and TX 4 to RX 2,
and the remaining four-dimensional subspace. Thus, RX 2
obtains the one-dimensional exposed subspace X̄[1∼2]

1 in (73).
Finally, the first term in (75) follows from Property (P2) of
Lemma 2 and the second term in (75) is obtained because
of the fact that we can use the two dimensional observations
{X̄[1]n

(1) , X̄[1∼2]n

1 } to recover the transmitted signal vector X[1]
within noise distortion, thus contributing the term n R subject
to noise distortion, as proved in Property (P3a) of Lemma 2.
Because of the symmetry of the problem, there is no loss of
generality in focusing on symmetric rates R1 = R2 = R3 =
R4 = R, which allows us to re-write (75) as follows,

4n R − nεn ≤: 5n log ρ + n R − h̄(X[1∼2]
1

n
). (76)

Note that the exposed space has appeared as a negative
entropy term. As a rule, in our approach, the negative entropy
terms will become the genie signals for the subsequent bounds,
leading to their eventual cancellation. Also, we will attempt
to obtain a total of MT useful bounds. In this case, MT = 2,
so we move to our final bound, and to the next RX, RX 3.
The genie, as just mentioned, will be in the previous negative
entropy term Ḡ2 = X̄[1∼2]

1 . As Ḡ2 is the exposed subspace
at RX 2, which is independent of the channels associated
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with RX 3, almost surely Ḡ2 is independent of Ȳ3 such that
RX 3 can now decode all the messages with this genie. The
resulting bound is the following

n(R1 + R2 + R3 + R4) − nεn

≤: I (W1, W2, W3, W4; Ȳ[3]n
, Ḡn

2) (77)

≤: h̄(Y[3]n
, X[1∼2]n

1 ) (78)

≤ h̄(Y[3]n
) + h̄(X[1∼2]

1
n
) (79)

�⇒ 4n R − nεn ≤: 5n log ρ + h̄(X[1∼2]
1

n
) (80)

where (79) follows from chain rule and the fact that remov-
ing the conditional terms does not decrease the differential
entropy.

Adding up the two inequalities (76) and (80), we obtain

8n R − 2nεn ≤: 10n log ρ + n R (81)

�⇒ 7n R ≤ 10n log ρ + n o(log ρ) + 2nεn . (82)

By letting n → ∞ first and then ρ → ∞, we obtain the
desired outer bound on DoF per user:

d ≤ 10/7. (83)

In order for the reader to have a more intuitive idea about
the associated subspaces in each step, we provide a numerical
example in the following.
Initialization:MT = 2, MR = 5, randomly generate

5 × 2 channel matrices from each TX to each RX. For exam-
ple, we randomly generate the following associated channel
realizations that are relevant in the proof:

H[21] =

⎡

⎢
⎢
⎢
⎢
⎣

0.5888 −0.3927
1.0095 −1.5730

−0.4297 −1.3400
0.3536 0.4674

−1.4046 0.6240

⎤

⎥
⎥
⎥
⎥
⎦

,

H[23] =

⎡

⎢
⎢
⎢
⎢
⎣

−2.4617 0.1171
1.9378 1.5657
0.8237 0.5253

−0.8099 1.5186
0.4344 −0.6581

⎤

⎥
⎥
⎥
⎥
⎦

,

H[24] =

⎡

⎢
⎢
⎢
⎢
⎣

−0.5819 −1.4890
0.2349 0.1483

−0.0988 0.9539
−0.1352 2.2932
−1.8865 −0.1452

⎤

⎥
⎥
⎥
⎥
⎦

,

H[31] =

⎡

⎢
⎢
⎢
⎢
⎣

0.0720 −1.9399
0.7140 2.4346
1.2446 0.3470
0.4961 −0.9756
0.5580 0.4654

⎤

⎥
⎥
⎥
⎥
⎦

,

H[32] =

⎡

⎢
⎢
⎢
⎢
⎣

−0.0999 −0.9784
−0.2805 −1.1571

0.4136 −0.0548
0.2967 1.1387
1.1556 0.7722

⎤

⎥
⎥
⎥
⎥
⎦

,

H[34] =

⎡

⎢
⎢
⎢
⎢
⎣

0.6760 0.0171
−0.8062 −0.3684

0.0049 −0.3526
0.8783 0.3086

−0.9020 0.3290

⎤

⎥
⎥
⎥
⎥
⎦

.

Step 1: We randomly generate a vector rand(2, 1) which
captures the direction of the genie signal Ḡ1. For example,
the vector is [0.6109 0.0712]T and thus Ḡ1 = 0.6109X [1]

1 +
0.0712X [1]

2 + Z1, where Z1 is an independent noise with
bounded variance. Then by zero forcing the interference from
TX 3 and TX 4, RX 2 obtains a one-dimensional observation,
say O2, of the transmitted signals from TX 1. That is,

X[1∼2]
1 = O2 = X[1]T

H[21]T
([H[23] H[24]])c

= 0.3227X [1]
1 + 1.2639X [1]

2 ,

which is linearly independent of G1 because the two linear
combinations are not collinear.
Step 2: We provide Ḡ2 = O2 + Z2 = 0.3227X [1]

1 +
1.2639X [1]

2 + Z2 as genie to RX 3, where Z2 is another
independent noise. Then by zero forcing the interference
from TX 2 and TX 4, RX 3 also obtains a one-dimensional
observation, say O3, of the transmitted signals from TX 1.
That is,

O3 = X[1]T
H[31]T

([H[32] H[34]])c

= 0.7366X [1]
1 + 1.0464X [1]

2 ,

which is also linearly independent of G2 so that we can
provide Ḡ2 as genie to ensure RX 3 can decode all the
messages.

Remark: The (MT , MR) = (2, 5) example is perhaps a bit
serendipitous because the size of the exposed space exactly
matches the required size of the genie at the next RX.
In general, the two will not be the same, and we need to
create either a bigger or a smaller genie. How to achieve a
larger or smaller genie is the subject of the remaining three
ideas.

Remark: Notice that for each sum rate inequality, we always
start from Fano’s inequality by providing enough dimensional
genie signals Ḡ to RX k such that it can decode all the
messages subject to noise distortion. RX k can obtain the inter-
ference space S̄[k] by decoding Wk first and then subtracting
out the signal carrying Wk from the observations Ȳ[k]. Thus,
we will always omit the derivations from (68) to (70), and
start directly from

K n R − nεn ≤: h̄(Y[k]n
) + h̄(Gn|S[k]n

)

in the remainder of this paper.
Idea 2: Obtain a larger genie by exposing more

dimensions.
Example 2: (MT , MR) = (3, 7) ⇒ d ≤ 21/10.
In this example, |Ḡ| = 3MT − MR = 2 so we need a

two-dimensional genie. However, MR − 2MT = 1, so the
exposed space, e.g., X̄[1∼2] is only one-dimensional. Similar
to Example 1, we start with a generic genie Ḡ1 = X̄[1]

(2) at
RX 2, which is linearly independent of S̄[2]. Thus, RX 2 can
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decode all the messages and we have

4n R − nεn ≤: h̄(Y[2]n
) + h̄(Gn

1 |S[2]n
) (84)

≤: 7n log ρ + h̄(X[1]
(2)

n |S[2]n) (85)

≤: 7n log ρ + n R − h̄(X[1∼2]
1

n
). (86)

For the next bound, we move to RX 3. We will use the genie

corresponding to the previous negative entropy term, X̄[1∼2]
1 ,

but since this is only one-dimensional and we need 2 genie
dimensions, we will complement it with a generic dimension
from the next TX, X̄[2]

(1). That is, Ḡ2 = {X̄[1∼2]
1 , X̄[2]

(1)}. The most
important element here is how a new dimension gets exposed.
RX 3 originally has one exposed dimension from TX 2.
However, when the genie provides X̄[1∼2]

1 , it exposes one
additional dimension from TX 2, so that the new exposed
space from TX 2 is denoted as X̄[2∼3]

2 . The resulting bound is
given by:

4n R − nεn

≤: h̄(Y[3]n
) + h̄(Gn

2 |S[3]n
) (87)

≤: 7n log ρ + h̄(X[1∼2]
1

n
, X[2]

(1)

n |S[3]n) (88)

= 7n log ρ + h̄(X[1∼2]
1

n
) + h̄(X[2]

(1)

n|S[3]n
, X[1∼2]

1
n
)

≤: 7n log ρ + h̄(X[1∼2]
1

n
) + h̄(X[2]

(1)

n|X[2∼3]
2

n
) (89)

≤: 7n log ρ + h̄(X[1∼2]
1

n
) + n R − h̄(X[2∼3]

2
n
). (90)

Now, with the additional exposed dimension, the exposed
space X̄[2∼3]

2 is two-dimensional and matches the desired size
of the genie. This gives us our third, and final, bound as we
cyclically move on to the next RX, RX 4, with the genie
Ḡ3 = X̄[2∼3]

2 . Since the channel coefficients associated with
RX 4 are generic, the one-dimensional observation available
at RX 4 from TX 2 is linearly independent of Ḡ3 almost
surely. Thus, RX 4 can decode all the messages subject to
noise distortion, and we have

4n R − nεn ≤: h̄(Y[4]n
) + h̄(Gn

3 |S[4]n
) (91)

≤: 7n log ρ + h̄(X[2∼3]
2

n
). (92)

Adding up the inequalities (86), (90), (92), we have

12n R − 3nεn ≤ 21n log ρ + 2n R + n o(log ρ) (93)

which produces the desired outer bound

d ≤ 21/10. (94)

In the following we provide an alternative proof for this
example to shed light on the following idea.

Idea 3: Combine exposed subspaces from multiple
receivers to create a larger genie.

After obtaining (86) at RX 2, similarly if a genie provides to
RX 3 two random linear combinations of X[1], i.e., Ḡ′

2 = X̄[1]′
(2) ,

we have another inequality at RX 3

4n R − nεn ≤: 7n log ρ + n R − h̄(X[1∼3]
1

n
) (95)

where X̄[1∼3]
1 is the exposed one dimensional observation

available at RX 3 projecting from TX 1.

Finally, a genie provides Ḡ′
3 = {X̄[1∼2]

1 , X̄[1∼3]
1 } to RX 4

where Ḡ′
3 is linearly independent of the 7-dimensional S[4]n

space. Thus, RX 4 can decode all the messages as well.
So we have

4n R − nεn ≤: h̄(Y[4]n
) + h̄(Gn′

3 |S[4]n
) (96)

≤: 7n log ρ + h̄(X[1∼2]
1

n
) + h̄(X[1∼3]

1
n
). (97)

Adding (86), (95) and (97), we again obtain the desired
outer bound

12n R − 3nεn ≤: 21n log ρ + 2n R �⇒ d ≤ 21/10. (98)

Remark: Idea 3 is especially useful in the MT > MR

settings. This is because here the dimension of the exposed
subspace at the receiver is smaller than the number of transmit
antennas, so that we may need to combine several exposed
subspaces to form a proper genie.

Idea 4: Obtain a smaller size genie by intersections.
Example 3: (MT , MR) = (3, 8) ⇒ d ≤ 24/11
Starting with a generic genie Ḡ1 = X̄[1]

(1) at RX 2, we have
the first inequality

4n R − nεn ≤: h̄(Y[2]n
) + h̄(Gn

1 |S[2]n
) (99)

≤: 8n log ρ + h̄(X[1]
(1)

n |S[2]n
) (100)

≤: 8n log ρ + n R − h̄(X[1∼2]
2

n
). (101)

Now, the required size of the genie is |Ḡ| = 3M − N = 1
while exposed spaces have size 2. How to create a smaller
genie? We will do that by creating multiple exposed spaces,
each of which may be too big to be an acceptable genie,
but their intersection will turn out to be an acceptable genie.
A genie provides to RX 3 another random linear combination
of X[1], i.e., Ḡ2 = X̄[1]′

(1) , so that

4n R − nεn ≤: 8n log ρ + n R − h̄(X[1∼3]
2

n
) (102)

where O3 = X[1∼3]
2 is the two-dimensional exposed space

of TX 1 at RX 3. Since the construction of O2 = X[1∼2]
2

and O3 only involve the channel coefficients associated with
their own receivers, they are generic and have 2 + 2 − 3 = 1
dimensional intersection, denoted as I = O2 ∩ O3. Thus, we
can rewrite (102) as

4n R − nεn

≤: 8n log ρ + n R − h̄(X[1∼3]
2

n
) − h̄(X[1∼2]

2
n
)

+ h̄(X[1∼2]
2

n
) (103)

= 8n log ρ + h̄(X[1∼2]
2

n
) + n R − h̄(On

3 \ In,In)

− h̄(On
2 ) (104)

= 8n log ρ + h̄(X[1∼2]
2

n
) + n R − h̄(In)

− h̄(On
3 \ In |In) − h̄(On

2 ) (105)

≤ 8n log ρ + h̄(X[1∼2]
2

n
) + n R − h̄(In)

− h̄(On
3 \ In |In,On

2 ) − h̄(On
2 ) (106)

=: 8n log ρ + h̄(X[1∼2]
2

n
) + n R − h̄(In)

− h̄(On
2 ) − h̄(On

3 \ In|On
2 ) (107)

= 8n log ρ + h̄(X[1∼2]
2

n
) + n R − h̄(In) − h̄(On

2 ,On
3 \ In)

=: 8n log ρ + h̄(X[1∼2]
2

n
) − h̄(In) (108)
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where (107) is obtained because I is included in O2, and (108)
follows from the property that {O2,O3 \ I} are three linear
independent equations in X[1] and we can use Property (P3)
of Lemma 2. We call the inequality (108) the “intermediate
bound” which is constructed by intersecting two subspaces at
different receivers. The derivations above are the same as that
in Lemma 3.

Finally, we should provide the observations we obtain in
the last step as the genie to RX 4, i.e., Ḡ3 = I + Z ,
where Z is an independent noise. Since Ḡ3 only involves the
channel coefficients associated with RX 2 and 3, it is linearly
independent of the original two dimensional observations from
TX 1 at RX 4. Thus, RX 4 can decode all the messages, and
we have the last inequality

4n R − nεn ≤: h̄(Y[4]n
) + h̄(Gn

3 |S[4]n
) (109)

≤ 8n log ρ + h̄(In). (110)

Adding up the inequalities (101), (108) and (110), we have

12n R − 3nεn ≤: 3Nn R + n R (111)

�⇒ d ≤ 3N/11 = 24/11. (112)

The three examples above show that our goal is to use
a chain of arguments, where we start with the exposed
spaces and continue to build new genies with more dimen-
sions by peeling off overlaps, or less dimensions by taking
intersections, until we have the genie of the correct size,
which requires exactly MT steps, and produces the bound
d ≤ MT MR

MT +MR
, if all genies in this process are acceptable,

i.e., linearly independent of the space already available to the
receivers.

This is summarized in the following observation in the
context of K -user interference channel.

Observation 1: For the K user MT × MR MIMO inter-
ference channel where each TX has MT and each RX has
MR antennas, if we can create a genie chain with MT genie
signal sets and each genie signal (with the appropriate size
of (K − 1)MT − MR ) is linearly independent of the exposed
subspace at each corresponding receiver, then the DoF value
per user is given by d = MT MR

MT +MR
.

Note that the genie chain technique is applicable to arbitrary
channel realizations, to the extent that the genie signals remain
linearly independent of previously exposed spaces. Thus this
technique can be used to test arbitrary settings, although in
this paper, we focus exclusively on deriving DoF results that
hold almost surely for generic channels.

Now we have a general result for the K -user MIMO inter-
ference channel, then building genie signals with appropriate
sizes and testing the linear independence condition are all that
remain. This is the problem that we will address for various
cases, and leave open for others.

Also, it should be noted that when the genie signals start
becoming linearly dependent, one can terminate the chain by
simply replacing the entropy term by its maximum signal
dimension. The bound may be loose but it is still the best
bound we can get through the genie chain approach, and likely
better than any other existing approach.

V. APPLICATION: K = 4 USER MIMO
INTERFERENCE CHANNEL

In this section, we apply the genie chains approach to
investigate the DoF characterization for the K = 4 user
MT × MR MIMO interference channel. For brevity, let
M = min(MT , MR ) and N = max(MT , MR ). Since the
DoF results and corresponding proofs when M/N ≤ 3/8
follow from the K = 3 user case [2] but require much more
complicated analysis, we will consider this regime later in
Section VII.1. In this section, we only consider the setting
MT /MR > 3/8. The main result for this regime is presented
in the theorem.

Theorem 1: For the K = 4 user MT × MR MIMO interfer-
ence channel where each TX has MT and each RX has MR

antennas, the DoF value per user is given by d = MT MR
MT +MR

for

every (MT , MR) where MT
MR

∈ P1 ∪ P2 ∪ P3 � P ⊂ (3/8, 1],
P1 = { MT

MR
| 1

2 ≤ MT
MR

< 1, MT , MR ∈ Z
+, MR ≤ 20},

P2 = { MT
MR

| 2
5 ≤ MT

MR
< 1

2 , MT , MR ∈ Z
+, MR ≤ 100}

and P3 = { 8
21} ∪ { MT

MR
= 2c−1

5c−2 |c ∈ Z
+, c ≥ 2, MT ,

MR ∈ Z
+, MR ≤ 100}.

As reported in [7], M N
M+N DoF per user are achievable almost

surely by using the rational alignment framework. To establish
the DoF result implied by Theorem 1, it suffices to show
that d = M N

M+N is also the information theoretic DoF outer
bound per user. In the remainder of this section, we will
use the systematic “genie chains” approach, based on four
central ideas that we show in Section IV. We will provide
proofs through specific algorithms for MT /MR belonging to
P1, P2, P3 sequentially. In addition, note that we only consider
the MT < MR setting in this section, which means that
(MT , MR) = (M, N). Further discussion on the results will
be presented in Section VII.

Remark: Note that in the three regimes P1,P3,P3 in
Theorem 1, although we impose the constraints MR ≤ 20,
MR ≤ 100 and MR ≤ 100, respectively, it does not mean that
the DoF converse proofs do not hold without these constraints.
The reason of imposing constraints in P1 is the difficulty of
computing the determinant of certain matrices whose elements
are generated randomly to determine those matrices have full
rank or not, and when those matrices become large as the
MIMO dimensions MT , MR increase, we face computational
bottlenecks. The reason of imposing constraints in P2 and P3
is that although we get rid of numerical uncertainty by
choosing specific channel matrices (so we are now comput-
ing the ranks of deterministic matrices whose elements are
explicitly specified instead of the ranks of random matrices
whose elements are generated randomly as in P1), it is still
very challenging, if not impossible, to derive closed-form
expressions of the ranks of certain matrices. Therefore, the
constraints in Theorem 1 mean that we have tested the cases
that satisfy the constraints and we face the issues mentioned
above for cases that go beyond the constraints.

A. M/N ∈ [1/2,1) Case

Since N −2M ≤ 0, each RX cannot directly obtain exposed
subspaces from any interferer by zero forcing the signals from
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the other two interferers. For brevity we let M0 = N − M
where M0 is a positive integer. Also, note that the random
linear combinations provided by a genie in each step are
generic, although the notations may be the same.

Proof: The general proof for this setting is given by the
following algorithm.
Algorithm 1 (M/N ∈ [1/2, 1))

• Step 1:
Start from RX k = 2. A genie provides RX k the

signal set Ḡ = {X̄[k+1], X̄[k−1]
(M−M0)}, where X[k−1]

(M−M0)
are

M − M0 random linear combinations of the transmit
signals from TX k − 1. In the absence of interference
from TX k +1, RX k has M0 dimensional observations
of the transmit signals from TX k − 1 by zero forcing
the signals from TX k + 2. We denote by O the
M0 dimensional observations. This process produces
the first sum rate inequality:

4n R − nεn ≤: h̄(Y[k]n
) + h̄(Gn|S[k]n

)

≤: Nn log ρ + h̄(X[k+1]n
)

+ h̄(X[k−1]n

(M−M0)
|S[k], X[k+1]n

)

≤: Nn log ρ + n R + h̄(X[k−1]n

(M−M0)
|On)

≤: Nn log ρ + 2n R − h̄(On).

• Step 2:
If |O| = |G| − M = M − M0, go to Step 3.
If |O| < |G| − M = M − M0, go to Step 4.
If |O| > |G| − M = M − M0, go to Step 5.

• Step 3:
A genie provides RX k+1 the set Ḡ = {X̄[k+2],O+Z}.
Note that in the absence of interference from TX k +2,
RX k + 1 originally has M0 dimensional observations
of TX k − 1 after zero forcing the interference from
TX k, which is denoted as O′. As O and O′ are
observations at different receivers, they are independent
almost surely. So from {O,O′}, RX k + 1 is able to
recover the transmit signal from TX k − 1 subject to
noise distortion. This process produces one sum DoF
inequality

4n R − nεn ≤: h̄(Y[k+1]n
) + h̄(Gn|S[k+1]n

)

≤: Nn log ρ + h̄(X[k+2]n
,On |S[k+1]n

)

≤: Nn log ρ + n R + h̄(On).

Adding up all inequalities that we have so far produces
the inequality

4Mn R − Mnεn ≤: M Nn R + (3M − N)n R

which leads to our desired DoF outer bound d ≤ M N
M+N .

Then we stop.
• Step 4:

A genie provides Ḡ = {X̄[k+2],O + Z, X̄[k]
(M−M0−|O|)}

to RX k + 1. In the absence of interference from
TX k + 2, RX k + 1 originally has M0 dimensional
observations of the transmit signals from TX k after
zero forcing the interference from TX k − 1, which is
denoted as O′. Since providing O to RX k +1 releases

another M0 dimensional observations of the transmit
signals from TX k, which is denoted as Õ, RX k+1 has
a total of |Õ| + M0 dimensional observations of X[k]n

.
This process produces the sum rate inequality

4n R − nεn

≤: h̄(Y[k+1]n
) + h̄(Gn|S[k+1]n

)

≤: Nn log ρ + h̄(X[k+2]n
,On, X[k]n

(M−M0−|O|)|S[k+1]n
)

≤: Nn log ρ + h̄(X[k+2]n
) + h̄(On)

+ h̄(X[k]n

(M−M0−|O|)|Õn,O′n)
≤: Nn log ρ + n R + h̄(On) + n R − h̄(Õn,O′n).

Now we update O = {Õ,O′} and k = k + 1. Go back
to Step 2.

• Step 5:
A genie provides Ḡ = {O + Z, X̄[k]

(2M−M0−|O|)} to RX

k + 1. In the N dimensional observation S[k+1]n
, after

zero forcing the interference from TX k − 2, we still
have N − M = M0 observations of the interference
from TX k − 1 and TX k. After providing O to RX
k+1, now we have a total of M0+|O| > M dimensions
of the interference from TX k −1 and TX k. Therefore,
we continue to zero force the interference from TX
k − 1, thus only leaving M0 + |O| − M dimensional
observations of X[k], denoted as O′. Note that O′ is
linearly independent of X̄[k]n

(2M−M0−|O|) provided by the

genie, and from them together RX k + 1 is able to
recover the transmit signal from TX k subject to noise
distortion. This process produces the inequality

4n R − nεn ≤: h̄(Y[k+1]n
) + h̄(Gn|S[k+1]n

)

≤: Nn log ρ

+ h̄(On, X[k]n

(2M−M0−|O|)|S[k+1]n
)

≤: Nn log ρ + h̄(On) + n R − h̄(O′n).

Now we update O = O′ and k = k + 1. Go back to
Step 2.

Remark: Note that we do not need the intermediate DoF
outer bound in this case. In contrast, for M/N ∈ [2/5, 1/2)
or [3/8, 2/5) cases the intermediate bound is necessary, as we
have shown in Example 3 in Section IV.

In this algorithm, the genie signal Ḡ always contains
3M − N dimensions in each step. If we want to recover
all the interference symbols from {Ḡ, S̄[k]} subject to noise
distortion, it suffices to show that the Ḡ is linearly independent
of S̄[k], which is a linear algebra problem now. We are able to
verify the linear independence through numerical tests when
MR ≤ 20. This completes the proof for this regime.

B. M/N ∈ [2/5,1/2) Case

Since N − 2M > 0, each RX obtains a fixed N − 2M
dimensional clean observations from each interferer, by simply
zero forcing the signals from the other two interferers. For
brevity we let M0 = N − 2M where M0 is a positive integer.

Proof: The general proof for this setting is given by the
following algorithm.
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Algorithm 2 (M/N ∈ [2/5, 1/2))

• Step 1:
Start from RX k = 2. A genie provides signals
Ḡ = X̄[k−1]

(M−M0) to RX k which originally has
M0 dimensional observations of transmit signals from
TX k − 1, after it zero forces the interference of the
other two users. We denote by O these M0 dimensional
observations. This process produces the first sum rate
inequality

4n R − nεn ≤: h̄(Y[k]n
) + h̄(Gn|S[k]n

)

≤: Nn log ρ + h̄(X[k−1]n

(M−M0)
|On)

≤: Nn log ρ + n R − h̄(On).

• Step 2:
If |O| = |G| = M − M0, go to Step 3.
If |O| < |G| = M − M0, go to Step 4.
If |O| > |G| = M − M0, go to Step 5.

• Step 3:
A genie provides Ḡ = O + Z to RX k + 1.
RX k + 1 originally has M0 dimensional observations
of the transmit signals from TX k after it zero forces
the interference from the other two users. We denote by
O′ these M0 dimensional observations. Combined with
the |O| dimensional observations of transmit signals
from TX k opened up by O, they allow RX k + 1 to
recover signals from TX k subject to noise distortion.
This process produces the inequality

4n R − nεn ≤: h̄(Y[k+1]n
) + h̄(Gn|S[k+1]n

)

≤: Nn log ρ + h̄(On).

Adding up the inequalities we have so far produces the
inequality

4Mn R − Mnεn ≤: M Nn R + (3M − N)n R

which leads to our desired DoF outer bound d ≤ M N
M+N .

Then we stop.
• Step 4:

A genie provides the set Ḡ = {O + Z, X̄[k]
(M−M0−|O|)}

to RX k + 1. RX k + 1 originally has M0 dimensional
observations of transmit signals from TX k after zero
forcing the interference from the other two suers.
Denote these M0 dimensional observations as O′. Since
providing O to RX k +1 releases another M0 observa-
tions of transmit signals from TX k, denoted as Õ, RX
k +1 has a total of |Õ|+ M0 dimensional observations
of X[k]. This process produces the inequality

4n R − nεn

≤: h̄(Y[k+1]n
) + h̄(Gn|S[k+1]n

)

≤: Nn log ρ + h̄(On, X[k]n

(M−M0−|O|)|S[k+1]n
)

≤: Nn log ρ + h̄(On) + h̄(X[k]n

(M−M0−|O|)|Õn,O′n)

≤: Nn log ρ + h̄(On) + n R − h̄(Õn,O′n).

Now we update O = {Õ,O′} and k = k + 1. Go back
to Step 2.

• Step 5:
A genie provides Ḡ = X̄[k−1]

(M−M0)
to RX k + 1, which

originally has M0 dimensional observations of transmit
signals from TX k−1 after zero forcing the interference
from the other two users. Denote these M0 dimensional
observations as O′. Because |O| + |O′| > M , the
subspaces O and O′ have an |O|+M0−M dimensional
intersection. We denote this intersection by I. Note that
{O,O′ \I} is already the whole M dimensional space,
thus contributing R+o(log ρ) differential entropy. Note
that we still have the remaining |O|+ M0 − M dimen-
sional observations of X[k−1], i.e., the intersection I.
This process produces the intermediate bound

4n R − nεn

≤: h̄(Y[k+1]n
) + h̄(Gn|S[k+1]n

)

≤: Nn log ρ + h̄(X[k−1]n

(M−M0)
|O′n)

≤: Nn log ρ + n R − h̄(O′n) − h̄(On) + h̄(On)

≤: Nn log ρ + h̄(On) + n R

− h̄(O′n \ In,In) − h̄(On)

≤: Nn log ρ + h̄(On) − h̄(In) + n R

− h̄(O′n \ In|In) − h̄(On)

≤: Nn log ρ + h̄(On) − h̄(In) + n R

− h̄(O′n \ In|In,On) − h̄(On)

≤: Nn log ρ + h̄(On) − h̄(In) + n R

− h̄(O′n \ In|On) − h̄(On)

≤: Nn log ρ + h̄(On) − h̄(In) + n R

− h̄(O′n \ In,On)

≤: Nn log ρ + h̄(On) − h̄(In).

Now we update O = I, k = k + 1. Go back to
Step 2.

Remark: The phrase “intermediate” implies that the obser-
vations associated with the negative entropy term are obtained
by intersecting the two subspaces available at successive two
receivers looking at the same interferer. Moreover, in this
case we only need intermediate bounds (with respect to two
receivers) by intersecting at most once.

Similar to Algorithm 1, in this algorithm, we also need to
show that the 3M − N dimensional genie signal Ḡ is linearly
independent of S̄[k]. Equivalently, since each RX has a clean
N − 2M dimensional subspace of each interferer, we need to
guarantee that Ḡ is linearly independent of these subspaces.
The detailed proof of this claim is deferred to Appendix C-A.

C. M/N ∈ [3/8,2/5) Case

When M/N falls into [3/8, 2/5) regime, we show the
proofs when M/N = (2c − 1)/(5c − 2), c ∈ Z

+ \ {1} and
M/N = 8/21.

Proof: Let us first consider M/N = (2c − 1)/(5c − 2),
c ∈ Z

+ \ {1} cases. It can be checked that for these cases we
only need one successive intermediate bound. Thus, we can
still use Algorithm 2 to produce the information theoretic outer
bound proofs for these cases. Similarly, what remains to be
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shown is that at each step the clean N − 2M dimensional
observations of the associated TX are linearly independent
of the |Ḡ| = 3M − N dimensional observations of that TX
opened up by the provided genie Ḡ, i.e., we will show that
the resulting M × M square matrix has full rank. The proof
in detail is deferred to Appendix C-B.

Next, we prove the case where M/N = 8/21. Note that this
does not fall into the category that M/N = (2c − 1)/(5c − 2).
What is special for this case is that we need two successive
intermediate bounds. Suppose (M, N) = (8a, 21a), a ∈ Z

+,
then the proof is shown through the following eight steps.

• Step 1: Start from RX 2 and TX 1. A genie provides
Ḡ1 = X̄[1]

(3a) to RX 2 such that it can decode all the
messages subject to noise distortion. After zero forcing
the interference from TX 3 and TX 4, RX 2 originally
has 5a dimensional observations of the signals sent
from TX 1, which is denoted as O where |O| = 5a.
This process produces the first sum rate inequality

4n R − nεn ≤: h̄(Y[2]n
) + h̄(Gn

1 |S[2]n
)

≤: Nn log ρ + h̄(Gn
1 |On)

≤: Nn log ρ + n R − h̄(On). (113)

• Step 2: Since |O| + 5a > M , we go to RX 3
looking at TX 1 for an intermediate bound. A genie
provides Ḡ2 = X̄′[1]

(3a) to RX 3, which originally
has 5a dimensional observations of signals sent from
TX 1 (denoted as O′), after zero forcing these 5a
dimensional observations. Because |O|+|O′| = 10a >
8a = M , they have a 2a-dimensional intersection. We
denote this intersection by I. This process produces
the intermediate bound

4n R − nεn

≤: h̄(Y[3]n
) + h̄(Gn

2 |S[3]n
)

≤: Nn log ρ + h̄(On |O′n)

≤: Nn log ρ + n R − h̄(O′n) − h̄(On) + h̄(On)

≤: Nn log ρ + h̄(On) − h̄(In). (114)

Then we update O = I and |O| = 2a.
• Step 3: Since |I| + 5a = 7a < M , we do not need an

intermediate bound here. We go to RX 4 looking at TX
3. A genie provides Ḡ3 = {O+Z, X̄[3]

(a)} to RX 4, which
originally has 5a dimensional observations of signals
sent from TX 3, denoted as O′. Since providing O,
which is associated with User 1, to RX 4 releases
another |O| = 2a observations of signals sent from
TX 3, denoted as Õ, RX 4 has a total of |Õ| + M0 =
7a dimensional observations of X[3]. This process
produces

4n R − nεn

≤: h̄(Y[4]n
) + h̄(Gn

3|S[4]n
)

≤: Nn log ρ + h̄(On, X[3]n

(a) |S[4]n
)

≤ Nn log ρ + h̄(On) + h̄(X[3]n

(a) |S[4]n
,On,O′n)

≤ Nn log ρ + h̄(On) + h̄(X[3]n

(a) |Õn,O′n)
≤: Nn log ρ + h̄(On) + n R − h̄(Õn,O′n). (115)

Now we update O = {Õ,O′} and |O| = 7a.

• Step 4: Now since |O| + 5a > M , we need an
intermediate bound. So we go to RX 1 still looking
at TX 3. A genie provides Ḡ4 = X̄[3]

(3a) to RX 1,
which originally has 5a dimensional observations of
signals sent from TX 1, denoted as O′ and |O′| = 5a.
Because |O| + |O′| = 12a > M , they have a
4a-dimensional intersection. We denote this intersec-
tion by I. This process produces the intermediate
bound as follows:

4n R − nεn

≤: h̄(Y[1]n
) + h̄(Gn

4|S[1]n
)

≤: Nn log ρ + h̄(X[3]n

(3a)|O′n)

≤: Nn log ρ + n R − h̄(O′n) − h̄(On) + h̄(On)

≤: Nn log ρ + h̄(On) − h̄(In). (116)

Then we update O = I and |O| = 4a.
• Step 5: Because we have again |O| + 5a > M , we

need to resort to the next RX, RX 2, looking at
TX 3 for another intermediate bound. Now a genie
provides the set Ḡ3 = X̄′[3]n

(3a) to RX 2, which also has
5a dimensional observations of X[3], denoted as O′.
We denote by I the intersection of O and O′, and
|I| = |O| + 5a − 8a = a. This process produces the
intermediate bound

4n R − nεn

≤: h̄(Y[2]n
) + h̄(Gn

5 |S[2]n
)

≤: Nn log ρ + h̄(X′[3]n

(3a)|O′n)

≤: Nn log ρ + n R − h̄(O′n) − h̄(On) + h̄(On)

≤: Nn log ρ + h̄(On) − h̄(In). (117)

Then we update O = I and |O| = a.
• Step 6: Since |O| + 5a = 6a < M , we do not

need an intermediate bound here. Now let us recall
how we obtain the observations (subspaces) O here.
We start from RX 4 in Step 3 where we have 7a
dimensional observations of X[3], 5a dimensions that
RX 4 originally has and the other 2a dimensions
opened up by the genie. Then we intersect these
7a dimensional observations with the 5a dimensional
observations at RX 1 and RX 2 in Step 4 and
Step 5, respectively, to produce O. That is to say, the
a dimensional observations O are already contained in
the clean observations at RX 1 and RX 2. Therefore,
we cannot provide O as a genie to those two receivers.
Also, O is the observations of X[3] and thus cannot be a
genie provided to RX 3. Thus, we can only provide it as
a genie to RX 4. Moreover, we want to use O as a genie
to open up the dimensions of signals sent from other
TXs, i.e., not TX 3 or TX 4. Suppose a genie provides
Ḡ4 = {O+Z, X̄[2]

(2a)} to RX 2, which originally has 5a
dimensional observations of signals sent from TX 2,
denoted as O′. As we have described, providing O
to RX 4 releases another |O| = a observations of
signals sent from TX 2, denoted as Õ, RX 4 has a total
of |Õ| + M0 = 6a dimensional observations of X[2].
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This process produces the following inequality:

4n R − nεn

≤: h̄(Y[4]n
) + h̄(Gn

6|S[4]n
)

≤: Nn log ρ + h̄(On, X[2]n

(2a)|S[4]n
)

≤ Nn log ρ + h̄(On) + h̄(X[2]n

(2a)|S[4]n
,On,O′n)

≤ Nn log ρ + h̄(On) + h̄(X[2]n

(2a)|Õn,O′n)
≤: Nn log ρ + h̄(On) + n R − h̄(Õn,O′n). (118)

Now we update O = {Õ,O′} and |O| = 6a.
• Step 7: Since |O| + 5a > M , we again need an

intermediate bound. Consider RX 1 looking at TX 2.
A genie provides Ḡ = X̄[2]

(3a) to RX 1, which origi-
nally has 5a dimensional observations of signals sent
from TX 2, denoted as O′ and |O′| = 5a. Because
|O| + |O′| = 11a > M , they have a 3a-dimensional
intersection. We denote this intersection by I. Then
this process produces the intermediate bound

4n R − nεn

≤: h̄(Y[1]n
) + h̄(Gn

7 |S[1]n
)

≤: Nn log ρ + h̄(X[2]n

(3a)|O′n)

≤: Nn log ρ + n R − h̄(O′n) − h̄(On) + h̄(On)

≤: Nn log ρ + h̄(On) − h̄(In). (119)

Then we update O = I and |O| = 3a.
• Step 8: Finally, consider RX 3 looking at TX 2.

A genie provides Ḡ8 = O + Z to RX 3, which
originally has 5a dimensional observations of TX 2,
denoted as O′, which combined with the |O| = 3a
dimensional genie signals from TX 2 allows RX 3 to
recover X[2] subject to noise distortion. This process
produces the inequality

4n R ≤: h̄(Y[3]n
) + h̄(Gn

8 |S[3]n
) (120)

≤ Nn log ρ + h̄(On). (121)

Notice that in each of the eight inequalities from
(113) to (121), the differential entropy term with the
negative sign always appears with the positive sign in
the next inequality. Thus, adding up all the eight sum
rate inequalities from (113) to (121), all the negative
terms on the right-hand side are fully canceled out, thus
producing the following inequality:

32n R − 8nεn ≤: 8Nn log ρ + 3n R + n o(log ρ)

⇒ d ≤ 8N

29
= 8 × 21

29
.

Note that in each step we still need to ensure at each step
the clean N − 2M dimensional observations of the associated
TX are linearly independent of the |Ḡ| = 3M−N dimensional
observations of that TX opened up by the provided genie Ḡ.
For this case of M/N = 8/21, we rely on the numerical test
by randomly generating the channel matrices to show that this
independence claim is true.

Remark: For any (M, N) pair where M/N ∈ [3/8, 2/5),
after running the algorithm we obtain a series of inequalities,

in which the intermediate bounds can appear successively
for at most twice. In addition, we cannot derive more than
two successive intermediate bounds. The reason is the fol-
lowing. At any step, if we provide O as a genie where
|O| + (N − 2M) > M , then we need an intermediate bound.
After deriving that inequality, we provide a |O|+(N−2M)−M
dimensional genie to the RX we consider next. Again, if
|O|+ (N −2M)− M + (N −2M) > M , we need immediately
another intermediate bound. With the same analysis, suppose
we need a third successive intermediate bound, we have to
have:

|O| + (N − 2M) − M + (N − 2M) − M + (N − 2M) > M

which, due to |O| < M , implies that M
N < 3

8 , which is
contradictive. Intuitively, this conclusion implies that the three
N − 2M dimensional clean observations of one interferer at
all undesired receivers have only null intersection in common
after projecting the clean subspaces back to that TX. Further-
more, for the K user M × N MIMO interference channel, the
clean observations of one interferer at all undesired receivers,
after we project them back to that transmit space, will have
a common intersection with [(K − 1)(N − (K − 2)M) −
(K − 2)M]+ dimension. This intersection would be the null
space as long as

(K − 1)(N − (K − 2)M) ≤ (K − 2)M

�⇒ M

N
≥ K − 1

K (K − 2)
.

In general, in the K -user case, we may have up to K − 2
successive intermediate bounds.

VI. EXAMPLES OF APPLICATIONS OF GENIE CHAINS

Aside from the application of the genie chains in K = 4
user semi-symmetric MT × MR MIMO interference channel
where MT < MR , the tool of genie chains can also be applied
to the reciprocal MT > MR setting and many other wireless
networks to produce the desired information theoretic DoF
outer bound. In this section, we will provide four specific
examples to show the application of genie chains. Note that
the DoF of all these four examples were open before the
introduction of the ‘genie chains’ approach.

A. DoF of the K = 4 User Reciprocal Setting

We consider (MT , MR ) = (8, 3) = (N, M) MIMO interfer-
ence channel, as an example of the reciprocal MT > MR

setting in this section. The channel model and associated
definitions and notations are identical to that in Section II. We
are going to show that each user in this channel has 24/11
DoF. Since the achievability has already been shown in [7],
we focus on the information theoretic DoF outer bound.

Proof: As we have shown in previous examples, intu-
itively, we need a total of MT = 8 sum rate bounds, which
can be produced through the following eight steps. Note that in
each step, the genie should have at least |Ḡ| = 3N − M = 21
dimensions.

• Step 1: Consider RX 2 and TX 1. After decoding
its desired message W2, RX 2 can reconstruct X[2]
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and subtract it from its received signal vector. Thus,
RX 2 has 3 linear combinations of 8 × 3 = 24
interference symbols from TX1, TX 3 and TX 4.
A genie provides Ḡ1 = {X̄[1]

(5), X̄[3], X̄[4]} to RX 2.
From provided X̄[3], X̄[4], RX 2 can decode W3, W4.
After RX 2 subtracts X[2], X[3], X[4], it has three
dimensional observations of interference from TX 1,
which are linearly independent of the provided genie
signals X̄[1]

(5). By inverting the channel matrix associated
with TX 1, RX 2 can decode W1 as well subject to
noise distortion. Hence, we obtain the first sum rate
inequality:

4n R − nεn

≤: h̄(Y[2]n
) + h̄(Gn

1 |S[2]n
) (122)

≤: nMR log ρ + h̄(X[1]n

(5) , X[3]n
, X[4]n |Y[2]n

)

≤: nMR log ρ + h̄(X[3]n
, X[4]n

)

+ h̄(X[1]n

(5) |Y[2]n
, X[3]n

, X[4]n
) (123)

≤: nMR log ρ + 2n R + h̄(X[1]n

(5) |X[1∼2]n

3 ) (124)

≤: nMR log ρ + 2n R + h̄(X[1]n

(5) , X[1∼2]n

3 )

− h̄(X[1∼2]n

3 ) (125)

≤: nMR log ρ + 3n R − h̄(X[1∼2]n

3 ). (126)

• Step 2: Consider RX 3 and TX 1. Similar to Step 1,
a genie provides Ḡ2 = {X̄[1]

(5), X̄[2], X̄[4]} to RX 2, such
that it can decode all the messages as well subject
to noise distortion. This step produces the second
inequality as follows:

4n R − nεn ≤: h̄(Y[3]n
) + h̄(Gn

2 |S[3]n
)

≤: nMR log ρ + 3n R − h̄(X[1∼3]n

3 ).

• Step 3: Consider RX 4 and TX 2. A genie provides
Ḡ3 = {X̄[1∼2]

3 , X̄[1∼3]
3 , X̄[2]

(7), X̄[3]} to RX 4. Note that
RX 4 is able to decode W4 and reconstruct X[4],
and then subtract it from its received signal vector.
Thus, RX 4 has three dimensional observations of the
16 interference symbols from TX 1 and TX 2. With
genie X̄[1∼2]

3 , X̄[1∼3]
3 , X̄[2]

(7), RX 4 can invert the square
channel matrix associated with TX 1 and TX 2, and
thus decode the other two messages as well subject
to noise distortion. Therefore, we have the second
inequality as follows:

4n R − nεn

≤: h̄(Y[4]n
) + h̄(Gn

3 |S[4]n
)

≤: nMR log ρ

+h̄(X[1∼2]n

3 , X[1∼3]n

3 , X[2]n

(7) , X[3]n |Y[4]n
)

≤: nMR log ρ + h̄(X[1∼2]n

3 , X[1∼3]n

3 )

+ h̄(X[3]n
) + h̄(X[2]n

(7) |S[4]n
, X[1∼2]n

3 , X[1∼3]n

3 , X[3]n
)

≤: nMR log ρ + h̄(X[1∼2]n

3 ) + h̄(X[1∼3]n

3 )

+n R + h̄(X[2]n

(7) |X[2∼4]n

1 )

≤: nMR log ρ + h̄(X[1∼2]n

3 ) + h̄(X[1∼3]n

3 ) + n R

+h̄(X[2]n

(7) , X[2∼4]n

1 ) − h̄(X[2∼4]n

1 )

≤: nMR log ρ + 2n R + h̄(X[1∼2]n

3 )

+ h̄(X[1∼3]n

3 ) − h̄(X[2∼4]n

1 ).

• Step 4: Consider RX 1 and TX 2. Similar to Step 1,
a genie provides Ḡ4 = {X̄[2]

(5), X̄[3], X̄[4]} to RX 1,
such that RX 1 can decode all the messages subject to
noise distortion. Following the derivations in Step 1,
we obtain the fourth sum rate inequality:

4n R − nεn ≤: h̄(Y[1]n
) + h̄(Gn

4|S[1]n
)

≤: nMR log ρ + 3n R − h̄(X[2∼1]n

3 ).

• Step 5: Consider RX 3 and TX 2. Similar to Step 2,
a genie provides Ḡ5 = {X̄[2]

(5), X̄[1], X̄[4]} to RX 2, such
that it can decode all the messages subject to noise
distortion. Thus this step produces the fifth inequality
as follows:

4n R − nεn ≤: h̄(Y[3]n
) + h̄(Gn

2|S[3]n
)

≤: nMR log ρ + 3n R − h̄(X[2∼3]n

3 ).

• Step 6: Consider RX 2 and TX 4. A genie provides
Ḡ6 = {X̄[4]

(5), X̄[1], X̄[3]} to RX 2, such that RX 2 is able
to decode all the messages subject to noise distortion.
The reasoning and derivations of this step are similar
to that of Step 1 and Step 4, and thus we have the
following inequality:

4n R − nεn ≤: h̄(Y[2]n
) + h̄(Gn

6|S[2]n
)

≤: nMR log ρ + 3n R − h̄(X[4∼2]n

3 ).

• Step 7: Consider RX 3 and TX 4. A genie provides
Ḡ7 = {X̄[4]

(5), X̄[1], X̄[2]} to RX 3, such that RX 3 can
decode all the messages subject to noise distortion.
This step is similar to Step 2 and Step 5. This step
produces the seventh inequality as follows:

4n R − nεn ≤: h̄(Y[3]n
) + h̄(Gn

7|S[3]n
)

≤: nMR log ρ + 3n R − h̄(X[4∼3]n

3 ).

• Step 8: Consider RX 1 and TX 4. A genie provides
Ḡ8 = {X̄[4∼2]

3 , X̄[4∼3]
3 , X̄[2]

(7), X̄[3]} to RX 1, such that
RX 1 is able to decode all the messages subject to noise
distortion. This step is similar to Step 3. Therefore, we
have the eighth inequality as follows:

4n R − nεn ≤: h̄(Y[1]n
) + h̄(Gn

8|S[1]n
)

≤: nMR log ρ + 2n R + h̄(X[4∼2]n

3 )

+ h̄(X[4∼3]n

3 ) − h̄(X[2∼1]n

1 ).

Finally, adding up all the eight sum rate inequalities we
have so far, we obtain the following inequality:

32n R − 8nεn ≤ 8MRn log ρ + 22n R − h̄(X[2∼4]n

1 )

− h̄(X[2∼1]n

3 ) − h̄(X[2∼3]n

3 ) − h̄(X[2∼1]n

1 )

≤ 8MRn log ρ + 22n R − n R.
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where

R − εn

= h̄(X[2∼4]
1 , X[2∼1]

3 , X[2∼3]
3 , X[2∼1]

1 )

≤ h̄(X[2∼4]
1 ) + h̄(X[2∼1]

3 ) + h̄(X[2∼3]
3 ) + h̄(X[2∼1]

1 ).

By letting ρ → ∞ and n → ∞ we obtain the desired outer
bound:

d ≤ 8MR

11
= 24

11
. (127)

B. DoF of the K -User MIMO Interference Channel

In this section, we take one simple example of the MIMO
interference channel beyond the K = 4 user setting to convey
the idea of genie chains. Consider the (K , M, N) = (5, 4, 15)
setting, we will show that d = M N

M+N = 60
19 .

Proof: We need M = 4 sum rate bounds, which can be
produced through the following four steps.

• Step 1: Start from RX 2 and TX 1. After decoding its
desired message W2, RX 2 can reconstruct X[2] and
subtract it from its received signal vector. Thus, RX 2
has 15 linear combinations of 4 × 4 = 16 interfer-
ence symbols from TX 2 to TX 5. A genie provides
Ḡ1 = X̄[1]

(1) to RX 2. Since X[1]
(1) is linearly independent

of all the other 15 dimensions, RX 2 can invert the
16 × 16 square matrix to reconstruct the interference
vectors sent from all interferers, and thus RX can
decode all the messages. Thus, we obtain the first sum
rate inequality:

5n R − nεn ≤: h̄(Y[2]n
) + h̄(Gn

1|S[2]n
) (128)

≤: Nn log ρ + h̄(X[1]n

(1) |On
2 ) (129)

=: Nn log ρ + n R − h̄(On
2 ) (130)

where O2 denotes the 3 dimensional observations of
TX 1 at RX 2, after zero forcing the interference from
TX 3, TX 4 and TX 5.

• Step 2: Since |O| + 3 > M , we go to RX 3 looking at
TX 1 for an intermediate bound. Similar to Step 1,
a genie provides Ḡ2 = X̄[1]

(1) to RX 3 such that it
can decode all messages. Again, RX 3 originally has
3 dimensional observations of TX 1 after it zero forces
the interference from TX 2, TX 4 and TX 5. We
denote by O3 the 3 dimensional observations at RX 3.
Because |O2| + |O3| = 6 > M , they have a 2 dimen-
sional intersection. We denote this intersection by I3 =
O2∩O3 at RX 3. Thus, we have the intermediate bound
as follows:

5n R − nεn

≤: h̄(Y[3]n
) + h̄(Gn

2 |S[3]n
) (131)

≤: Nn log ρ + h̄(X[1]n

(1) |On
3) (132)

≤: Nn log ρ + h̄(X[1]n

(1) ,On
3 ) − h̄(On

3 ) (133)

≤: Nn log ρ + n R + h̄(On
2 ) − h̄(In

3 ,On
3 \ In

3 )

− h̄(On
2 ) (134)

≤: Nn log ρ + n R + h̄(On
2 ) − h̄(In

3 )

− h̄(On
3 \ In

3 |In
3 ) − h̄(On

2) (135)

≤: Nn log ρ + n R + h̄(On
2 ) − h̄(In

3 )

− h̄(On
3 \ In

3 |In
3 ,On

2 ) − h̄(On
2 ) (136)

≤: Nn log ρ + n R + h̄(On
2 ) − h̄(In

3 )

− h̄(On
3 \ In

3 |On
2 ) − h̄(On

2 ) (137)

≤: Nn log ρ + n R + h̄(On
2 ) − h̄(In

3 ) − n R (138)

≤: Nn log ρ + h̄(On
2 ) − h̄(In

3 ). (139)

• Step 3: Next, because |I3| + 3 > M still, we go to
RX 4 looking at TX 1 for another intermediate bound.
A genie provides Ḡ3 = X̄[1]

(1) to RX 4, which originally
also has 3 dimensional observations of TX 1, denoted
as O4. Because |I3| + |O4| = 5 > M again, they
have a one-dimensional intersection. We denote this
intersection by I4 = I3∩O4 at RX 4. Similar to Step 2,
this process produces the intermediate bound

5n R − nεn ≤: h̄(Y[4]n
) + h̄(Gn

3|S[4]n
) (140)

≤: Nn log ρ + h̄(In
3 ) − h̄(In

4 ). (141)

• Step 4: Finally, consider RX 5 looking at RX 1. A genie
provides the one-dimensional symbol Ḡ4 = I4 + Z
to RX 5, which again originally has 3 dimensional
observations of TX 1, denoted as O5, which com-
bined with I4 allows RX 5 to recover X[1] subject to
noise distortion. Once again, this process produces the
inequality

5n R − nεn ≤: h̄(Y[5]n
) + h̄(Gn

4|S[5]n
) (142)

≤: Nn log ρ + h̄(In
4 ). (143)

Adding up all the four sum rate inequalities we have
so far, we obtain the following inequality:

20n R − 4nεn ≤: 4Nn log ρ + n R. (144)

By letting ρ → ∞ and n → ∞ we obtain the desired
bound:

d ≤ 4N

19
= 60

19
. (145)

C. DoF of the Many-to-One MIMO Interference Channel

In this section, we consider an example of Many-to-One
MIMO interference channel, where in a K user interference
channel, only one RX hears all transmitters while the other
receivers can only hear their own desired signals. The Five-to-
One MIMO interference channel is shown in Figure 2, where
each TX has M antennas and each RX has N antennas.

1) Five-to-One MIMO Interference Channel: Consider the
(M, N) = (2, 5) setting in Figure 2, we are interested in the
DoF per user of this network. Since RX k, k = 2, 3, 4, 5
only hear their own desired signals and M < N , they
can decode their own messages respectively by the reliable
communications requirement. Thus, we need to ensure that at
RX 1 all interference is aligned as much as possible. Note that
since the DoF counting bound is less than the decomposition
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Fig. 2. (M, N) MIMO Five-to-One Interference Channel.

bound, we expect that the decomposition DoF bound, i.e.,
10/7 DoF per user, is also the information theoretic DoF outer
bound. Next, we show that this intuition is correct.

Proof: We need M = 2 sum rate bounds, which can be
produced as follows.

• Step 1: A genie provides Ḡ1 = {X̄[2]
(1), X̄[3]} to RX 1.

By the assumption of reliable communications, RX 1
is able to decode its desired message W1. After decod-
ing W1, RX 1 can reconstruct the signal vector X[1]
and then subtract it from Ȳ[1]. Therefore, RX 1 has
5-dimensional observations of the eight interference
symbols from TX 2 to TX 5. Providing Ḡ1 to RX 1
allows it to invert the square channel associated with
the interferers. Therefore, RX 1 can reconstruct all
signal vectors sent from all interferers, and thus decode
all the messages. This argument produces the following
inequality:

5n R − nεn

≤: h̄(Y[1]n
) + h̄(Gn

1|S[1]n
) (146)

≤: Nn log ρ + h̄(X[2]n

(1) , X[3]n |S[1]n
) (147)

≤: Nn log ρ + h̄(X[3]n
) + h̄(X[2]n

(1) |S[1]n
, X[3]n

)

≤: Nn log ρ + n R + h̄(X[2]n

(1) |On) (148)

≤: Nn log ρ + n R + h̄(X[2]n

(1) ,On) − h̄(On) (149)

≤: Nn log ρ + 2n R − h̄(On). (150)

where O is the one dimensional observation of TX 2
after RX 1 removes its own signal X[1], the provided
genie signal X̄[3] and zero forces the interference from
TX 4 and TX 5.

• Step 2: A genie provides Ḡ2 = {O+Z, X̄[4]} to RX 1.
Similar to Step 1, it can be easily seen that RX 1 can
decode all the messages as well. Thus, we obtain the
second inequality as follows:

5n R − nεn ≤: h̄(Y[1]n
) + h̄(Gn

2 |S[1]n
) (151)

≤: Nn log ρ + h̄(On, X[4]n
) (152)

≤: Nn log ρ + h̄(On) + h̄(X[4]n
) (153)

≤: Nn log ρ + n R + h̄(On). (154)

Fig. 3. d/N as a function of γ = M/N for the Four-to-One MIMO
interference channel.

Adding up the two sum rate inequalities we have so
far, we obtain the following inequality:

10n R − 2nεn ≤: 2Nn log ρ + 3n R. (155)

By letting first n → ∞ and then ρ → ∞ we obtain
the desired the DoF outer bound:

d ≤ 2N

7
= 10

7
. (156)

2) Four-to-One MIMO Interference Channel: Besides the
example of K = 5 setting shown above, we also present
the DoF results of K = 4 setting in the following. In order
to understand the interplay among spatial signal dimensions
projected from interferers without zero forcing at the TX side,
we only consider the M ≤ N setting. The DoF results are
included in the following theorem.

Theorem 2: For a Four-to-One M × N MIMO Gaussian
interference channel where each TX has M antennas, each
RX has N antennas and M ≤ N , the DoF value per user is
given by:

d =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M, M/N ≤ 1/4,
N/4, 1/4 ≤ M/N ≤ 1/3,
3M/4, 1/3 ≤ M/N ≤ 4/9,
N/3, 4/9 ≤ M/N ≤ 1/2,
2M/3, 1/2 ≤ M/N ≤ 3/5,
2N/5, 3/5 ≤ M/N ≤ 2/3,
3M/5, 2/3 ≤ M/N ≤ 5/6,
N/2, 5/6 ≤ M/N ≤ 1.

(157)

Proof: The DoF achievability relies on linear interference
alignment schemes. Since the proof follows from the subspace
alignment chains that we introduced in [2] and genie chains
that we primarily investigate in this paper, we defer the proof
to Appendix D.

The DoF results are shown in Figure 3 where the red line
represents the DoF counting bound, derived in Appendix E.
Notice that Theorem 2 implies that the DoF value is a
piecewise linear function depending on M and N alternatively,
which means that there are antenna redundancies at either the
TX side or the RX side. While it is again similar to the DoF
value of the three user MIMO interference channel recently
shown by Wang et al. in [2], the DoF cruve only contains
eight pieces, in contrast to infinitely many of pieces in the
three user MIMO interference channel. In addition, because
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Fig. 4. (M, N) = (2, 3) MIMO X Channel.

there is only one RX, we only need to deal with the signal
dimensions projected from three interferers at that RX. Thus,
understanding the spatial signal dimensions of this network is
helpful for us to learn the spatial signal dimensions of more
general networks.

In essence, Many-to-One MIMO interference channels are
similar to cellular networks with two cells, as alignment is
demanded to take place at only one interferer. Based on
similar insights, the DoF value of MIMO two-cell cellular
networks with 2 and 3 users per cell is found in [9] and [10],
respectively.

D. DoF of the MIMO X Channel

Besides the multiuser interference channel, the tool of genie
chains can also be applied in the MIMO X channel. We show
one simple example in this section. Consider a K = 3 user
MIMO X channel where each TX has M = 2 antennas
and each RX has N = 3 antennas, as shown in Figure 4.
Each TX Ti sends one independent message Wij to
RX R j , i, j ∈ {1, 2, 3}. Again, the constant complex channel
coefficients are assumed to be independently drawn from
continuous distributions. Also, global channel knowledge is
assumed to be available at all nodes. We refer to Rij and di j as
the rate and DoF, respectively, of the message Wij . Again we
are interested in the DoF of this network. Note that the value
of DoF implied by the linear counting bound is less than that
achieved by the decomposition bound. Thus, we expect the
decomposition DoF bound, i.e., 10/7 DoF per user, is also the
information theoretic DoF outer bound. Next, we show that
this is true.

Proof: We need MT = 2 sum rate bounds, produced as
follows.

• Step 1: A genie provides Ḡ1 = {X̄2a, W32, W33} to
RX 1. By the assumption of reliable communications,
RX 1 is able to decode W11, W21, W31 from Ȳ[1].
Also, providing W32, W33 to RX 1 allows it to recon-
struct the signal X[3] = [X3a X3c]T and subtract it
from Ȳ[1]. Then the remaining interference comes from
TX 1 and TX 2. Since RX 1 has three antennas,
providing X2a to RX 1 allows it to invert the square
matrix and reconstruct the transmit signal vectors from
TX 1 and TX 2 subject to noise distortion, and thus

RX 1 is able to decode all the messages subject to the
distortion. Therefore, we have the following inequality:

9n R − nεn

≤: h̄(Y[1]n
) + h̄(Gn

1|S[1]n
) (158)

=: Nn log ρ + h̄(Xn
2a, W32, W33|S[1]n

, W11, W21, W31)

≤: Nn log ρ + h̄(W32, W33)

+ h̄(X2a|Y[1]n
, W21, W31, W32, W33) (159)

≤: Nn log ρ + 2n R + h̄(Xn
2a |On, W21) (160)

=: Nn log ρ + 2n R + h̄(Xn
2a,On, W21)

− h̄(W21) − h̄(On|W21) (161)

=: Nn log ρ + 2n R + 2n R − h̄(On |W21). (162)

where O is the one dimensional linear combination of
X2a and X2c.

• Step 2: A genie provides Ḡ2 = {O + Z, W12, W13}
to RX 1. Similar to Step 1, it can be easily seen that
RX 1 can decode all the messages. Thus, we obtain
the second inequality as follows:

9n R − nεn ≤: h̄(Y[1]n
) + h̄(G2|S[1]n

)

≤: Nn log ρ + h̄(On, W12, W13|S[1]n
, W21)

≤: Nn log ρ + h̄(W12, W13) + h̄(On |W21)

≤: Nn log ρ + 2n R + h̄(On |W21).

Adding up the two sum rate inequalities we have so
far, we obtain the following inequality:

18n R − 2nεn ≤: 2Nn log ρ + 6n R. (163)

By letting n → ∞ and ρ → ∞ we obtain the desired
the DoF outer bound:

d ≤ 2N

12
= 1

2
= M N

3M + 2N
. (164)

VII. DISCUSSION ON THE DoF CHARACTERIZATION

OF THE K -USER MIMO GAUSSIAN

INTERFERENCE CHANNEL

In this paper, since our primary goal is to introduce the
genie chains approach, and highlight the principles that could
be applied to not only MIMO interference channels, but also
many other wireless networks such as X channel, etc., we
focus mostly on the K = 4 user case with MT ≤ MR

to present the main ideas in Section V. In this section, we
continue to discuss the DoF results of the K -user MT × MR

MIMO interference channel, not through rigorous proof for
each case but based on the available observations that we
obtained so far, to show a broad and fundamental DoF picture
of the MIMO interference channel. Since the DoF results of
the K = 2 and K = 3 User MT × MR MIMO Interference
Channel have been reported in [2] and [11], respectively, we
begin with K ≥ 4 cases.

A. Unstructured Linear Schemes Achieving the
Information Theoretic DoF Outer Bound

In Section V, we mention that the DoF result and corre-
sponding proofs for M/N ≤ 3/8 where M = min(MT , MR)
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and N = max(MT , MR ) directly follows from the K = 3
user case [2]. In fact, we can also extend the results to the
general K user case for M/N ≤ K−1

K (K−2) . Similar to the
K = 3 user case, we show that linear interference alignment
schemes are sufficient to achieve the information theoretic
DoF outer bound in the sense of spatial normalization. Spatial
normalization is introduced in [2] and refers to assumption that
DoF are normalized with respect to the spatial dimensions,
wherein we allow symbol extensions in the spatial dimension
through a scaling of antennas. Such a scaling of antennas
would create generic structureless channel matrices (instead
of structured (block-diagonal) channel matrices created by
symbol extensions in time and frequency dimensions), which
facilitates the achievability proof. The spatially normalized
DoF formulation is motivated by the conjecture that the
spatially normalized DoF are spatial scale invariant, e.g., if
the number of antennas at every node is scaled up by a
factor L, then the overall DoF will also scale by the same
factor L. This assumption is relevant mainly for achievability
arguments. The information theoretic outer bound part does
not need the spatial normalization assumption. Our results are
presented in the following lemmas and theorem.

Definition 1: We define the following quantity:

d∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

M, 0 <
M

N
≤ 1

K
,

N

K
,

1

K
≤ M

N
≤ 1

K − 1
,

(K − 1)M

K
,

1

K − 1
≤ M

N
≤ K

K 2 − K − 1
,

(K − 1)N

K 2 − K − 1
,

K

K 2 − K − 1
≤ M

N
≤ K − 1

K (K − 2)
.

(165)

Lemma 4: For the K ≥ 4 user MT × MR MIMO interfer-
ence channel where each TX has MT and each RX has MR

antennas, if M/N ≤ K−1
K (K−2) , then the DoF per user are outer

bounded by d ≤ d∗.
Proof: Since the idea behind the proof for this lemma

directly follows from the K = 3 user case [2] yet requires
much more cumbersome analysis, we defer the proof to
Appendix B.1 and B.2.

Lemma 5: For the K ≥ 4 user MT × MR MIMO inter-
ference channel where each TX has MT and each RX has
MR antennas, if M/N ≤ K−1

K (K−2) , then d∗ DoF per user are
achievable subject to spatial normalization.

Proof: The idea behind the proof for this lemma directly
follows from the K = 3 user case [2]. Thus, we defer the
proof to Appendix B.3.

Theorem 3: For the K ≥ 4 user MT × MR MIMO interfer-
ence channel where each TX has MT and each RX has MR

antennas, if M/N ≤ K−1
K (K−2) , then the spatially normalized

DoF value per user is given by d = d∗.
Proof: The proof of this theorem directly follows from

Lemma 4 and Lemma 5.

B. The Decomposition DoF Bound Achieving the
Information Theoretic DoF Outer Bound

Next, let us consider the case where the value of M/N
falls into the interval

(
K−1

K (K−2) , 1
)

. In Section V, Theorem 1

includes the cases of MT /MR ∈ P1 ∪ P2 ∪ P3 = P for the
K = 4 setting, where P1 = { MT

MR
| 1

2 ≤ MT
MR

< 1, MT , MR ∈
Z

+, MR ≤ 20}, P2 = [2/5, 1/2), and P3 = { 8
21} ∪ { 2c−1

5c−2 |c ∈
Z

+, c ≥ 2}. Next, we will discuss the remaining cases of the
K = 4 setting outside P and the K > 4 settings, to shed
light on the insights behind DoF results of the general K -user
MT × MR MIMO Gaussian interference channel. We begin
with the MT < MR setting.

First, it can be easily shown that any information theo-
retical DoF outer bounds for the K = K0 setting are valid
information theoretical DoF outer bounds for the K > K0
settings. This is because increasing the number of users in
a network cannot increase the symmetric capacity per user.
Thus, for MT /MR ∈ P cases, the DoF value per user
d = M N

M+N is also optimal for K > 4 settings.
Second, notice that for K = 4 setting, the left boundary

value of P2, i.e., MT /MR = 2/5 is obtained in Section V
by showing that we never need successive two intermediate
bounds by applying the genie chains approach for the K = 4,
MT /MR ≥ 2/5 setting. This argument implies that at a given
RX looking at one interferer, we do not need to exhaust
the other two unintended receivers to produce two successive
intermediate bounds. Therefore, if we apply the genie chains
approach, then for the general K ≥ 4 user setting, the
decomposition DoF bound d = M N

M+N per user is expected
to be the information theoretic DoF outer bound as well,
as long as we never need K − 2 successive intermediate
bounds, i.e., we only need up to K −3 successive intermediate
bounds. Equivalently, this implies that through the union of
N−(K −2)M dimensional observations of a given interferer at
each unintended RX, we have a total of (K −2)(N−(K −2)M)
dimensional observations of that interferer, which contribute
to recovery of the transmit signal vector of that TX up to K −3
times. Thus, we have the following inequality:

(K − 2)(N − (K − 2)M) ≤ (K − 3)M (166)

⇒ M

N
≥ K − 2

K 2 − 3K + 1
. (167)

Therefore, for any cases of MT
MR

∈
[

K−2
K 2−3K+1

, 1
)

, we expect

that the DoF value per user d = M N
M+N is also the information

theoretic DoF outer bound. Notice that when the value of K

grows, K−2
K 2−3K+1

approaches zero, such that
[

K−2
K 2−3K+1

, 1
)

becomes the dominant interval.
What remains to be shown is the regime MT

MR
∈

(
K−1

K (K−2) ,
K−2

K 2−3K+1

)
, which comprises of both regime 1 and

regime 2 partially. In Theorem 1, we only show the DoF
results of cases MT

MR
∈ P3 for the K = 4 setting, and the

point sequence in P3 converges to the boundary 2/5. Although
there are infinitely many number of points in the set P3, they
have only zero measure, i.e., P3 is not a dense set. Thus, the
DoF characterization in this sub-regime is still open in general.
Although we conjectured M N

M+N is still the DoF value per
user in [1], feasibility analysis and numerical evidence in [12]
indicate that this is not the case. Moreover, [12] provides
evidence that part of this regime behaves like the piece-wise
linear regime discussed in the previous section.
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Fig. 5. d/N as a function of γ = M/N .

Finally, for all known DoF results, the information theoretic
DoF satisfy the principle of duality. That is, the original
channel and its reciprocal channel both have the same number
of DoF.

C. Observations

Now let us collect all the DoF results in Figure 5. There
are three curves in Figure 5. As we introduce in Section I,
the red line and the green curve are the DoF counting outer
bound and the DoF decomposition inner bound, respectively.
It can be seen that if M/N ≤ K−1

K (K−2) = γ0, then the DoF
curve is a piecewise linear function depending on M and N
alternately, which is similar to that of the K = 3 setting [2].
Intuitively, it means that there are antenna redundancies at
either TX or RX sides except when M

N = 1
K and K

K 2−K−1
. The

achievability relies on linear interference alignment schemes
without symbol extensions or with finite number of symbol
extensions (through numerical tests), i.e., asymptotical align-
ment is unnecessary. On the other hand, if M

N ≥ γ0, then the
decomposition is expected to be optimal in many cases, and
the achievability relies on the asymptotic alignment. Note that
when the value of K grows, this cross point moves towards to
the left, so that the interval [γ0, 1) becomes the dominant, and
the DoF decomposition bound is optimal. Figure 5 also implies
that whenever the decomposition bound is larger than the
counting bound, the DoF decomposition bound is information
theoretic optimal.

VIII. CONCLUSION

In this paper, we propose a novel tool, called genie chains,
to study the information theoretic DoF outer bound of wire-
less interference networks, which essentially translates an
information theoretic DoF outer bound problem into a much
simpler linear algebraic problem. While this new tool has wide
applications in various wireless interference networks, in this
paper, we mainly study the MIMO interference channel as a
typical example, followed by several other special examples
including the many-to-one MIMO interference channel and the
MIMO X channel.

APPENDIX A
PROOF OF LEMMA 1

Since Bi (L), B j (L) both represent the basis of the same
subspace L, there exists an invertible |L|×|L| square matrix A
where |L| is the number of dimensions of the subspace L, so
that Bi (L) = A · B j (L). Then we have

h̄(Bi (L)X) = h̄(A · B j (L)X) (168)

= h(A · B j (L)X + Z) (169)

= h(A(B j (L)X + A−1Z)) (170)

= h(B j (L)X + A−1Z) + log | det(A)| (171)

= h(B j (L)X + A−1Z) + o(log ρ) (172)

where log | det(A)| is a constant that does not depend on the
SNR, ρ. Notice that Z ∼ CN (0, I), thus A−1Z ∼ CN (0, K)
where K = A−1(A−1)H . Since Z̃ is an independent noise
vector, we have

h(B j (L)X + A−1Z)

= h(B j (L)X + A−1Z + Z̃|Z̃) (173)

≤ h(B j (L)X + A−1Z + Z̃). (174)

On the other hand, since B j (L)X + A−1Z + Z̃ is a degraded
version of B j (L)X + A−1Z, we have

0 ≤ I (B j (L)X; B j (L)X + A−1Z)

− I (B j (L)X; B j (L)X + A−1
|L|×|L|Z + Z̃) (175)

= h(B j (L)X + A−1Z)

− h(B j (L)X + A−1Z|B j (L)X)

− h(B j (L)X + A−1Z + Z̃)

+ h(B j (L)X + A−1Z + Z̃|B j (L)X) (176)

= h(B j (L)X + A−1Z)

− h(B j (L)X + A−1Z + Z̃)

− h(A−1Z) + h(A−1Z + Z̃) (177)

= h(B j (L)X + A−1Z)

− h(B j (L)X + A−1Z + Z̃)

+ log(det(K̃K−1 + I)). (178)

Combining (174) and (178) produces

h(B j (L)X + A−1Z)

≤ h(B j (L)X + A−1Z + Z̃) (179)

≤ h(B j (L)X + A−1Z)) + log(det(K̃K−1 + I)) (180)

where log(det(K̃K−1 + I)) is a constant that does not depend
on ρ. Thus we have

h(B j (L)X + A−1Z)

= h(B j (L)X + A−1Z + Z̃) + o(log ρ). (181)

Following the similar procedure, we also obtain

h(B j (L)X + Z̃)

= h(B j (L)X + A−1Z + Z̃) + o(log ρ). (182)

Thus, we have

h(B j (L)X + A−1Z) = h(B j (L)X + Z̃) + o(log ρ). (183)
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Finally, substituting (183) into (172), we obtain

h̄(Bi (L)X) = h(B j (L)X + A−1Z) + o(log ρ) (184)

= h(B j (L)X + Z̃) + o(log ρ). (185)

Thus, we complete the proof of Lemma 1.

APPENDIX B
DOF OF THE M

N ≤ K−1
K (K−2) SETTING FOR THE K USER

MT × MR MIMO INTERFERENCE CHANNEL

For the K user MT × MR MIMO interference channel,
the DoF value is a piecewise linear function of M and N
alternately if M

N ≤ K−1
K (K−2) where M = min(MT , MR) and

N = max(MT , MR). As shown in Theorem 3, the DoF value
per user is given by:

d =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

M, 0 <
M

N
≤ 1

K
,

N

K
,

1

K
≤ M

N
≤ 1

K − 1
,

(K − 1)M

K
,

1

K − 1
≤ M

N
≤ K

K 2 − K − 1
,

(K − 1)N

K 2 − K − 1
,

K

K 2 − K − 1
≤ M

N
≤ K − 1

K (K − 2)
.

(186)

In this section, we investigate the DoF converse and the
achievability. Note that all the techniques applied in proofs
presented in this section follow similarly from the K = 3 user
interference channel setting [2]. In the following, we first show
the outer bound for the MT < MR and MT > MR settings,
respectively, and then provide the achievability proof.

A. The Information Theoretic DoF
Outer Bound for MT < MR

We consider the MT < MR setting in this section.
MT < MR implies that M = MT , N = MR .

Among the four regions shown in (186), the DoF outer
bound of the first three regions can be established by the
single user DoF bound and the cooperation DoF outer bound.
Specifically, let us consider M

N ∈ (0, 1
K ] first. The DoF outer

bound d ≤ M follows trivially from the single user bound.
Next, consider M

N ∈ [ 1
K , 1

K−1 ] and M
N ∈ [ 1

K−1 , K
K 2−K−1

].
Since collaboration among the users does not decrease the
capacity region, we allow the K − 1 users from User 2
to User K to cooperate as one user, such that the network
becomes a two user MIMO interference channel where the
two transmitters have M and (K −1)M antennas respectively,
and corresponding receivers have N and (K − 1)N anten-
nas, respectively. The sum DoF of this network, as reported
in [11], are outer bounded by min(max((K − 1)M, N),
max(M, (K − 1)N), which produces the desired DoF bound
per user d ≤ max((K − 1)M, N)/K = N

K if M
N ∈

[ 1
K , 1

K−1 ], and d ≤ max((K − 1)M, N)/K = (K−1)M
K if

M
N ∈ [ 1

K−1 , K
K 2−K−1

].
Now let us focus on the remaining case M

N ∈
[ K

K 2−K−1
, K−1

K (K−2) ]. We apply similar linear transformations
as introduced in [2]. Consider RX 2, which is able to decode
its own message W2 due to the reliable communications

Fig. 6. The Linear Transformations for the M × N Case, M
N ∈

[ K
K 2−K −1

, K −1
K (K −2) ] where the red cross symbols stand for nulling. Note

that we only show the transformed channels for a clear presentation.

assumption. Thus, after removing the desired signal carry-
ing message W2, RX 2 obtains an N-dimensional inter-
ference vector space S[2]. By zero forcing the interference
from TX 3 to TX K , RX 2 extracts the exposed subspace
X[1∼2]

N−(K−2)M from S[2]. This can be done by left-multiplying
the received signal with an invertible N ×N matrix whose first
N −(K −2)M rows are orthogonal to the channel vectors from
each antenna of TX 3, . . . , K to RX 2, and last (K − 2)M
rows are the last (K − 2)M rows of the N × N identity
matrix, as shown in Figure 6. After this operation, the first
N − (K − 2)M antennas at RX 2 only hear TX 1. Similarly,
we proceed to RX 3, . . . , K where we apply linear transfor-
mations such that the first N −(K −2)M antennas of each RX
only hear TX 1. Therefore, we obtain the exposed subspaces
X[1∼3]

N−(K−2)M , . . . , X[1∼K ]
N−(K−2)M at RX 3, . . . , K , respectively.

Now we complete the linear transformations of the RX basis
and then we switch to TX 1. We multiply an M × M matrix
to the right-hand side of its channel matrix such that the first
(K − 1)M − N antennas of TX 1 are not heard by the first
N − (K − 2)M antennas at RX 2, the next (K − 1)M − N
antennas are not heard by the first N − (K − 2)M antennas
of RX 3 and so forth. This can be done by choosing the first
(K − 1)M − N columns of the transformation matrix as the
basis of the null space of the channel matrix from the M
antennas of TX 1 to the first N −(K −2)M antennas at RX 2,
the next (K −1)M − N columns associated with RX 3 and so
forth. Note that the dimension matches as (K − 1)M − N =
M −[N −(K −2)M], and thus corresponding transmit signals
of TX 1, not heard by RX k, will be heard by RX k ′ where
k ′ ∈ K \ {1, k}. Continuing to RX K , we fix the directions of
the first (K −1)×[(K −1)M−N] antennas of TX 1, and leave
the last M−[(K −1)2 M−(K −1)N] = (K −1)N−K (K −2)M
antennas which do not need change of basis and these columns
can be chosen as the corresponding columns of the M × M
identity matrix. Notice that (K − 1)N − K (K − 2)M ≥ 0
as M

N ≤ K−1
K (K−2) . For brevity, we label the corresponding

transmit signals from TX 1 to RX k after the invertible linear
transformations as X[1−k]

(K−1)M−N where k ∈ K \ {1} and the
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signals from the last (K −1)N −K (K −2)M antennas of TX 1
are represented as X[1−0]

(K−1)N−K (K−2)M (See Figure 6). Now we
also complete the linear transformations at the TX side.

Note that X[1−2]
(K−1)M−N has (K − 1)M − N dimensions.

Also note that X[1−2]
(K−1)M−N is linearly independent of the

exposed subspace X[1∼2]
N−(K−2)M . This is because X[1−2]

(K−1)M−N
is determined by the channel matrices associated with RX 2.
Thus the genie signal X[1−2]

(K−1)M−N allows RX 2 to decode
all the messages subject to noise distortion. From Fano’s
inequality, we have

K n R − nεn (187)
≤: nN log ρ + h̄(X[1−2]n

(K−1)M−N |S[2]n
) (188)

≤: nN log ρ + h̄(X[1−2]n

(K−1)M−N |X[1∼2]n

N−(K−2)M ) (189)

≤: nN log ρ + h̄(X[1−2]n

(K−1)M−N |X[1−3]n

(K−1)M−N , . . .

. . . , X[1−K ]n

(K−1)M−N , X[1−0]n

(K−1)N−K (K−2)M ) (190)

where (190) follows from Property (P2) in Lemma 2. For
compactness, we omit the subscript which denotes dimension
and is clear from the context. Thus, we can rewrite the
equation above as

K n R − nεn

≤: nN log ρ + h̄(X[1−2]n |X[1−3]n
, . . .

. . . , X[1−K ]n
, X[1−0]n

). (191)

Similarly at RX k where k ∈ {3, · · · , K }, a genie provides
X[1−i]n

to RX k such that it can decode all the messages
subject to noise distortion. Thus we have

K n R − nεn

≤: nN log ρ + h̄(X[1−k]n |X[1−2]n
, . . .

. . . , X[1−(k−1)]n
, X[1−(k+1)]n

, . . . , X[1−K ]n
, X[1−0]n

)

(192)

Adding (191) and (192), we have:

(K − 1)K n R − nεn (193)

≤:
K∑

i=2

h̄(X[1−i]n |X[1−2]n
, . . .

. . . , X[1−(i−1)]n
, X[1−(i+1)]n

, . . . , X[1−K ]n
, X[1−0]n

)

+ (K − 1)nN log ρ (194)

≤: (K − 1)nN log ρ + h̄(X[1−2]n
, . . . , X[1−K ]n |X[1−0]n

)

≤: (K − 1)nN log ρ + h̄(X[1]n
) (195)

≤: (K − 1)nN log ρ + n R. (196)

Rearranging the terms in (196) we obtain:

(K 2 − K − 1)n R − nεn ≤: (K − 1)nN log ρ. (197)

By letting n → ∞ first and then ρ → ∞, we have the desired
DoF outer bound

d ≤ (K − 1)N

K 2 − K − 1
. (198)

Thus, we complete the outer bound proof for the MT < MR

setting.

Fig. 7. The First Stage of the Linear Transformations for the N × M
Case, M

N ∈ [ K
K 2−K −1

, K −1
K (K −2) ] where the red cross stands for nulling and

the dashed lines stand for an identity matrix. Note that we only show the
transformed channels for a clear presentation.

B. The Information Theoretic DoF Outer
Bound for MT > MR

In this section, we consider the reciprocal MT > MR

setting, where N = MT , M = MR . For the K user N × M
MIMO interference channel, again if M

N ≤ K
K 2−K−1

, the
DoF outer bound can be directly obtained by the single-
user DoF bound and the cooperation DoF bound, as stated
in Appendix B-A. What remains to be shown is the case of
M
N ∈ [ K

K 2−K−1
, K−1

K (K−2) ]. We will use a two-stage approach as
follows.

Stage 1: In the first stage, we consider Users
2, . . . , K . Let us first consider TX 2. Denote its first
(K − 2)M antennas as layer 1 symbol X[2]1

(K−2)M and last

N − (K − 2)M antennas as layer 2 symbol X[2]2
N−(K−2)M .

Now we take invertible linear transforms on the symbols
of these two layers. As shown in Figure 7, for layer 1

symbol X[2]1
(K−2)M = [X[2−3]1

M ; . . . ; X[2−K ]1
M ], invert its channel

matrices to RX k where k ∈ {3, . . . , K } such that X[2−k]1
M

is only heard by RX k. For layer 2 symbol X[2]2
N−(K−2)M , let

it not be heard by all RX 3, . . . , K by nulling the channel
matrices to those receivers from TX 2. Once we complete the
transformation at TX 2, we can apply similar transformations
at TX k ∈ {3, . . . , K }, i.e., dividing X[k] to layer 1 symbols
X[k]1

(K−2)M associated with the first (K − 2)M antennas which
sequentially have projections to RX k ′ ∈ K \ {1, k}, and the
remaining layer 2 symbols X[k]2

N−(K−2)M which are not heard
by RX k ′ ∈ K \ {1, k}. Now we have that if a genie provides
K −2 messages W [1], W [4], . . . , W [K ] to RX 3, it can remove
the interference signals carrying those messages and only hear
X[2−3]1

M . Hence, if a genie further provides X[2] \ X[2−3]1
M to

RX 3, it is then able to decode W [2] subject to noise distortion.
That is, providing G3 = {W [1], W [4], . . . , W [K ], X[2]\X[2−3]1

M }
to RX 3 allows it to decode all the messages subject to
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noise distortion. From Fano’s inequality, we have

K n R − nεn

≤: nM log ρ

+ h̄(W [1], W [4], . . . , W [K ], X[2]n \ X
[2−3]n

1
M |S[3]n

)

≤: nM log ρ + n(K − 2)R + h̄(X[2]n\X
[2−3]n

1
M |X[2−3]n

1
M )

≤: nM log ρ + n(K − 2)R + h̄(X[2]n
) − h̄(X

[2−3]n
1

M )

≤: nM log ρ + n(K − 1)R − h̄(X
[2−3]n

1
M )

⇒ n R − nεn ≤: nM log ρ − h̄(X
[2−3]n

1
M ). (199)

Following the same line, if a genie provides

Gk = {W [1], W [3], . . . , W [k−1], W [k+1], . . .
. . . , W [K ], X[2] \ X[2−k]1

M }
to RX k ∈ {4, . . . , K }, RX k can also decode all messages
subject to noise distortion. Therefore, we have the sum rate
inequality as follows:

n R − nεn ≤: nM log ρ − h̄(X
[2−k]n

1
M ). (200)

Adding all K − 2 sum rate inequalities associated with RX
k ∈ {3, · · · , K } above, we have:

(K − 2)n R − nεn (201)

≤: (K − 2)nM log ρ −
K∑

k=3

h̄(X
[2−k]n

1
M ) (202)

≤: (K − 2)nM log ρ − h̄(X
[2−3]n

1
M , . . . , X

[2−K ]n
1

M ) (203)

=: (K − 2)nM log ρ − h̄(X
[2]n

1
(K−2)M). (204)

After obtaining the inequality above by considering layer 1
symbols X[2]1

(K−2)M at TX 2, we proceed to TX k ∈ {3, . . . , K },
and obtain the following sum rate inequality similarly:

(K − 2)n R − nεn ≤: (K − 2)nM log ρ − h̄(X
[k]n

1
(K−2)M),

k ∈ {3, . . . , K }. (205)

Adding (204) and (205), we have

(K − 1)(K − 2)n R − nεn

≤: (K − 1)(K − 2)nM log ρ −
K∑

k=2

h̄(X[k]n
1 ) (206)

where we omit the subscript that denotes dimension, for
convenience.

Stage 2: Next we consider the second stage where we focus
on RX 1. Note that all the linear transformations in the first
stage are not associated with the channel matrix to RX 1 which
guarantees that all the transmit symbols from TX 2, . . . , K are
still generic for RX 1. Again, we will apply invertible linear
transformations at both the TX side and the RX side. We first
describe the linear transformation at RX 1. For k ∈ {3, . . . , K },
as each layer 2 symbol X[k]2

N−(K−2)M has N − (K − 2)M
dimensions, colored in blue in Figure 8, RX 1 can find
M −(N −(K −2)M) = (K −1)M − N dimensions that do not
hear the layer 2 symbol from one TX through zero forcing.
Therefore, at RX 1, let the first (K − 1)M − N antennas not

Fig. 8. The Second Stage of the Linear Transformations for the N × M

Case, M
N ∈ [ K

K 2−K −1
, K −1

K (K −2) ], where the red cross stands for nulling and

the dashed lines stand for an identity matrix. Note that we only show the
transformed channels for a clear presentation.

hear X[3]2
N−(K−2)M , the next (K − 1)M − N antennas not hear

X[4]2
N−(K−2)M and so on. That is, the kth (K −1)M−N antennas

at RX 1 do not hear X[k]2
N−(K−2)M where k ∈ {3, . . . , K }. Now

we complete the linear transformations at RX 1. Note that we
have only considered the first (K − 2)[(K − 1)M − N] < M
antennas as M

N ≤ K−1
K (K−2) . Next we consider the layer 2

symbols X[2]2
N−(K−2)M at TX 2. We invert the channel from

its first (K −2)[(K −1)M − N] antennas (the first K −2 blue
boxes of TX 2 in Figure 8) to the first (K −2)[(K −1)M − N]
antennas at RX 1 such that the channel between them
becomes an identity matrix. Moreover, at TX 2, the remain-
ing N − (K − 2)M − (K − 2)[(K − 1)M − N] =
(K − 1)N − K (K − 2)M dimensions of X[2]2

N−(K−2)M
(the last blue box of TX 2 in Figure 8) are chosen to
be zero forced at the first (K − 2)[(K − 1)M − N]
antennas at RX 1. Denote the symbols of X[2]2

N−(K−2)M

in sequence after linear transforms as X[2]2
N−(K−2)M =

[X[2:1]2
(K−1)M−N ; . . . ; X[2:(K−2)]2

(K−1)M−N ; X[2:0]2
(K−1)N−K (K−2)M].

At the RX side, owing to our linear transformations,
the received signals from X[2]2

N−(K−2)M seen by the first
(K − 2)[(K − 1)M − N] antennas of RX 1 are given by
[X[2:1]2

(K−1)M−N ; . . . ; X[2:(K−2)]2
(K−1)M−N ]. Now we finish the linear

transformations at the second stage.
When a genie provides to RX 1 the K − 3 messages

W [4], . . . , W [K ] and layer 1 symbols X[2]1, X[3]1 , RX
1 only hears interference caused by layer two symbols
X[2]2

N−(K−2)M , X[3]2
N−(K−2)M from TX 2 and 3. Further, with

these genie signals, RX 1 hears clean X[2:1]2
(K−1)M−N at the first

(K − 1)M − N antennas of RX 1, where X[3]2
N−(K−2)M are

zero forced. So further giving (X[2]2
N−(K−2)M \ X[2:1]2

(K−1)M−N )

allows RX 1 to decode messages W [2] and W [3]
subject to noise distortion. Therefore, providing G3 =
{W [4], . . . , W [K ], X[2]1, X[3]1, X[2]2

N−(K−2)M \ X[2:1]2
(K−1)M−N }

to RX 3 allows it to decode all the messages subject to
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noise distortion. From Fano’s inequality, we have

K n R − nεn

≤: nM log ρ + h̄(W [4], . . . , W [K ], X[2]1, X[3]1, . . .

. . . , X[2]2
N−(K−2)M \ X[2:1]2

(K−1)M−N |S[3]n
) (207)

≤: nM log ρ + (K − 3)n R + h̄(X[3]n
1)

+ h̄(X[2]n
1 , X[2]n

2 \X[2:1]n
2 |X[2:1]n

2 ) (208)

=: nM log ρ + (K − 3)n R + h̄(X[3]n
1)

+ h̄(X[2]n
) − h̄(X[2:1]n

2 ) (209)

⇒ 2n R − nεn ≤: nM log ρ + h̄(X[3]n
1 ) − h̄(X[2:1]n

2).

(210)

Similarly, for k ∈ {4, . . . , K }, if a genie provides to RX 1 the
signals set

Gk = {W [3], . . . , W [k−1], W [k+1], . . .
. . . , , W [K ], X[k]n

1 , X[2] \ X[2:(k−2)]2
(K−1)M−N },

RX 1 can also decode all the messages subject to noise
distortion. Therefore, we have the sum rate inequality:

2n R − nεn ≤: nM log ρ + h̄(X[k]n
1 ) − h̄(X[2:k]n

2 ),

k ∈ {4, . . . , K }. (211)

In order to make the addition operation shown later simple, we
rewrite the inequality for k = K , similar to (208), as follows:

3n R − nεn

≤: nM log ρ + h̄(X[K ]n
1 )

+ h̄(X[2]n
1 , X[2]n

2 \ X[2:(K−2)]n
2 |X[2:(K−2)]n

2) (212)

≤: nM log ρ + h̄(X[K ]n
1 )

+ h̄(X[2]n
1 , X[2:1]n

2 , . . . , X[2:(K−3)]n
2 , X[2:0]n

2 ) (213)

≤: nM log ρ + h̄(X[K ]n
1 ) + h̄(X[2]n

1)

+
K−3∑

k=1

h̄(X[2:k]n
2 ) + h̄(X[2:0]n

2 ). (214)

Now adding (210), (211) for k ∈ {4, · · · , K − 1} and (214),
we have

2(K − 3)n R + 3n R − nεn

≤: (K − 2)nM log ρ +
K∑

k=2

h̄(X[k]n
1 ) + h̄(X[2:0]n

2 ) .(215)

Finally, adding (206) and (215), we have:

(K 2 − K − 1)n R − nεn

≤: K (K − 2)nM log ρ + h̄(X[2:0]n
2 ) (216)

≤: K (K − 2)nM log ρ

+ [(K − 1)N − K (K − 2)M]n log ρ (217)

=: (K − 1)Nn log ρ (218)

where (217) follows from the fact that X[2:0]2 has a total
of (K − 1)N − K (K − 2)M dimensions and Property 1 in
Lemma 2.

By letting n → ∞ first and then ρ → ∞, we have the
desired DoF outer bound

d ≤ (K − 1)N

K 2 − K − 1
. (219)

Thus, we complete the outer bound proof for the MT > MR

setting.

C. The DoF Achievability

We will show that linear beamforming at the transmit-
ters and zero forcing at the receivers are sufficient to
achieve the optimal DoF values. Due to the duality of linear
schemes, we only need to consider the MT < MR setting,
i.e., M = MT , N = MR .

We begin with the first two cases. First, if M
N ∈ (0, 1

K ],
i.e., K M ≤ N , each RX has enough antennas to distinguish
all the transmit signals from all transmitters. Thus, each user
can achieve its interference-free DoF whose value is given by
d = min(M, N) = M . Second, if M

N ∈ [ 1
K , 1

K−1 ], N sum
DoF are achievable because each RX, after decoding its own
message and subtracting the signal carrying that message, still
has enough antennas to distinguish all the interference signals
owing to (K − 1)M ≤ N . Thus, the DoF value d = N/K per
user is achievable.

Next, we consider the remaining two cases M
N ∈

[ 1
K−1 , K

K 2−K−1
] and M

N ∈ [ K
K 2−K−1

, K−1
K (K−2) ]. We want to

show that d = (K−1)M
K and d = (K−1)N

K 2−K−1
are achievable

for these two cases, respectively. To do so, we first prove

d = (K−1)M
K = (K−1)N

K 2−K−1
are achievable at M

N = K
K 2−K−1

.
Then by increasing the RX antenna redundancies N such that
M/N falls into the region [ 1

K−1 , K
K 2−K−1

], the achievability

of d = (K−1)M
K DoF should remain. Similarly, by increasing

the TX antenna redundancies M such that M/N falls into the
region [ K

K 2−K−1
, K−1

K (K−2) ], the achievability of d = (K−1)N
K 2−K−1

should not be affected as well.
We first investigate the case M

N = K
K 2−K−1

, i.e., (M, N) =
(βK , β(K 2 − K − 1)) where β ∈ Z

+. Our goal is to show
d = (K−1)M

K = (K−1)N
K 2−K−1

= β(K − 1) DoF are achievable.
At each time slot, TX k ∈ K sends β(K − 1) independent
symbols using a βK × β(K − 1) beamforming matrix V[k] =
[V[k]

1 , . . . , V[k]
K−1] where each block V[k]

i , i ∈ {1, · · · , K − 1}
is a βK ×β matrix. In the β(K 2 − K − 1) dimensional vector
space at each RX, the desired signal will occupy β(K − 1)
dimensions, thus leaving only a subspace with β(K 2 − K −
1)−β(K −1) = β((K −1)2−1) dimensions to accommodate a
total of β(K −1)2 interference symbols. Therefore, we need to
align β(K −1)2−β((K −1)2−1) = β dimensional interference
at each RX. Specifically, we design the beamforming vectors
in the following way to satisfy these alignment constraints.
At RX 1, β interference vectors from TX 2 are aligned
into the subspace spanned by (K − 2)β interference vectors,
β from each of TX 3, . . . , K , respectively. This operation gives
us one alignment equation:

H[12]V[2]
1 = −(H[13]V[3]

1 + · · · + H[1K ]V[K ]
1 ) (220)

⇒ [H[12] H[13] · · · H[1K ]]
︸ ︷︷ ︸

H̄1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

V[2]
1

V[3]
1

...

V[K ]
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

βK (K−1)×β
︸ ︷︷ ︸

V̄1

(221)

= O. (222)
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Since H̄1 is a β(K 2 − K − 1) × βK (K − 1) generic matrix
which only consists of interference carrying channel matrices
from TX 2, . . . , K to RX 1, V̄1 can be obtained as the basis
vectors of the null space of H̄1, and thus all V[2]

1 , . . . , V[K ]
1

are obtained. Note that from the equation above which is
associated with RX 1, we have determined the directions of
β(K − 1) symbols, β from each of TX 2, . . . , K , respec-
tively. Similarly, at RX k ∈ {2, . . . , K }, by aligning only β
dimensional interference, we obtain the following alignment
equations:

H[k1]V[1]
k−1 = −(H[k2]V[2]

k−1 + · · · + H[k(k−1)]V[k−1]
k−1

+H[k(k+1)]V[k+1]
k + · · · + H[kK ]V[K ]

k )

⇒ [H[k1] · · · H[k(k−1)] H[k(k+1)] · · · H[i K ]]
︸ ︷︷ ︸

H̄k

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V[1]
k−1
...

V[k−1]
k−1

V[k+1]
k
...

V[K ]
k

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

βK (K−1)×β
︸ ︷︷ ︸

V̄k

= O.

Again, H̄i is a β(K 2 − K − 1) × βK (K − 1) generic matrix
and V̄k can be determined as the basis vectors of its null
space. For the kth alignment equation we show above, we
determine the beamforming directions of β symbols per user.
Therefore, we have established the beamforming directions of
all β(K − 1) symbols per user. After aligning interference at
each RX, we still need to ensure that the desired signals do not
overlap with the interference space. In fact, this is guaranteed
since the direct channels H[kk] do not appear in the alignment
equations (222) and (223), k ∈ K. In addition, note that the
kth alignment equation only involves the interference carrying
links associated with RX k and channel matrices are generic.
Thus, the beamforming directions of all β(K − 1) symbols
at each user are linearly independent, almost surely, and can
be separated from the interference at each RX. Therefore,
each user is able to achieve d = β(K − 1) DoF, almost
surely.

After we establish the DoF achievability at M/N =
K

K 2−K−1
, let us consider M

N ∈ [ 1
K−1 , K

K 2−K−1
], i.e.,

K 2−K−1
K M ≤ N . In this region, the DoF value only depends

on M , so we can reduce the number of RX antennas N to
N ′ = K 2−K−1

K M , without affecting the DoF, such that it
becomes the case M

N ′ = K
K 2−K−1

that we have solved. Note
that if the value of N − N ′ is not an integer, then we can
scale the number of both TX and RX antennas by the the
same factor α such that α(N − N ′) is an integer, i.e., we
resort to spatial normalization [2]. Similarly, for the case where
M/N ∈ [ K

K 2−K−1
, K−1

K (K−2) ], i.e., M ≥ K
K 2−K−1

N , the DoF

value d = (K−1)N
K 2−K−1

only depends on N and we can reduce

the number of transmit antennas from M to M ′ = K N
K 2−K−1

,

such that M ′/N becomes K
K 2−K−1

again. Also, if M − M ′ is
not an integer, then we can again use channel extensions over
space.

APPENDIX C
THE LINEAR INDEPENDENCE PROOFS FOR THE K = 4

USER M × N MIMO INTERFERENCE CHANNEL

A. M/N ∈ [2/5,1/2) Case (Algorithm 2)

Proof: As shown in Algorithm 2, G may contain two
kinds of components, i.e., O and randomly generated linear
combinations of one interferer’s symbols. Providing O releases
|O| dimensional observations of the corresponding TX. There-
fore, we need to show that the |G| = (3M − N) dimen-
sional observations of this TX are linearly independent of the
N − 2M dimensional observations that the RX has originally.
In order to do this, we need to show that the M × M square
matrix whose entries are the linear combination coefficients
of the M equations has full rank, i.e., the determinant of this
matrix, a polynomial function of its entries, is non-zero almost
surely. This polynomial is either a zero polynomial or not
equal to zero almost surely for randomly generated channel
coefficients. Next, we show that the polynomial is not a zero
polynomial. To do that, we only need to find one specific set
of channel coefficients such that the polynomial is not equal
to zero. Next, we construct the channels for all interference
carrying links, i.e., H[ j i], i, j ∈ {1, 2, 3, 4}, j �= i , as shown
at the bottom of this page and a = gcd(M, N). While it
is easy to check the specific matrices above have full rank,

H[k k+1] =
⎡

⎣
IM

OM

ON−2M

⎤

⎦ , H[k k+2] =
⎡

⎣
OM

IM

ON−2M

⎤

⎦ ,

H[k k−1] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

O(N−2M−a)×(N−2M) O(N−2M−a)×(N−2M−a) O(N−2M−a)×(5M−2N+a)

O(5M−2N+a)×(N−2M) O(5M−2N+a)×(N−2M−a) I(5M−2N+a)×(5M−2N+a)

O(N−2M−a)×(N−2M) I(N−2M−a)×(N−2M−a) O(N−2M−a)×(5M−2N+a)

Oa×(N−2M) Oa×(N−2M−a) Oa×(5M−2N+a)

O(3M−N)×(N−2M) I(3M−N)×(N−2M−a) O(3M−N)×(5M−2N+a)

O(3M−N)×(N−2M) O(3M−N)×(N−2M−a) I(3M−N)×(5M−2N+a)

O(N−2M)×(N−2M) O(N−2M)×(N−2M−a) O(N−2M)×(5M−2N+a)

I(N−2M)×(N−2M) O(N−2M)×(N−2M−a) O(N−2M)×(5M−2N+a)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(223)
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Fig. 9. Linear Dimension Counting of Subspaces Participating in the Inter-
ference Alignment for the M × N setting (the values denote the dimensions
of each corresponding subspace.)

we will show through Figure 9 that these matrices keep the
generic properties of linear subspaces. For brevity, we only
show the channels associated with RX 4. The interference
carrying links associated with other receivers can be obtained
by advancing user indices. Note that the channel matrices of
desired links are generic.

From Figure 9, it can be easily seen that in the
N dimensional space at RX 4, after zero forcing the two
M-dimensional subspaces from two interferers, RX 4 has
N − 2M dimensional clean observations of the remaining
interferer. For example, after zero forcing T1 and T2, the
remaining N − 2M dimensional observations of T3 are with
blue color. Similarly, the remaining N − 2M dimensional
observations of T1 and T2 after zero forcing the rest of
interferers are with green and yellow colors, respectively.

Substituting the specific channel matrices in (223) into
Algorithm 2, we can easily check that in each step the M × M
square matrix that we obtain has full rank. In our work, we
use programming to check all cases for the values of M, N
up to 100.

B. Special Case of M/N ∈ [3/8, 2/5) (Algorithm 2)

Proof: Similar to the proof for M/N ∈ [2/5, 1/2) case in
Appendix C-A, again, we only need to find one specific set of
channel coefficients such that the polynomial is not equal to
zero. We construct the channels for all interference carrying
links, i.e., H[ j i], i, j ∈ {1, 2, 3, 4}, j �= i .

H[k k+1] =
⎡

⎣
IM

OM

ON−2M

⎤

⎦, H[k k+2] =
⎡

⎣
OM

IM

ON−2M

⎤

⎦,

H[k k−1] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

O(N−2M−a)×(N−2M) O(N−2M−a)×(3M−N)

O(3M−N)×(N−2M) I(3M−N)×(3M−N)

Oa×(N−2M) Oa×(3M−N)

O(3M−N)×(N−2M) I(3M−N)×(3M−N)

O(N−2M)×(N−2M) O(N−2M)×(3M−N)

I(N−2M)×(N−2M) O(N−2M)×(3M−N)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(224)

Fig. 10. Linear Dimension Counting of Subspaces Participating in the Inter-
ference Alignment for the M × N setting (the values denote the dimensions
of each corresponding subspace.)

where a = gcd(M, N). We show through Figure 10 that these
matrices keep the generic properties of linear subspaces. For
brevity, we only show the channels associated with RX 4. The
interference carrying links associated with other receivers can
be obtained by advancing user indices. Note that the channel
matrices of desired links are generic. Substituting the specific
channel matrices in (224) into Algorithm 2, we can easily
check that in each step the M × M square matrix that we
obtain has full rank. In our work, we test all (M, N) cases
where M/N = (2c −1)/(5c −2), c ∈ Z

+ \{1}, M/N ≥ 3/8,
M ≤ 100, N ≤ 100.

APPENDIX D
DoF OF THE FOUR-TO-ONE MIMO

INTERFERENCE CHANNEL

We want to show that

d =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M, M/N ≤ 1/4,
N/4, 1/4 ≤ M/N ≤ 1/3,
3M/4, 1/3 ≤ M/N ≤ 4/9,
N/3, 4/9 ≤ M/N ≤ 1/2,
2M/3, 1/2 ≤ M/N ≤ 3/5,
2N/5, 3/5 ≤ M/N ≤ 2/3,
3M/5, 2/3 ≤ M/N ≤ 5/6,
N/2, 5/6 ≤ M/N ≤ 1.

(225)

First, let us consider the case where M/N ≤ 1/3,
i.e., 3M ≤ N . In this case, after decoding and subtracting its
own message W1, RX 1 is able to invert the channel from three
interferers, such that RX 1 can reconstruct the three interfering
signal vectors subject to noise distortion. Therefore, the DoF
value of each user is given by d = min(M, N/4), i.e., d = M
for M/N ≤ 1/4, and d = N/4 for 1/4 ≤ M/N ≤ 1/3.

We next consider the remaining cases, where 1/3 ≤ M/N .
In the following, we first investigate the outer bound, and then
the achievability.

C. The Information Theoretic DoF Outer Bound

For all cases, we apply the genie aided argument to
produce the outer bound. For the M × N Four-to-One MIMO



5600 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 10, OCTOBER 2016

interference channel, to allow RX 1 to decode all 4 messages, a
genie needs to provide RX 1 genie signals with |Ḡ| = 3M−N
dimensions. We now prove the outer bound for each case.

Case: 1/3 ≤ M/N ≤ 4/9 ⇒ d ≤ 3M/4
In this case, notice that 3M − N ≤ N/3 ≤ M .

A genie provides Ḡ = X̄[2]
(3M−N) to RX 1. Since G is linearly

independent of S[1], RX 1 is able to decode all the messages
subject to noise distortion. Thus, we obtain the following
inequality:

4n R − nεn

≤: h̄(Y[1]n
) + h̄(Gn|S[1]n

) (226)

≤: Nn log ρ + h̄(X[2]n

3M−N ) (227)

≤: Nn log ρ + (3M − N)n log ρ = 3Mn log ρ. (228)

By letting n → ∞ first and then ρ → ∞, we have the desired
DoF outer bound

d ≤ 3M/4. (229)

Case: 4/9 ≤ M/N ≤ 1/2 ⇒ d ≤ N/3
A genie provides Ḡ = X̄[2] to RX 1, such that after

removing its desired signal and the interference from TX 2,
RX 1 is able to invert the channels from TX 3 and TX 4 as
N ≥ 2M . Thus, we obtain the following inequality:

4n R − nεn ≤: h̄(Y[1]n
) + h̄(Gn|S[1]n

)

≤: Nn log ρ + h̄(X[2]n
) ≤: Nn log ρ + n R.

By letting n → ∞ first and then ρ → ∞, we have the desired
DoF outer bound

d ≤ N/3. (230)

Case: 1/2 ≤ M/N ≤ 3/5 ⇒ d ≤ 2M/3
In this case, 3M − N ≥ M . A genie provides

Ḡ = {X̄[2], X̄[3]
(2M−N)} to RX 1. After removing its

desired signal and the interference from TX 2, RX 1 is
able to recover the signal vectors from TX 3 and TX 4
from the N-dimensional observations of X[3], X[4] and G
subject to noise distortion. Thus, we obtain the following
inequality:

4n R − nεn ≤: h̄(Y[1]n
) + h̄(Gn|S[1]n

) (231)

≤: Nn log ρ + h̄(X[2]n
, X[3]n

(2M−N)) (232)

≤: Nn log ρ + n R + (2M − N)n log ρ. (233)

By letting n → ∞ first and then ρ → ∞, we have the
desired DoF outer bound

d ≤ 2M/3. (234)

Case: 3/5 ≤ M/N ≤ 2/3 ⇒ d ≤ 2N/5
In this case, 3M − N ≥ M . First, a genie provides Ḡ1 =

{X̄[2], X̄[3]
(2M−N)} to RX 1, such that it can decode all the

messages subject to noise distortion. Therefore, we have the
first inequality:

4n R − nεn

≤: h̄(Y[1]n
) + h̄(Gn

1 |S[1]n
) (235)

≤: Nn log ρ + h̄(X[2]n
, X[3]n

(2M−N)|S[1]n
) (236)

≤: Nn log ρ + h̄(X[2]n
) + h̄(X[3]n

(2M−N)|S[1]n
, X[2]n

)

≤: Nn log ρ + n R + h̄(X[3]n

(2M−N)|X[3∼1]n

N−M ) (237)

≤: Nn log ρ + 2n R − h̄(X[3∼1]n

N−M ) (238)

where (237) is obtained by zero forcing the interference
from TX 4.

Second, a genie provides Ḡ2 = {X̄[4], X̄[3∼1]n

N−M } to RX 1.

Notice that |Ḡ2| = M + (N − M) ≥ 3M − N and X[3∼1]n

N−M

depends only on the channel from TX 4. Thus, providing Ḡ2
to RX 1 allows it to decode all the messages subject to noise
distortion and we have the second inequality:

4n R − nεn ≤: h̄(Y[1]n
) + h̄(Gn

1 |S[1]n
) (239)

≤: Nn log ρ + h̄(X[4]n
, X[3∼1]n

N−M ) (240)

≤: Nn log ρ + n R + h̄(X[3∼1]n

N−M ). (241)

Adding (238) and (241), we have the desired DoF outer
bound:

8n R − nεn ≤: 2Nn log ρ + 3n R ⇒ d ≤ 2N/5. (242)

Case: 2/3 ≤ M/N ≤ 5/6 ⇒ d ≤ 3M/5
The proof for this case is similar to that for the 3/5 ≤

M/N ≤ 2/3 case. The first inequality is the same as (238).
To obtain the second inequality, a genie provides Ḡ2 =
{X̄[4], X̄[3∼1]

N−M , X̄[3]
3M−2N } to RX 1 to allow it to decode all the

messages subject to noise distortion. As a result, we have the
second inequality:

4n R − nεn

≤: h̄(Y[1]n
) + h̄(Gn

2|S[1]n
) (243)

≤: Nn log ρ + h̄(X[4]n
, X[3∼1]n

N−M , X[3]n

3M−2N ) (244)

≤: Nn log ρ + h̄(X[4]n
) + h̄(X[3∼1]n

N−M ) + h̄(X[3]n

3M−2N )

≤: Nn log ρ + n R + h̄(X[3∼1]n

N−M ) + (3M − 2N)n log ρ.

(245)

Adding up (238) and (245) we have the desired DoF outer
bound:

8n R − nεn ≤: 2Nn log ρ + 3n R + (3M − 2N)n log ρ

⇒ d ≤ 3M/5.

Case: 5/6 ≤ M/N ≤ 1 ⇒ d ≤ N/2
A genie provides Ḡ = {X̄[2], X̄[3]} to RX 1. After removing

its desired signal and the interference from TX 2 and TX 3,
RX 1 is able to invert the channels from TX 4 to recover
X[4] and thus decode W4 subject to noise distortion. Thus, we
obtain the following inequality:

4n R − nεn ≤: h̄(Y[1]n
) + h̄(Gn|S[1]n

) (246)

≤: Nn log ρ + h̄(X[2]n
, X[3]n

) (247)

≤: Nn log ρ + 2n R. (248)

By letting n → ∞ first and then ρ → ∞, we have the desired
DoF outer bound

d ≤ N/2. (249)
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D. The DoF Achievability

It suffices to show the achievability at M/N = 4/9,
3/5, 5/6, and all the other cases directly follow from the
property that increasing the number of antennas does not hurt
the DoF. As only RX 1 suffers from interference, we merely
need to design the precoding matrices V[i], i ∈ K at each TX
to minimize the dimension of the interference seen at RX 1.

Case: M/N = 4/9 ⇒ d = 3M/4 = N/3.
Suppose (M, N) = (4β, 9β) where β ∈ Z

+. In this case,
we want to show that d = 3β DoF per user are achiev-
able. Consider the 9β-dimensional received signal subspace
at RX 1. The desired signal occupies 3β dimensions, leaving
the remaining 6β dimensions for interference. Since the inter-
ference from TX 2 to TX 4 has 3d = 9β variables in total, we
need to align 9β − 6β = 3β interference symbols. Note that
TX 2 and TX 3 together project at RX 1 an 8β-dimensional
subspace, which intersects with the 4β-dimensional subspace
seen from TX 4 at RX 1 at an 8β+4β−9β = 3β dimensional
subspace. Therefore, we can align the 3β symbols from TX 4
into the subspace spanned by the interference from TX 2 and
TX 3. Mathematically, we have

H[14]V[4] = −(H[12]V[2] + H[13]V[3])

⇒
[
H[12] H[13] H[14]]

9β×12β

⎡

⎣
V[2]
V[3]
V[4]

⎤

⎦

12β×3β

(250)

= 0, (251)

and we can solve V[2], V[3], V[4] by truncating the 3β basis
vectors of the null space of

[
H[12] H[13] H[14]]. Finally,

we randomly generate V[1] to ensure the linear independence
between the desired signals and interference at RX 1, such
that RX 1 is able to decode its 3β symbols. Since RX 2 to
RX 4 hear no interference, they are able to decode their own
messages as well.

Case: M/N = 3/5 ⇒ d = 2M/3 = 2N/5
Suppose (M, N) = (3β, 5β) where β ∈ Z

+. In this case,
we want to show that d = 2β DoF per user are achievable.
In the 5β-dimensional received signal space at RX 1, the
desired signal occupies 2β dimensions, thus leaving the rest
3β-dimensional subspace for interference. As a result, a total
of 3d = 6β dimensional interference from TX 2 to 4 should
be aligned into a 3β-dimensional subspace. Note that each
TX projects a 3β-dimensional subspace at RX 1, and any two
of them have a 3β + 3β − 5β = β dimensional intersection.
Therefore, for any two users among the three interferers, we
align β symbols and thus save 3β interference dimensions.
Suppose the beamforming matrix of TX i is given by V[i] =
[V[i]

1 , V[i]
2 ]. We have

H[12]V[2]
1 = −H[13]V[3]

1

⇒
[
H[12]H[13]]

5β×6β

[
V[2]

1
V[3]

1

]

6β×β

= 0, (252)

H[12]V[2]
2 = −H[14]V[4]

1

⇒
[
H[12]H[14]]

5β×6β

[
V[2]

2
V[4]

1

]

6β×β

= 0, (253)

H[13]V[3]
2 = −H[14]V[4]

2

⇒
[
H[13]H[14]]

5β×6β

[
V[3]

2
V[4]

2

]

6β×β

= 0, (254)

and therefore we can solve the equations by truncating the
basis vectors of the null spaces of the corresponding matrices.
The linear independence among 2β columns of each V[i],
i = 2, 3, 4 can be established by choosing a set of spe-
cial matrices and showing that it has full rank. Finally, we
choose V[1] randomly to ensure the linear independence of
the desired signal and interference at RX 1.

Case: M/N = 5/6 ⇒ d = 3M/5 = N/2
Suppose (M, N) = (5β, 6β) where β ∈ Z

+. In this case,
we want to show that d = 3β DoF per user are achievable.
In the 6β-dimensional received signal space at RX 1, the
desired signal occupies 3β dimensions, leaving the rest
3β-dimensional subspace for interference. Because we have
a total of 3d = 9β symbols from three interferers, we need
to align the interference from TX 3 and TX 4 into the same
subspace projected from TX 2. Therefore, we have

H[12]V[2] = −H[13]V[3] = −H[14]V[4] (255)

⇒
[

H[12] H[13] O
H[12] O H[14]

]

12β×15β

⎡

⎣
V[2]
V[3]
V[4]

⎤

⎦

15β×3β

(256)

= 0, (257)

and V[i], i = 2, 3, 4 can be solved similarly. Finally, we
choose V[1] randomly to ensure the linear independence of
the desired signal and interference at RX 1.

APPENDIX E
DOF COUNTING BOUND OF THE MANY-TO-ONE

MIMO INTERFERENCE CHANNEL

In the K -user many-to-one M×N MIMO Gaussian interfer-
ence channel where each TX has M antennas and each RX has
N antennas, only RX 1 hears interference from TX 2 to TX K
while all the other receivers only hear their desired signals. We
consider the feasibility of interference alignment over such
a channel, i.e., the DoF achieved by linear schemes with
no symbol extension. The DoF counting bound is based on
counting the number of free variables and alignment bilinear
equations. This idea of counting variables and equations is
originally proposed by Yetis et al. [4] in the fully connected
MIMO interference channel, and then applied in the X channel
setting [13].

Using linear schemes, TX i intends to send d independent
streams using an M × d precoding matrix V[i] and RX i
extracts its desired signal by using an N × d interference
filtering matrix U[i], i ∈ K. Then the feasibility of linear
interference alignment is equivalent to solving the following
algebraic equations:

U[1]†
H[1i]V[i] = 0, i ∈ {2, 3, . . . , K } (258)

which essentially means that RX 1 may zero force all the
interference. Now we count the number of equations Ne and
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variables Nv in (258):

Ne = (K − 1)d2, (259)

Nv = (K − 1)(M − d)d + (N − d)d. (260)

The DoF counting bound is given by the inequality

Ne ≤ Nv (261)

⇒ d ≤ (K − 1)M + N

2K − 1
. (262)

When K = 4, the DoF counting bound is 3M+N
7 and it is easily

checked that the counting bound 3M+N
7 is always larger than

the decomposition bound M N
M+N .
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