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Abstract—We show that an user MIMO network
with antennas at each node has degrees of freedom
(DoF), thus resolving in this case a discrepancy between the spa-
tial scale invariance conjecture (scaling the number of antennas
at each node by a constant factor will scale the total DoF by the
same factor) and a decomposability property of overconstrained
wireless networks. While the best previously known general DoF
outer bound is consistent with the spatial invariance conjecture,
the best previously known general DoF inner bound, inspired by
the user MIMO interference channel, was based on the decom-
position of every transmitter and receiver into multiple single an-
tenna nodes, transforming the network into an user
SISO network. While such a decomposition is DoF optimal for
the user MIMO interference channel, a gap remained between
the best inner and outer bounds for the MIMO channel. Here
we close this gap with the new insight that the MIMO network
is only one-sided decomposable, i.e., either all the transmitters or
all the receivers (but not both) can be decomposed by splittingmul-
tiple antenna nodes into multiple single antenna nodes without loss
of DoF. The result is extended to SIMO and MISO networks as
well and in each case the DoF results satisfy the spatial scale in-
variance property.

Index Terms—Capacity, degrees of freedom (DoF), interference
alignment, X networks.

I. INTRODUCTION

T HE use of multiple antennas, known as multiple input
multiple output (MIMO) technology, and the consoli-

dation of interference, known as interference alignment (IA),
are two of the promising advances of the last two decades that
seek to alleviate the spectrum shortage for wireless communi-
cation networks by making available additional spatial degrees
of freedom (DoF). Taken individually, the understanding of
MIMO is by now quite mature, and rapid advances have
recently been made in understanding the essential principles
of IA through DoF studies of a variety of network settings.
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Taken together, however, the understanding of MIMO in con-
junction with IA—the understanding of the spatial dimension
per se—is limited by a number of unresolved fundamental
issues. In terms of systematic insights, a number of properties
have been identified in [2] that are true for all known DoF
results, and conjectured to be true in general (i.e., for almost
all channel realizations), but for which a general proof (or
counter-example) is not yet known. These observations include
the duality property (reciprocal networks have the same DoF),
the diversity property (time-varying channels have the same
DoF as constant channels), the linearity property (linear beam-
forming schemes over time-varying channels are sufficient to
achieve the information theoretic DoF), and especially relevant
to this paper, the properties of spatial scale invariance and de-
composability. Remarkably, these two properties, which hold
for all DoF results known previously, contradict each other for
MIMO networks. Resolving this curious discrepancy is an
open problem that is highlighted in [3] (p. 81, Sec. 5.4). The
main motivation of this work is to solve this open problem.

A. Spatial Scale Invariance and Decomposability

1) Spatial Scale Invariance: It iswellunderstood that theDoF
of wireless networks is scale-invariant with respect to time and
frequency dimensions. Wang et al. have recently conjectured
in [4] that the spatial dimension is similarly scale invariant:
“With perfect global channel knowledge and generic chan-

nels, if the number of antennas at each node in a wireless net-
work is scaled by a common constant factor, then the DoF of the
network (for almost all channel realizations) scale by the same
factor.”
The spatial scale invariance conjecture is consistent with all

known DoF results across a wide variety of networks, which
includes interference networks, networks, cellular networks,
and even multihop networks [3]. In particular, we note that for
the 2 2 user MIMO channel with antennas at each node,
the DoF value is known to be [5], [6], which scales with
and is therefore, consistent with the spatial scale invariance con-
jecture. Even for the user MIMO network (i.e., an
network with transmitters and receivers) with antennas
at each node, if , the DoF value is easily seen

to be , again spatial scale invariant [7]. However,

if , the DoF remain unknown. Interestingly, the
best-known DoF outer bound for this setting is consistent with
the spatial invariance conjecture [7].
2) Decomposability: We use the term “decomposition” to

refer to independent processing at each antenna, essentially
splitting a multiple antenna node into multiple independent
single antenna nodes. It was first used to simplify the proof
of achievability in the user symmetric (equal number of
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antennas at all nodes) MIMO interference channel [8] where
the DoF result obtained for the SISO setting was immediately
extended to the symmetric MIMO setting by decomposing the
user MIMO interference network with antennas at each

node, into an user SISO interference network, where the
asymptotic CJ alignment scheme [3], [8] can be applied to
show that DoF are achievable, without joint processing
among colocated antennas at any node. Since is also the
DoF outer bound for the user symmetric MIMO interference
network, it is evident that the network is decomposable, i.e.,
no loss of DoF results from decomposing all transmitters and
receivers. The decomposability property is also known to be
true for user MIMO interference networks with antennas
at each transmitter and antennas at each receiver, giving us
the optimal (information theoretic) DoF value of per
user, provided that [9], [10]. Further study of
the user MIMO interference channel by Wang et al. leads
to the conjecture that decomposability holds in all over-con-
strained (also known as improper [11]) settings, i.e., where the
information theoretic DoF value per user is higher than .
Based on previously existing DoF results, a general pattern
summarized in [3] states that:
“The DoF benefits of collocated antennas disappear with in-

creasing number of alignment constraints.”
Evidently, this is because for overconstrained networks the

multiplicity of alignment constraints invariably requires the
use of the CJ scheme [3], [7], [8], which does not require joint
processing across multiple antennas, instead breaking them
into separate nodes. The CJ scheme is inherently a decomposi-
tion-based scheme because of its reliance on commutativity of
channel matrices, a property satisfied by the diagonal channels
obtainedby time/frequencysymbolextensionsofSISOchannels,
but not by time/frequency extensions ofMIMO channels (which
would only produce noncommuting block-diagonal channels).
The previously best-known inner bound for

user MIMO network with antennas at each node, and
, is also based on the decomposition argument

and application of the asymptotic CJ alignment scheme [7].
By decomposing every transmitter and receiver in an
user MIMO network with antennas at each node, we
obtain an user SISO network, and therefore the
corresponding DoF value, is achievable [7].

B. Summary of Contribution

The main goal of this paper is to resolve, in the context of
MIMO networks, the apparent discrepancy between the spa-
tial invariance conjecture, as represented by the best available
DoF outer bound, and the decomposability property, as repre-
sented by the best available DoF inner bound. As mentioned
above, for user MIMO network with antennas
at each node, and with , there remains a gap

between the best DoF outer bound value, , and

the best DoF inner bound value, . This gap rep-
resents an opportunity to refine our understanding of the spa-
tial invariance and decomposability properties. While the gap
may seem small for large values of , note that because DoF
is a very coarse metric, even a small gap between DoF bounds

corresponds to unbounded gaps in the corresponding capacity
bounds. To summarize the motivation for this paper, MIMO
networks represent an important class of wireless networks, a
precise DoF characterization is highly desirable, it would close
the open problem highlighted in [3], and improve our under-
standing of the fundamental structure of signal dimensions.
Themain contribution of this paper is the precise DoF charac-

terization for user MIMO networks with antennas
at each node (and all SIMO andMISO network settings). This
involves both new insights as well as new technical challenges.
In terms of new insights, we settle the spatial invariance con-
jecture for MIMO networks with antennas at each node,
i.e., we show that the DoF outer bound is tight, also closing the
heretofore open DoF problem for these networks. The discrep-
ancy with the previous inner bound is resolved by improving our
understanding of the decomposability property. We find that,
unlike MIMO interference networks which demonstrate a two-
sided decomposability, i.e., both the transmitters and receivers
can be decomposed into single antenna nodes, MIMO net-
works are only one-sided decomposable, i.e., either the trans-
mitters or the receivers (but not both simultaneously) can be
decomposed into single antenna nodes without loss of DoF. In-
terestingly, this is not because of the alignment constraints. In-
deed the alignment still takes place very much like a SISO set-
ting, based entirely on the CJ scheme. Instead, this is because of
the separability of desired and interference signals. As it turns
out, joint processing at one end, e.g., at the receivers in a SIMO
X network, allows a larger space within which the desired sig-
nals can be resolved more efficiently from the interference. The
use of the CJ scheme for achievability is significant because
the same scheme often translates into the rational dimensions
framework to establish corresponding DoF results in static set-
tings (see, e.g., [3], [12], [13]). Indeed, the DoF results of this
paper have been recently extended to constant settings by Za-
manighomi and Wang in [14]. One-sided decomposability fea-
tures prominently in [14] as well.
While the new insights are the key ingredient to closing this

open problem, there are nontrivial technical challenges involved
as well. In particular, the mathematical proof of the resolvability
of desired signals from interference with joint processing across
the nondecomposed receivers (the reciprocal setting follows by
duality), poses new challenges. This requires proving the full
rank property of a matrix (signal space matrix) whose columns
represent the received signal vectors and whose rows represent
the receive antennas and channel uses. What complicates mat-
ters is that this matrix contains dependencies across both rows
and columns. The dependencies across rows arise because of
the multiple receive antennas that receive different linear com-
binations of the same set of symbols over each channel use.
The dependencies across columns arise due to the setting,
because each channel coefficient is involved with both desired
and interfering signals. When taken individually, the dependen-
cies across rows have been addressed in the MIMO interference
network setting by Gou and Jafar in [9] and the dependencies
across columns have been addressed in the network setting
by Cadambe and Jafar in [7]. However, as it turns out, dealing
with both kinds of dependencies simultaneously is especially
challenging. Our proof relies on a slightly modified CJ scheme,
and uses mathematical induction to construct the overall signal
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space matrix in a stepwise manner by appending blocks of rows
and columns while at each stage proving that this does not in-
troduce rank deficiencies.

II. SYSTEM MODEL

An user MIMO network is a single-hop commu-
nication network with transmitters and receivers, where
Transmitter has a message for Receiver , for each

. Transmitter has an-
tennas and Receiver has antennas. The user MIMO
network is described by input-output relationship

where represents the channel use index, is the
input signal vector of the th Transmitter, is the
output signal vector of the th Receiver and represents
the additive white Gaussian noise (AWGN) vector at
the th Receiver. The average transmit power at each trans-
mitter is bounded by (referred to as the SNR) and the i.i.d.
noise variance at all receivers is assumed to be equal to unity.

represents the channel matrix between Trans-
mitter and Receiver over the th channel use. We assume
that all channel coefficient values are time-varying, i.i.d., drawn
from a continuous distribution and the absolute value of all
the channel coefficients is bounded between a nonzero min-
imum value and a finite maximum value. Perfect knowledge of
all channel coefficients is available to all transmitters and re-
ceivers.1 Let denote the rate of the code-
word encoding the message , where is the size
of the message set and is the length of the codeword. The
rate is said to be achievable if for message , the
probability of error can be made arbitrarily small with appropri-
ately large . The closure of all achievable rate tuples is known
as the capacity region. The DoF for message is defined
as , which can be interpreted as
the number of independent signaling dimensions available for

. Analogous to the capacity region, the DoF region is
the closure of the set of all achievable DoF tuples. The sum-DoF
value is defined as .

III. RESULTS

In this section, we present the statements of the main results
along with some expository discussion. The proofs are relegated
to Section IV.

A. Spatial Scale Invariance and Decomposability

The main result is presented in the following theorem.
Theorem 1: The user MIMO network with an-

tennas at each node has total DoF almost surely.
While a detailed proof appears in Section IV-B, let us convey

the essence of the achievable scheme through a simple example
presented in a manner consistent with the tutorial [3]. Consider

1It is worth mentioning that due to idealized assumptions such as perfect
channel knowledge, and high SNR limits, DoF studies such as this one, have
more to do with mathematical insights into the fundamental notion of signal di-
mensions, than with immediate practical applications.

Fig. 1. IA after one-sided decomposition on the 3 3 MIMO channel.

the 3 3 MIMO network with two antennas at each node,
i.e., , as shown in Fig. 1. We split all the
transmit antennas and view them as six independent transmit-
ters. Each virtual transmitter selects the same beamforming ma-
trices (thereby same signal space) , , , for Receiver ,
, , respectively, over symbol extensions. The signal space
seen by each receiver has dimensions. Consider the sym-
bols desired by Receiver , which constitute interference at Re-
ceivers , . These symbols are transmitted by each transmitter
along the signal space designated as . Note that because each
receiver has two antennas while each (decomposed) transmitter
has only one antenna, the symbols sent from any two trans-
mitters cannot align with each other at any receiver. In other
words, one-to-one alignments are not possible. Therefore, in
order to consolidate the interference caused by at Receivers
, as much as possible, we turn to a many-to-many alignment
scheme. Specifically, the spaces from Transmitters 1, 2 oc-
cupy dimensional interference space at each undesired
receiver (Receivers and ) and all the remaining undesired
space signals sent from Transmitters 3 to 6 are incorporated into
these dimensions. As shown in Fig. 1, let us set the inter-
ference space occupied by signals sent along , as seen by
Receivers , to , i.e., the column span of the matrix

(1)

in which all interference will be aligned, i.e.,

(2)

and

(3)

where denote the interference-carrying matrices (same as
in the figure). All of these alignment conditions can be

satisfied with the CJ alignment scheme [3]2

(4)

Similarly, the three messages for Receiver are sent along the
same signal space by each transmitter, and align into the
same space at Receivers , where they constitute
interference. Lastly, spans the total interference space

2The notation means that

asymptotically approaches 1.
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due to the messages intended for Receiver , as seen by Re-
ceivers , . The size of the signal spaces are chosen to be equal,
i.e., , and . We can
easily see that at each receiver, desired signals from all six trans-
mitters occupy dimensions, and interference (namely sig-
nals intended for the other two receivers) occupies dimen-
sions. After aligning the interference, we need to guarantee the
linear independence of desired signals from interference. This
is proved in Section IV-B.
For the desired and interference spaces to be linearly inde-

pendent, we need the size of the total signal space, , to be big
enough to accommodate both. This is accomplished by setting

. The total accessible DoF for the network equal

, as desired.
The statement of Theorem 1 can be further generalized to

SIMO and MISO settings, as in Theorem 2.
Theorem 2: The user SIMO network with a single

antenna at each transmitter and antennas at each receiver, as
well as its reciprocal channel, the MISO network,
almost surely has a total of

In addition, the DoF in both cases satisfy the spatial scale in-
variance property.
Note that Theorem 1 is a special case of Theorem 2 when

and the scaling factor is specified by .

IV. PROOFS: SPATIAL SCALE INVARIANCE AND
DECOMPOSABILITY OF MIMO NETWORKS

We only need to prove Theorem 2 which includes Theorem
1 as a special case, as stated before. The outer bound proof,
presented next, is straightforward and is provided mainly for
completeness. The main challenging aspect is the achievability
proof presented subsequently.

A. Outer Bound on the DoF of MIMO Networks

The user SIMO network with a single antenna at
each transmitter and antennas at each receiver is considered.
The proof for its reciprocal setting, the MISO net-
work, follows along the same lines.

Proof: When , the DoF value for the network is
bounded by the total number of transmit antennas , which is
simply the single-user DoF bound.
When : If we allow full cooperation among the

first transmitters, then it is equivalent to the network with
transmitters, the first transmitter equipped with

antennas and all the other transmitters equipped with single
antenna each, and receivers, each equipped with antennas.
In [7], it is shown that in network, the number ofDoF achieved

by all the messages associated with Transmitter or Receiver
is upper bounded by , where and stand

for the number of antennas at Transmitter and Receiver ,
respectively. Since allowing cooperation among transmitters
does not hurt the capacity, the number of DoF achieved by all the
messages associated with the first transmitters and Receiver
is no more than . This gives us the outer bound

(5)

Repeating the arguments for every transmitters and each re-
ceiver, we arrive at the outer bound of the SIMO network

(6)

Furthermore, the spatial scaling property of the outer bound is
obvious from the derivation presented above.

B. Inner Bound on the DoF of MIMO Networks

As mentioned previously, the achievability proof of Theorem
2 is the main challenging aspect. The proof first establishes the
achievable DoF for SIMO and (by reciprocity) MISO net-
works, and then uses a one-sided decomposition argument to
establish spatial scale invariance for this class of networks.

Proof: When , beamforming and zero forcing are
sufficient to achieve the DoF.
When , the achievable scheme is based on interfer-

ence alignment. Due to the reciprocity of linear beamforming-
based alignment, which states that if interference alignment is
feasible in the original network, then it is also feasible in the re-
ciprocal network, and the achievable DoF are the same between
the dual networks [7], [15], we only consider the SIMO case.
Consider an symbol extension of the original channel. The
value of will be specified later. The input-output relationship
of the extended channel is described by

(7)

...

(8)

where is the transmitted signal vector sent from
Transmitter and is the received signal vector
at Receiver . represents the channel matrix
from Transmitter to the th receive antenna of Receiver ,

, as shown in (9) given at the bottom of the page.

...
. . .

...
(9)
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The channel-use index is suppressed from now on for com-
pactness. Each transmitter selects the same beamforming matrix

for precoding its symbols intended for Receiver . is an
matrix whose columns are beamforming directions.

The number of columns of , i.e., the value of will also be
specified later in this proof. The transmit signal sent by Trans-
mitter is , where is the
vector of data streams from Transmitter to Receiver .
The received signal at Receiver , wherein , is
expressed as

... (10)

... (11)

...

... (12)

Consider the symbols desired by Receiver 1, which constitute
interference at Receiver . These symbols are
sent by each transmitter along the signal space designated as
. Note that because each receiver has antennas while each

transmitter has only one antenna, the symbols sent from any
transmitters cannot align among themselves at any receiver.

This is because the channel matrix from any transmitters to
the -antenna receiver is invertible almost surely. Therefore,
the spaces from Transmitters , occupy an
dimensional interference space at each undesired Receiver

. All the remaining undesired space signals sent
from Transmitters , are now aligned into these

dimensions as follows.
Let us choose to satisfy the following alignment

conditions:

(13)

Then, all the interference due to signals sent along , as
seen by receivers 2 to , will be aligned into the vector space

, i.e.,

... ...
...

. . .
...

(14)

Similarly, the messages for Receiver are sent along the
same signal space by each transmitter and aligned into the
same space at Receivers

, where they constitute interference. Then, we
have

(15)

Define , which is the union of all inter-
ference terms due to signals transmitted along . The
conditions (13), (15) can now be expressed as .
These conditions are satisfied simultaneously by the CJ scheme
construction

(16)

(17)

where is the all 1 column vector and consists only of
strictly positive integers (i.e., 0 is not included). Thus, con-
tains product terms up to degree and interference contains
product terms up to degree . The size of the signal space

(number of column vectors in ) and interference , re-
spectively, is

(18)

where is the total number of interference car-
rying channels. We denote as and as , because
they are the same for all . Notice

(19)

which means . At Receiver , desired signals oc-
cupy dimensions and aligned interference occupies

dimensions. To avoid overlaps between desired signals
and interference, the size of receive signal space, , must be
at least as big as the sum of the dimensions of desired sig-
nals and interference, , so we set

.3

Next we prove the linear independence of the desired signals
from interference.
Let us first simplify the notation as follows. Relabel all the
interference carrying channels in as to and

3One can guarantee that is an integer by, e.g., choosing wherein
is the sequence of integers, so that is divisible by .
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their corresponding exponents as to . Similar change of
notation is also done within all . Then,

(20)

Note that is comprised of column vectors. For ease of ex-
position, we will impose a lexicographic order on these columns
in the representation of , as follows. First, we arrange all
columns from left to right in increasing order of . Then for
columns of the same , we will arrange them in increasing
order of . In general, given the same tuple ,

, we will arrange these columns in increasing order of
. For example, consider the setting and .

Then, a row of is represented as

(21)

Such an ordering has the property that a tuple
appears before the tuple if and only if the first
, which is different from , is smaller than . With this ar-

rangement, we have the following lemma.
Lemma 1: Consider a row vector

(22)

which is obtained from the first to the th column of an arbitrary
row ofmatrix . Now consider a product of the form

. Note that each product is a monomial in
variables of . Then, if
and only if , for all .

Proof: Suppose . Then,
. Suppose we have

, such that
. According to the or-

dering of the , since , we have , for all
. So in order for , all have to be

equal to . Continuing this argument, given for

all , we have for all . So in order for

, all have to be equal to ,
leading to .
Without loss of generality, we will prove the linear indepen-

dence of desired and interfering signal spaces for Receiver 1.
Let us define the matrix

(23)

which corresponds to the desired signal at the th antenna of
Receiver 1. Then the desired signal at Receiver 1 is received
along the columns of the following matrix:

...
(24)

Now consider the interference. According to our align-
ment scheme, the interference signal intended for Receiver

, is aligned into the span of the columns of the
following matrix:

...
...

. . .
...

(25)

where is the identity matrix and denotes the Kro-
necker product. As a result, all interference signals are aligned
into the span of the columns of the following
matrix:

(26)

Therefore, we need to show the matrix
has full rank almost surely. We will show that the

desired signals are linearly independent among themselves and
the desired signal space does not overlap with the interference
space, respectively.
The difficulty lies in the second step because there is depen-

dency across both columns and rows in the signal space ma-
trix. The columns are dependent because in networks, de-
sired channels for Receiver 1 are interfering channels for other
receivers. The rows are dependent because we are performing
joint MIMO decoding, involving signals that are received at all
receive antennas. So we need to perform an induction on both
columns and rows at the same time. At each induction step, as-
suming the original matrix has full rank, we prove that the new
matrix formed by adding columns and rows also has full
rank. This is done by identifying a distinct monomial in the poly-
nomial expansion of the determinant. Both the block diagonal
structure of the interference and the former lexicographic or-
dering of the precoding vectors are important in the remainder
of the proof, which is described next.
Step 1: We first prove that the desired signals are linearly

independent, i.e., the matrix has full rank
almost surely. To do this, it is sufficient to prove the following

submatrix of has full rank almost surely

...
(27)

where

(28)

is comprised of the first rows of , i.e., is a
diagonal square matrix of dimension obtained

from the first rows and columns from matrix and
is the matrix obtained from the first rows

of . Essentially, we only consider the signals received up to
channel use index . Note that has block rows which
correspond to the received signals at receive antennas and
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block columns which correspond to the desired signals from
transmitters.
To prove that it is a full rank matrix, we will prove

almost surely. The determinant is a poly-
nomial of all channel coefficients up to channel use index

. To prove that it is not equal to zero almost surely, it
suffices to prove that it is not a zero polynomial, which can be
proved by showing that at least one specific channel realization
exists such that the polynomial is not equal to zero. We will set
the channel coefficients in such a manner that becomes a
block diagonal matrix with blocks and each block is a full
rank matrix almost surely, which leads to the conclusion that

has full rank almost surely as well. Specifically, consider
the th block column of , i.e., the matrix:

...
(29)

which corresponds to the desired signal from Transmitter . We
set all rows except rows of (29) to zero
by setting the corresponding channel coefficients in matrix
to zero. This operation involves only channels that originate at
Transmitter , so they are independent of other block columns.
Note that this can be done because does not contain channel
coefficients associated with Receiver 1. As a result, we convert
matrix into a block diagonal matrix with blocks and
each block is a matrix.
What remains to be shown is that each block is a full rank ma-

trix almost surely.Wewill prove this by showing that each block
matrix satisfies two properties: 1) every entry of each row is a
distinct monomial; 2) each row is independent of the other rows.
If both properties are satisfied, then it follows from Lemma 1 in
[7] that the matrix has full rank almost surely. It can be easily
seen that the first property is satisfied for each row due to the
construction of . We only need to prove the second prop-
erty is satisfied as well. From (29), we know each row of
appears periodically with period , which corresponds to
different linear combinations of the same set of symbols re-
ceived at multiple antennas. Then, if we choose consecu-
tive rows from (29), the rows are not independent if and only
if . Now, we choose consecutive rows each time
and because . As a result, each row is inde-
pendent. Therefore, each block matrix is full rank almost surely.
So we have proved the desired signals are linearly independent
almost surely.
Step 2: We will prove that the interference space does not

overlap with the signal space. To do that we first reorder the
rows and columns of matrix . The columns of each are
reordered as follows:

(30)

where the vector denotes the th column of . Next,
we arrange the rows in increasing order of the channel indices.

Over the th channel use, the desired signal is received along
the columns of the following matrix:

...
...

. . .
...

(31)

where the vector denotes the th row of .
The interference caused by messages intended for Receiver
over the th channel use is contained in the span of the columns
of the following matrix:

(32)

where the scalar denotes the element in the th row and
th column of . As a result, all signals are received along the
columns of the following matrix over the th channel use:

(33)

After rearranging the rows and columns, the matrix
becomes

... (34)

Recall that in Step 1, we already proved that the desired sig-
nals are linearly independent almost surely, i.e., the first
columns of are linearly independent. This was done by
proving that the matrix has full rank almost
surely. Note that corresponds to all rows of the desired sig-
nals up to channel use index , i.e.,

... (35)

after row rearrangements according to channel use indices.
Next, we will start from , and at each induction step,
append rows and columns to its bottom and right in ,
and prove that the resulting square matrix has full rank almost
surely. These rows and columns intersect in an
matrix. The blocks are added sequentially and every time the
rows in the block correspond to the received signal at channel
use index . We will arrive at

in the end. Now, let us add the first block, i.e.,

...
... (36)
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We will now prove that the
matrix has full rank, i.e., almost surely.
The entries in and are independent
of the entries in and , because they correspond to
different channel uses. Fix and , then is
a polynomial in variables of the entries in and

. Each term in polynomial is a product
of entries, each chosen from a distinct row and distinct
column of . One of these is the
term . To prove that
almost surely, it is sufficient to prove that it is not a zero
polynomial, which can be proved if is a unique
monomial. Since contains channel coefficients
associated with Receiver 2 while does not
contain those coefficients, we have to choose all entries
from the diagonal matrix to produce

. Therefore, it is a unique monomial and
has full rank.
We proceed similarly to add the th block,

, i.e.,

(37)

where , and

(38)

Next, we will use induction to prove that the
matrix is full rank almost surely. Assuming

is full rank almost surely, we will prove
almost surely. Notice that is indepen-

dent of . Fix ,
now the determinant becomes a polynomial in variables of
and . It is sufficient to prove that it is not a zero
polynomial. Each term in the polynomial is a product of
entries, each chosen from one different row and one different
column of . And the polynomial contains
the term . If we can prove that

is a unique monomial, then the polynomial is
not a zero polynomial since , by induction
assumption. We will now prove that indeed is
a unique monomial. Note that does not contain
channel coefficients associated with Receiver while all entries
in contain those
coefficients. Therefore, in order to make the product to be the
same as , columns of

cannot be chosen. As a result, we only
consider choosing entries from different columns and rows
of .
Essentially, the problem becomes to pick entries each arbi-

trarily from the vector
and prove the product is equal to if and only
if is chosen every time. Mathematically, we want

to prove that , is equal to
if and only if , for all .

From Lemma 1, this is indeed true. Therefore, we arrive at the
conclusion that is a unique monomial and
has full rank almost surely. Following the induction on up to
its final value, , we have . Thus,
we conclude that the interference space does not overlap with
the signal space.
Therefore, the accessible DoF for each receiver equal

as ,

resulting in a sum DoF of , as desired. At this point
we have completed the proof of our DoF result for SIMO and
MISO networks.
We now prove the spatial scale invariance property for exten-

sions of MISO or SIMO networks. Let us scale the number
of antennas at each node by a factor of and prove the DoF
also scale by a factor of . When , the achievable
scheme involves only zero forcing and it is easy to see that the
DoF scale with . When , we establish spatial scale
invariance for the SIMO network by a decomposition argu-
ment and theMISO case follows by reciprocity. For the spatially
scaled SIMO network, we use transmitter side decomposi-
tion. Transmitter side decomposition means that we view each
transmitter with antennas as distributed transmitters with a
single antenna each, such that each of these transmitters has
an independent message for each of the receivers. In other
words, we do not allow joint processing of signals among the
antennas at each transmitter. Then, we obtain an

user SIMO network with a single antenna at each transmitter
and antennas at each receiver rather than an user
MIMO network with antennas at each transmitter and
antennas at each receiver. By the result established for SIMO

networks, DoF are achieved
almost surely. This completes the proof.

V. CONCLUSION

In this work, we close the open problem of finding the DoF of
MIMO networks with antennas at each node. In particular,
we settle the spatial scale invariance conjecture for this class of
networks, as well as SIMO and MISO networks. In terms of
the achievable scheme, we reveal a one-sided decomposability
property of networks.
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