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Abstract— It has been recently shown by Geng et al. that in
a K -user Gaussian interference network, if for each user, the
desired signal strength is no less than the sum of the strengths
of the strongest interference from this user and the strongest
interference to this user (all signal strengths measured in dB
scale), then power control and treating interference as noise (TIN)
is sufficient to achieve the entire generalized degrees of freedom
(GDoF) region. Motivated by the intuition that the deterministic
model of Avestimehr et al. (Avestimehr-Diggavi-Tse deterministic
model) is particularly suited for exploring the optimality of TIN,
the results of Geng et al. are first re-visited under the ADT
deterministic model, and are shown to directly translate between
the Gaussian and deterministic settings. Next, we focus on the
extension of these results to parallel interference networks, from
a sum-capacity/sum-GDoF perspective. To this end, we interpret
the explicit characterization of the sum capacity/sum GDoF of a
TIN optimal network (without parallel channels) as a minimum
weighted matching problem in combinatorial optimization, and
obtain a simple characterization in terms of a partition of the
interference network into vertex-disjoint cycles. Aided by insights
from the cyclic partition, the sum-capacity optimality of TIN for
K -user parallel interference networks is characterized for the
ADT deterministic model, leading ultimately to the corresponding
GDoF results for the Gaussian setting. In both the cases, subject
to a mild invertibility condition, the optimality of TIN is shown
to extend to parallel networks in a separable fashion.

Index Terms— Treating interference as noise, generalized
degrees of freedom, parallel channels, capacity.

I. INTRODUCTION

TREATING interference as noise (TIN) is a strategy that
is universally applied in wireless networks to deal with

interference from users that are far away. Interestingly, it is
also known to be capacity optimal when the interference
is sufficiently weak [2]–[6]. Most relevant to this work is
the recent result by Geng et al. in [6], where a broadly
applicable condition is identified and shown to be sufficient
(also conjectured to be necessary in almost all cases) for TIN
to achieve the generalized degrees of freedom (GDoF) region.
The GDoF optimality of TIN then serves as a stepping stone to
a further tightening of the result, so that whenever Geng et al.’s
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condition holds, TIN is shown to achieve the entire capacity
region within a constant gap.

Geng et al.’s result highlights the advantage of the GDoF
metric for obtaining finer insights into the capacity of wireless
networks, relative to the more widely studied degrees of
freedom (DoF) metric. While DoF studies have contributed
a number of fundamental insights, the DoF metric is limited
in that it treats all non-zero channels as essentially equally
strong (capable of carrying exactly 1 DoF). Thus, insights
into schemes such as TIN, which rely very much on certain
signals being much weaker than others, cannot be obtained
directly from DoF studies. The GDoF perspective is crucial
for such insights, and serves as the logical next step after
DoF in the pursuit of capacity through progressively refined
approximations. The advantage of the GDoF metric is amply
evident in the study of the 2 user interference network by
Etkin et al. in [2], where the DoF metric only provides a
trivial answer, whereas the GDoF metric identifies all of
the important operational regimes, leading ultimately to a
characterization of the entire capacity region within a 1 bit gap.

The richness of the GDoF metric naturally comes at the
cost of reduced tractability, especially since even the sim-
pler DoF metric is far from fully understood for wireless
networks. As such GDoF characterizations are few and far
in between [2] and [7]–[11]. This motivates simpler alterna-
tives such as the Avestimehr-Diggavi-Tse (ADT) deterministic
model of [12]–[14]. The ADT deterministic model captures
much of the essence of the GDoF framework—the diversity
of signal strengths—but is less useful when the finer details
such as the channel phase or the distinction between rational
and irrational realizations become critical. Unfortunately, since
these finer details are important for wireless interference
networks with 3 or more users (even from a DoF perspective)
[15]–[18], the ADT deterministic model has found limited use
in such settings.

The main idea motivating this work is that while the
ADT deterministic model may not be suitable for studying
the more fragile regimes, it could still be well suited for
studying those robust regimes where the finer aspects of
channel realizations are not relevant. Given this insight, and
since the regime where TIN is optimal is arguably the most
robust regime, it follows that the ADT deterministic model
should suffice to identify this regime in the GDoF sense and
to study its properties. As initial verification of this insight,
we begin by exploring the TIN optimality result of Geng et al.
in the ADT framework. Indeed, the optimality conditions
and the GDoF region are not only easily mapped to the
ADT deterministic model, but also become more transparent
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in the deterministic setting. Encouraged by this insight, we
proceed to the main contribution of this work — exploring
the optimality of TIN for K user parallel Gaussian interference
networks.

Optimality of TIN for parallel Gaussian interference
networks is an intriguing question for the following reasons.
On the one hand, with the exception of the
MAC-Z-BC network (which contains the multiple access
channel, Z-channel and broadcast channel as special cases),
it is known that all parallel Gaussian networks are in general
inseparable [19]–[21]. The benefits of joint coding across
parallel channels can be quite substantial and extend all the
way from higher DoF [19] to simple achievable schemes
and near-optimal rates at finite SNR [22], [23]. On the other
hand, for the 2 user interference network, extensions to
parallel channels have been made from an exact sum-capacity
perspective in [24] and from a GDoF perspective in [11].1

In both cases, the results support separability of TIN optimal
sub-channels. However, the insights from the 2 user setting
do not directly extend to the K user interference network.
For example, the GDoF region for the TIN optimal 2 user
interference network is easily seen to be polymatroidal,
whereas the GDoF region of TIN optimal K user interference
networks, with K ≥ 3, is no longer polymatroidal. The
distinction is particularly significant for parallel channels.
The GDoF region of 2 user TIN optimal parallel interference
networks is simply the direct sum of the corresponding
sum-rate bounds for all the sub-channels and is achieved
by separate TIN on each sub-channel. This is in general
not the case with 3 or more users (a simple example is
provided in Section V-D). Given the significant challenges in
going beyond 2 users, it is most intriguing if the separability
of parallel Gaussian interference networks will hold in the
regime where TIN is sum-GDoF optimal. In other words, if
each of the sub-channels of a K user interference network
satisfies the TIN optimality condition of Geng et al., then
will TIN continue to be sum-GDoF optimal for the parallel
channel setting?

The focus on sum-GDoF motivates us to first seek a
more explicit characterization. To this end, we show that
the sum-GDoF characterization for a K user interference
network is essentially a minimum weighted matching problem
in combinatorial optimization. Consequently, the sum-GDoF
are characterized in terms of a partition of the interference
network into disjoint cycles. Aided by the insights from
the cyclic partition approach, we explore the sum-capacity
optimality of TIN for K user parallel deterministic interference
networks under the ADT deterministic model. A separable
extension of the optimality of TIN to parallel interference
networks is obtained subject to a mild invertibility condition.
The result is then translated into the GDoF framework for
parallel Gaussian interference networks. In terms of answering
the main question, the implication is that if each of the sub-
channels satisfies the TIN optimality condition of Geng et al.,
then subject to a mild invertibility condition, a separate

1Parallel interference networks may be seen as a special case of MIMO
interference networks.

TIN scheme for each sub-channel continues to be sum-GDoF
optimal for the overall K user parallel Gaussian interference
networks.

II. SYSTEM MODEL, DEFINITIONS, AND NOTATION

A. Gaussian Interference Network Model

Consider the K user real Gaussian interference network,
with M parallel sub-channels, described as

Yk(t) =
K∑

i=1

H̃ki X̃i (t) + Zk(t), ∀k ∈ IK � {1, 2, . . . , K },
(1)

where over the t-th channel use,

Yk(t) =
[
Y [1]

k (t), Y [2]
k (t), . . . , Y [M]

k (t)
]T

(2)

X̃i (t) =
[

X̃ [1]
i (t), X̃ [2]

i (t), . . . , X̃ [M]
i (t)

]T
(3)

are the vectors containing the received signals observed at
Receiver k and the transmitted symbols from Transmitter i ,
respectively, and

H̃ki =

⎡

⎢⎢⎢⎢⎣

h̃[1]
ki 0 . . . 0
0 h̃[2]

ki . . . 0
...

...
. . .

...

0 0 · · · h̃[M]
ki

⎤

⎥⎥⎥⎥⎦
(4)

is a diagonal channel matrix comprised of the channel coeffi-
cients from Transmitter i to Receiver k. The superscript within
the square parentheses represents the sub-channel index,
m ∈ IM � {1, 2, . . . , M}. All channel coefficients are fixed
across channel uses. Perfect channel knowledge is available at
all transmitters and receivers. The AWGN vector at Receiver k
over the t-th channel use,

Zk(t) =
[

Z [1]
k (t), Z [2]

k (t), . . . , Z [M]
k (t)

]T
(5)

has zero mean and covariance matrix IM , where IM represents
the M ×M identity matrix. Noise processes are i.i.d over time.
All symbols are real.

At Transmitter i , an independent message Wi uniformly
distributed over the message index set {1, 2, . . . , �2nRi �} is
mapped to the transmitted codeword [X̃i (1), X̃i (2), . . . , X̃i (n)]
(abbreviated as X̃n

i ) over n channel uses, and is subject to the
average power constraint,

1

n

n∑

t=1

M∑

m=1

E

∣∣∣X̃ [m]
i (t)

∣∣∣
2 ≤ Pi (6)

where the expectation is over the messages.
At Receiver k, the received signal [Yk(1), Yk(2), . . . ,

Yk(n)] (abbreviated as Yn
k ) is used to produce the estimate Ŵk

of the message Wk . The probability of error for Receiver k is
given by the probability that Ŵk is not equal to Wk . A rate
tuple (R1, R2, . . . , RK ) is said to be achievable if we have
an encoding and decoding mapping such that the probability
of error for each receiver approaches zero as n approaches
infinity. The capacity region C is the closure of the set of
all achievable rate tuples. The sum-capacity is defined as
C� = maxC

∑K
k=1 Rk .
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B. GDoF Framework

Following [6], we now translate the channel model (1) into
an equivalent normalized form to facilitate GDoF studies. For
such a purpose, we define X̃ [m]

i (t) = √
Pi X [m]

i (t). Then over
the t-th channel use, the received signal for Receiver k across
the m-th sub-channel is described by

Y [m]
k (t) =

K∑

i=1

h̃[m]
ki

√
Pi X [m]

i (t) + Z [m]
k (t). (7)

Further, we take P > 1 as a nominal power value, and
define

α
[m]
ki �

⎛

⎜⎜⎝
log

(∣∣∣h̃[m]
ki

∣∣∣
2

Pi

)

log P

⎞

⎟⎟⎠

+

.2 (8)

The channel model (7) becomes

Y [m]
k (t) =

K∑

i=1

sign(h̃[m]
ki )

√
Pα

[m]
ki X [m]

i (t) + Z [m]
k (t) (9)

=
K∑

i=1

h[m]
ki X [m]

i (t) + Z [m]
k (t) (10)

where h[m]
ki � sign(h̃[m]

ki )

√
Pα

[m]
ki is the effective channel

coefficient and X [m]
i (t) is the equivalent channel input whose

power is absorbed into the channel,

1

n

n∑

t=1

M∑

m=1

E

∣∣∣X [m]
i (t)

∣∣∣
2 ≤ 1. (11)

As in [6], we call α[m]
ki the channel strength level. The

equivalent model (10) will be used in the rest of this paper.
We define the GDoF region as

D �
{
(d1, d2, . . . , dK ) : di = lim

P→∞
Ri

1
2 log P

,

∀i ∈ {1, 2, . . . , K }, (R1, R2, . . . , RK ) ∈ C}. (12)

The sum-GDoF value is defined as D� = maxD
∑K

k=1 dk .

C. ADT Deterministic Interference Network Model
As in the Gaussian case, there are K transmitter-receiver

pairs in the ADT deterministic interference network model.
Each transmitter wants to communicate with its corresponding
receiver. The signal sent from Transmitter i , as observed at
Receiver k, over the m-th sub-channel, is scaled up by a non-

negative integer value n[m]
ki � �log2 |h[m]

ki |� = � 1
2α[m]

ki log2 P�.
The channel may be written as

Y [m]
k = �2n[m]

k1 X [m]
1 � ⊕ �2n[m]

k2 X [m]
2 � ⊕ · · · ⊕ �2n[m]

kK X [m]
K � (13)

where addition is performed on each bit (modulo two).
The time index is omitted for compactness. We assume the
real-valued channel input is positive and has peak power
constraint 1, then it can be written in base 2 as

X [m]
i = 0.X [m]

i,(1) X [m]
i,(2) X [m]

i,(3) . . . . (14)

2As noted in [6], avoiding negative α’s, will not influence the GDoF results.

Fig. 1. The directed graph representation of a 3 user interference network.

The capacity region and the associated notions are defined
similar to those in the Gaussian setting.

The following directed graph representation will be useful
to efficiently present the results in this work.

D. Weighted Directed Graph Representation

The directed graph representation of the K user interference
network consists of K vertices, V1, V2, · · · , VK , one for each
user. Since the vertices correspond directly to users, we will
also refer to them as users. For all (i, j) ∈ IK × IK , there is
a directed edge ei j from user j to user i , with weight w(ei j )
defined as follows:

w(ei j ) =
{

αi j if i �= j,

0 if i = j.
(15)

The directed graph for K = 3 is illustrated in Figure 1. The
directed graph is similarly defined for the ADT deterministic
model, with all αi j values replaced by ni j values.

We are particularly interested in the notion of cycles on this
directed graph. We define a cycle, π , as a cyclically ordered
subset of users, without repetitions. The set of all cycles is
denoted as [�]. The cardinality of a cycle, denoted as |π | is
the number of users that it involves.

|π | =
∑

Vk∈π

1, ∀π ∈ [�] (16)

A cycle with only one user is a trivial cycle. Two cycles
πp, πq , are said to be disjoint if they contain no common
user, denoted as πp ∩ πq = φ.

Introducing a slight abuse of notation in the interest of
conciseness, the same cycle, π , can also be equivalently
represented as a set of edges representing a closed path where
no user is visited more than once. The weight of a cycle,
denoted as w(π), is the sum of the weights of all the edges
traversed in completing the cycle.

w(π) =
∑

ei j ∈π

w(ei j ), ∀π ∈ [�] (17)

Note that the weight of a trivial cycle is zero. Intuitively,
the weight of a cycle is the accumulation of the strengths
of interference terms encountered in the cycle.
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As an example, consider the 3 user interference network,
for which we have a total of 8 possible cycles, so that

[�] =
{
{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3},
{3, 2, 1}

}
(18)

=
{
{e11}, {e22}, {e33}, {e12, e21}, {e13, e31},
{e23, e32}, {e12, e23, e31}, {e32, e21, e13}

}

(19)

w({1, 2, 3}) = α12 + α23 + α31 (20)

= w({e12, e23, e31}) (21)

1) Cyclic Partition: A subset of the set of all cycles,
� ⊂ [�], is said to be a cyclic partition if

πp ∩ πq = φ, ∀πp, πq ∈ � (22)∑

π∈�

|π | = K (23)

In other words, a cyclic partition is a disjoint cyclic cover of
the K users.

2) Cyclic Partition Bound: For any cyclic partition �,
define the corresponding cyclic partition bound, D�

� , as

K∑

k=1

dk ≤
K∑

k=1

αkk − w(�) (24)

where

w(�) =
∑

π∈�

w(π) (25)

is the net weight of the cyclic partition, representing the total
interference encountered in this partition.

Since there are many cyclic partitions, each of which gives
rise to a cyclic partition bound, let us denote the tightest of
these bounds as the best cyclic partition bound, D�∗

� . In the
deterministic setting, a cyclic partition bound is denoted by
C�

� and the best cyclic partition bound is denoted by C�∗
� .

A cyclic partition that produces the best cyclic partition bound
is labeled an optimal cyclic partition, and denoted by �∗.

For example, when K = 6, one possible cyclic partition is
� = {{1, 3, 5}, {4, 2}, {6}} which decomposes the users into
three cycles, such that each user is represented in exactly one
cycle. The corresponding cyclic partition bound is

6∑

k=1

dk ≤
6∑

k=1

αkk − (α13 + α35 + α51) − (α42 + α24)

− (0) (26)

3) Participating Edge: Edge ei j is a participating edge for
the cyclic partition � if i �= j and ei j ∈ π for some π ∈ �.

4) Cyclic Predecessor: Under cyclic partition �, the cyclic
predecessor for user k is user �(k), if e�(k)k is a participating
edge for �. Note that if user k belongs to a trivial cycle in �
then �(k) = φ.

Finally, R
K+ is the set of all K -tuples over non-negative real

numbers.

III. OPTIMALITY OF TIN THROUGH THE

ADT DETERMINISTIC MODEL

We first review Geng et al.’s result3 on the optimality of TIN
for the K user interference network with one sub-channel, i.e.,
M = 1. The sub-channel index superscript is omitted in this
section for compactness.

Theorem 1 ([6, Th. 1]): In a K user interference net-
work, where the channel strength level from Transmitter i
to Receiver j is equal to α j i , ∀i, j ∈ IK , if the following
condition is satisfied

αii ≥ max
j : j �=i

{α j i} + max
k:k �=i

{αik}, ∀i, j, k ∈ IK , (27)

then power control and treating interference as noise achieve
the entire GDoF region. Moreover, the GDoF region is
given by

DTIN =
{
(d1, d2, · · · , dK ) ∈ R

K+ :
∑

Vk∈π

dk ≤
∑

Vk∈π

αkk − w(π), ∀π ∈ [�]
}

(28)

Remark: Henceforth, we refer to (27) as the TIN optimality
condition for Gaussian networks. If a network (sub-channel)
satisfies the TIN optimality condition (27), the network
(sub-channel) will be referred to as a TIN optimal network
(sub-channel).

Note that each of the bounds defining the GDoF region
represents the sum-GDoF of a cyclic interference sub-network
contained in the K user fully connected interference network.
A cyclic sub-network is comprised of a cyclically ordered
subset of users where each user causes interference only to
the preceding user and suffers interference only from the
following user in the cycle. As shown by Zhou and Yu [25]
and translated into the GDoF setting by Geng et al. in [6],
the sum-GDoF of a cyclic interference sub-network is simply
the sum of all desired link strengths minus the sum of all
cross link strengths. For example, the cycle 2 → 4 → 1 →
3 → 2 corresponds to a 4 user cyclic interference sub-network
with 4 desired and 4 interfering links, and its sum-GDoF
are characterized by the outer bound d2 + d4 + d1 + d3 ≤
α22 + α44 + α11 + α33 − α24 − α41 − α13 − α32. Note that
because a subset of users of cardinality L has (L −1)! distinct
cycles, there are a total of (L − 1)! sum-GDoF bounds for
each cardinality-L subset of users, out of which all but the
tightest bound are redundant. Moreover, excluding the empty
set and the singletons, there are 2K − K − 1 subsets of users
that give rise to cycle bounds, some of which may again
be redundant. Nevertheless, when considered together, the
cycle bounds describe the precise GDoF region of the fully
connected network whenever condition (27) is satisfied. This
remarkable aspect of Geng et al.’s result greatly simplifies the
proof of the outer bound of the GDoF region, because only
cyclic interference networks need to be considered.

Following similar arguments as Geng et al., it is not
difficult to obtain a corresponding TIN optimality result for
the ADT deterministic model.

3Complex channel model is considered in [6], but the results therein are
easily extended to real channel setting. Here we state the result for real channel
model.
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Fig. 2. The TIN optimality condition for a K user fully connected ADT
deterministic interference network. Signal levels that cause interference do not
suffer interference, and those that suffer interference cause no interference.
Note that each user i has nii − max j : j �=i{n j i } − maxk:k �=i {nik } signal levels
that neither cause interference, nor suffer interference. To avoid cluttering the
figure, not all channels are shown.

Theorem 2: In a K user ADT deterministic interference
network, where the channel strength level from Transmitter i
to Receiver j is equal to n j i , ∀i, j ∈ IK , if the following
condition is satisfied

nii ≥ max
j : j �=i

{n j i } + max
k:k �=i

{nik}, ∀i, j, k ∈ IK , (29)

then power control and treating interference as noise can
achieve the whole capacity region. Moreover, the capacity
region is given by

CTIN =
{
(R1, R2, · · · , RK ) ∈ R

K+ :
∑

Vk∈π

Rk ≤
∑

Vk∈π

nkk − w(π), ∀π ∈ [�]
}

(30)

Remark: Following a similar convention as the Gaussian
case, we refer to (29) as the TIN optimality condition for the
ADT deterministic model. A network (sub-channel) is called
TIN optimal if the TIN optimality condition (29) is satisfied
over the network (sub-channel).

Note the translation from Theorem 1 for the Gaussian
case to Theorem III for the ADT deterministic model is
remarkably direct. The capacity region of the TIN optimal
ADT deterministic interference network is exactly the scaled
version of the GDoF region of the corresponding TIN optimal
Gaussian interference network. The ADT deterministic model
also reveals an interesting interpretation of the TIN optimal-
ity condition (29), and by association (27). As highlighted
in Figure 2, the TIN optimality condition is equivalent to the
following statements.

• Signal levels that suffer interference at their desired
receiver, do not cause interference to others.

Fig. 3. A cyclic ADT deterministic interference network that satisfies (29).

• Signal levels that cause interference to others, do not
suffer interference at their desired receiver.

While we omit the proof details for Theorem III because
they parallel those for Theorem 1 presented by Geng et al. in
[6], we will briefly present a simple alternative proof for the
cycle bounds due to their central importance to this work.

Consider the cyclic interference sub-network comprised of
cyclically ordered user indices π = {i1, . . . , iL}, obtained
by eliminating all remaining links, users and messages. The
user indexing subscript is interpreted in a circular wrap-
around manner, modulo L, e.g., iL is the same as i0. To each
receiver il , let us give all messages except Wil , Wil+1 , i.e.,
{W1, W2, . . . , WK }/{Wil , Wil+1 }, denoted as W c

il ,il+1
, through

a genie. From Fano’s inequality, we have

n(Ril − ε)

≤ I (Wil ; Y n
il |W c

il ,il+1
)

= H (Y n
il |W c

il ,il+1
) − H (Y n

il |W c
il ,il+1

, Wil )

= H (�2nil il Xn
il � ⊕ �2nil il+1 Xn

il+1
�) − H (�2nil il+1 Xn

il+1
�)

(a)= H (�2nil−1 il Xn
il �, �2nil il Xn

il � ⊕ �2nil il+1 Xn
il+1

�)
− H (�2nil il+1 Xn

il+1
�)

(b)= H (�2nil−1 il Xn
il
�)

+ H (�2nil il Xn
il � ⊕ �2nil il+1 Xn

il+1
�|�2nil−1 il Xn

il �)
− H (�2nil il+1 Xn

il+1
�)

(c)≤ n(nil il − nil−1 il ) + H (�2nil−1 il Xn
il �) − H (�2nil il+1 Xn

il+1
�)

where (a) follows from the assumption nil il ≥ nil−1 il + nil il+1

such that the interference-causing bits �2nil−1 il Xn
il
� (from

Transmitter il to Receiver il−1) suffer no interference at the
desired receiver il , i.e., �2nil−1 il Xn

il
� is separable by itself inside

�2nil il Xn
il
�⊕�2nil il+1 Xn

il+1
�, (b) follows from the chain rule of

joint entropy, and (c) is due to the fact that the entropy of a
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variable (the second term in (b)) is no more than the number
of bits therein. See Figure 3 for a pictorial illustration.

Adding the above inequalities for l ∈ {1, 2, . . . , L}, we find
that the entropy terms cancel out leaving us with

L∑

l=1

n(Ril − ε) ≤
L∑

l=1

n(nil il − nil−1 il ) = n
L∑

l=1

nil il − nw(π)

from which we arrive at the desired bound by normalizing
by n on both sides of the inequality and letting n approach
infinity.

Remark: Henceforth, since we are only interested in net-
works that satisfy the TIN optimality conditions, (29) in the
deterministic setting and (27) in the Gaussian setting, we will
assume throughout that these conditions are satisfied.

IV. SUM-CAPACITY (SUM-GDoF)

We now switch our attention from capacity region to sum-
capacity in the deterministic case, and from GDoF region
to sum-GDoF in the Gaussian case. To avoid repetition, we
will focus the discussion in this section to the Gaussian
setting, i.e., GDoF region, sum-GDoF, channel strengths αi j ,
etc., but all arguments made in this section also apply to
the deterministic setting, with capacity region, sum-capacity,
channel strengths ni j .

Since we already have the GDoF region characterization in
Theorem 1, the sum-GDoF characterization may appear trivial.
However, there are certain interesting aspects of this problem
that we will highlight in this section, which will be especially
useful when we move on to parallel interference networks in
subsequent sections.

Consider, for example, the GDoF region of the
TIN optimal 3 user interference network, which is the
set of tuples (d1, d2, d3) ∈ R

3+, defined by the following
constraints.

d1 ≤ α11 − w({1}) = α11 (31)

d2 ≤ α22 − w({2}) = α22 (32)

d3 ≤ α33 − w({3}) = α33 (33)

d1 + d2 ≤ α11 + α22 − w({1, 2})
= α11 + α22 − α12 − α21 (34)

d2 + d3 ≤ α22 + α33 − w({2, 3})
= α22 + α33 − α23 − α32 (35)

d3 + d1 ≤ α33 + α11 − w({3, 1})
= α11 + α33 − α31 − α13 (36)

d1 + d2 + d3 ≤ α11 + α22 + α33 − w({1, 2, 3})
= α11 + α22 + α33 − α12 − α23 − α31

(37)

d1 + d2 + d3 ≤ α11 + α22 + α33 − w({3, 2, 1})
= α11 + α22 + α33 − α21 − α32 − α13

(38)

The last two bounds are already sum-GDoF bounds. How-
ever, remarkably, neither of these may be tight. This is
because, unlike similar forms that are commonly encountered
e.g., the capacity region of the multiple access channel, this

region is not polymatroidal. It is easy to see that a direct
sum of (31) and (35), for example, could provide a tighter
sum-GDoF bound. Incidentally, this would be a cyclic partition
bound for the cyclic partition � = {{1}, {2, 3}}. But, how
about something a bit more involved, such as 1/2 times the
sum of (34), (35), (36), which would also produce a sum-rate
bound (but not a cyclic partition bound)? Let us consider this
bound.

(34) + (35) + (36)

2
⇒ d1 + d2 + d3 ≤

3∑

k=1

αkk

− w({1, 2}) + w({2, 3}) + w({3, 1})
2

(39)

Interestingly, this is the same bound as 1/2 times the sum
of (37) and (38). Therefore, it can never be tighter than
the tightest of (37) and (38). Therefore, even though the
GDoF region is not polymatroidal, the special structure of
the cycle bounds imparts some special properties. This is
what we will explore in this section. In fact, these examples
are representative of our general result. We will show that
for a TIN optimal K user interference network, the sum-
GDoF value is always given by a cyclic partition bound.
This is the main result of this section, and we state it in the
following theorem.

Theorem 3: For TIN optimal Gaussian interference net-
works

D� = D�∗
� (40)

where D�∗
� is the best cyclic partition bound.

The proof is presented in Section VI-A.
Since the same proof also works for the deterministic

setting, let us conclude this section by stating the deterministic
counterpart of Theorem 3 as the following corollary.

Corollary 1: For TIN optimal ADT deterministic interfer-
ence networks

C� = C�∗
� (41)

where C�∗
� is the best cyclic partition bound.

V. OPTIMALITY OF TIN FOR PARALLEL

INTERFERENCE NETWORKS

As we move from the single sub-channel case to multiple
parallel sub-channels, the outer bound proof becomes signifi-
cantly more challenging. Whereas formerly it was sufficient to
only consider each cyclic sub-network obtained by eliminating
all other users, messages and links, this is no longer possible
for parallel interference networks. For example, a different
cycle may be active in each sub-channel, however one cannot
eliminate a different set of links for each sub-channel. As an
outer bounding argument, eliminating a link is justified by
including a genie that takes all the messages originating at
the transmitter of that link, and provides them to the receiver
of that link, so that the receiver can reconstruct and subtract
the transmitted symbols from its received signal. However, in
a parallel channels setting, the message information provided
by the genie allows a receiver to reconstruct and subtract the



SUN AND JAFAR: ON THE OPTIMALITY OF TIN 1917

Fig. 4. A 3 user ADT deterministic interference network with 3 sub-channels, where each sub-channel is TIN optimal. Under the optimal cyclic partitions

�[1]∗ = {{1, 2, 3}},�[2]∗ = {{3, 2, 1}},�[3]∗ = {{1}, {2, 3}}, the participating input and output levels, X [m]
i,u , Y [m]

i,u , i, m ∈ {1, 2, 3} are labeled and the mapping

from (X [m]
1,u , X [m]

2,u , X [m]
3,u ) to (Y [m]

1,u , Y [m]
2,u , Y [m]

3,u ) is easily verified to be invertible for each sub-channel.

transmitted symbols from a transmitter on all sub-channels.
Thus, if a link from Transmitter i to Receiver j is removed
for one sub-channel, it must be removed for all sub-channels.
This makes it impossible to reduce a fully connected parallel
interference network directly into different cyclic sub-networks
over each sub-channel. As such, for parallel interference
networks, the reduction to cyclic networks is in general no
longer an option, and the entire network must be directly
considered for the outer bound. Given this added source of
difficulty, the relative simplicity of the ADT deterministic
model is tremendously useful. Thus, we start to explore paral-
lel interference networks with the ADT deterministic model.

A. ADT Deterministic Model

While we deal with multiple parallel sub-channels in this
section, recall that we assume throughout that each sub-
channel satisfies condition (29). In other words, by itself,
each sub-channel is TIN optimal. What we wish to explore is
whether collectively such parallel channels remain separable
and therefore TIN optimal. Let us start with a few relevant
definitions.

For the definitions that have been introduced for the single
sub-channel case, we will add a superscript to indicate the sub-
channel index, for example cyclic partition �[m], cyclic pre-
decessor �[m](k), and cyclic partition bound C�[m]

� . Note that
many cyclic partitions are possible for each sub-channel, and
a different cyclic partition may be used for each sub-channel.

1) Participating Input and Output Levels (X [m]
i,u , Y [m]

k,u ): For

the m-th sub-channel, given a cyclic partition �[m], we define
participating input levels

X [m]
i,u � 0.X [m]

i,(1), . . . , X [m]
i,
(

n[m]
�[m](i)i

)

to be the bits that are sent from Transmitter i and observed
at its predecessor Receiver �[m](i). The received signal lev-
els resulting from all interfering X [m]

i,u are defined as the

participating output levels

Y [m]
k,u �

K∑

i=1,i �=k

2n[m]
ki X [m]

i,u

where the summation is bit-wise modulo two. We can also
write Xi,u in a vector form as

X [m]
i,u = [X [m]

i,(1), . . . , X [m]
i,
(

n[m]
�[m](i)i

)].

Similar vector notation is used for Y [m]
k,u when the vector form

is clearer.
2) Invertibility: The m-th sub-channel is said to be invert-

ible if the mapping from X[m]
u � (X [m]

1,u , . . . , X [m]
K ,u) to

Y[m]
u � (Y [m]

1,u , . . . , Y [m]
K ,u) is invertible for an optimal cyclic

partition �[m]∗. Mathematically, we require

H (X[m]
u |Y[m]

u ) = 0. (42)

The significance of these definitions will become clear with
the statement of the result, illustrative examples, and finally
from the details of the proof. Perhaps the most intriguing is
the invertibility property. At this point it suffices to say that it
is a “mild” property and is easily testable for a given problem
instance. The mildness of this property will be explicitly
addressed in Section V-C. With these definitions, we are now
ready to state the main result of this section in the following
theorem.

Theorem 4: In a K user ADT deterministic interference
network with M sub-channels, if each sub-channel is indi-
vidually TIN optimal and invertible, then even collectively for
all the sub-channels of the parallel interference network, the
sum-capacity is achieved by a separate TIN solution over each
sub-channel.

The proof of Theorem 4 is deferred to Section VI-D. At this
point it is important to understand the statement of the theorem
and its limitations through illustrative examples.

Example 1: Consider the K = 3 user ADT deterministic
interference network with M = 3 parallel sub-channels,
shown in Figure 4. It is readily verified that each sub-channel
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Fig. 5. [Open Problem] A 3 user ADT deterministic interference network with 3 sub-channels, where each sub-channel is TIN optimal. For
the optimal cyclic partitions �[1]∗ = {{1, 2, 3}},�[2]∗ = {{3, 2, 1}} and �[3]∗ = {{1, 2, 3}}, participating inputs and outputs X [m]

i,u , Y [m]
i,u , i,

m ∈ {1, 2, 3} are labeled. In this case, the mapping from (X [3]
1,u, X [3]

2,u , X [3]
3,u) to (Y [3]

1,u, Y [3]
2,u, Y [3]

3,u) is not invertible. We do not know the sum

capacity of this parallel network and in particular, whether separate TIN is optimal.

by itself is TIN optimal. For example, consider user 2 in
sub-channel 1. The desired signal strength for this user
is n[1]

22 = 3, the strongest interference caused by this user

is n[1]
12 = 2 and the strongest interference suffered by this

user is n[1]
23 = 1. Thus, the desired signal strength is no

less than the sum of the signal strengths of the strongest
interference caused and the strongest interference received by
this user. The same is true for each of the 3 users in each of the
3 parallel sub-channels. Therefore, according to Theorem III,
TIN is optimal for each sub-channel by itself. For the 3 sub-
channels, consider the optimal cyclic partitions

�[1]∗ ={{1, 2, 3}}, �[2]∗ ={{3, 2, 1}}, �[3]∗ ={{1}, {2, 3}}.
The weights of the participating edges are

w(�[1]∗) = w({e[1]
12 , e[1]

23 , e[1]
31 }) = n[1]

12 + n[1]
23 + n[1]

31 = 3 (43)

w(�[2]∗) = w({e[2]
32 , e[2]

21 , e[2]
13 }) = n[2]

32 + n[2]
21 + n[2]

13 = 3 (44)

w(�[3]∗) = w({e[3]
11 , e[3]

23 , e[3]
32 }) = 0+ n[3]

23 + n[3]
32 = 3 (45)

Then according to Corollary 1, the sum-capacity values for
each sub-channel by itself are given by

C[m]
� =

3∑

i=1

n[m]
ii − w(�[m]∗) = 9 − 3 = 6, m = 1, 2, 3.

What we wish to know is if TIN continues to be the sum-
capacity optimal scheme for all 3 sub-channels collectively.

Let us check for invertibility for each sub-channel.
According to the definitions, the participating inputs for
sub-channel 1 are X [1]

1,u = [X [1]
1,(1), . . . , X [1]

1,(n[1]
31 )

] =
φ, X [1]

2,u = [X [1]
2,(1), . . . , X [1]

2,(n[1]
12 )

] = [X [1]
2,(1), X [1]

2,(2)], X [1]
3,u =

[X [1]
3,(1), . . . , X [1]

3,(n[1]
23 )

] = [X [1]
3,(1)] and the participating outputs

for sub-channel 1 are Y [1]
1,u = [X [1]

2,(1) ⊕ X [1]
3,(1), X [1]

2,(2)], Y [1]
2,u =

[X [1]
3,(1)] and Y [1]

3,u = φ. It is now trivial to verify that from

(Y [1]
1,u, Y [1]

2,u, Y [1]
3,u), we can recover (X [1]

1,u, X [1]
2,u, X [1]

3,u). There-

fore, sub-channel 1 is invertible. Similarly, the participating

inputs and outputs for sub-channels 2 and 3 are shown in
Figure 4 and it is easily verified that sub-channels 2 and 3
are invertible as well. Therefore, since all the conditions of
Theorem 4 are satisfied, we conclude that separate TIN is sum
capacity optimal for this parallel interference network, and
therefore, the sum-capacity of the 3 sub-channels collectively,
is the sum of their individual sum-capacities. In other words,
the sum-capacity is 6+6+6 = 18 and is achieved by separate
TIN on each sub-channel.

To also expose the limitation of Theorem 4, the next
example illustrates a relatively rare situation where invertibility
is not satisfied, and so Theorem 4 cannot be applied.

Example 2: Consider the 3 user ADT deterministic inter-
ference network with 3 sub-channels, as shown in Figure 5,
with the optimal cyclic partitions �[1]∗ = {{1, 2, 3}},
�[2]∗ = {{3, 2, 1}} and �[3]∗ = {{1, 2, 3}} for the first, second
and third sub-channel, respectively. It is easy to verify that all
3 sub-channels are TIN optimal individually. However, with
the participating inputs and outputs X [m]

i,u , Y [m]
i,u shown in the

figure, it is also easy to see while the first two sub-channels
are invertible, the third sub-channel is not.

Note that when the network only has one sub-channel,
i.e., M = 1, we can delete all the interfering links except the
participating interference links (ones in �[1]) without violating
the outer bound argument, so that the invertibility becomes
trivially true. For example, consider a network that consists
of sub-channel 3 in Figure 5. Note that the network only has
one sub-channel. When it is fully connected, the sub-channel
is not invertible for cyclic partition {{1, 2, 3}}. However, if we
delete the links so such the topology of sub-channel 3 becomes
the same as the topology of sub-channel 1 in Figure 5, it is
easily seen that the sub-channel is now invertible for cyclic
partition {{1, 2, 3}}. As discussed above, we can only apply
the deleting links argument when the network only has one
sub-channel. Thus, Theorem 4 recovers the outer bound result
of Theorem III.

There are many interesting classes of networks where
invertibility is shown to hold easily. For example, when
K = 3, then invertibility is fully characterized in Section V-C.
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Another interesting class is the class of cyclic interference
networks where each sub-channel contains only one cycle
(different sub-channels may have different cycles). These and
other interesting cases will be discussed in Section V-C.

B. GDoF

We now explore the extension to the Gaussian setting and
show that the insights from the deterministic framework go
through. We obtain the corresponding result on the sum-
GDoF optimality of TIN for parallel Gaussian interference
networks subject to similar invertibility property. X [m]

i,u , Y [m]
k,u

are defined similar to the deterministic case. For a given
cyclic partition �[m], participating input bit levels X [m]

i,u
are made up of the bit levels below the decimal point,
sent from Transmitter i and heard by Receiver �[m](i),
i.e., X [m]

i,u = sign(X [m]
i ) × 0.X [m]

i,(1), . . . , X [m]
i,
(

n[m]
�[m](i)i

), where

n[m]
ki = � 1

2α
[m]
ki log2 P�. Participating output levels Y [m]

k,u are

the resulting interference from X [m]
i,u plus additive Gaussian

noise, i.e., Y [m]
k,u = ∑K

i=1,i �=k h[m]
ki X [m]

i,u + Z [m]
k .

The invertibility property is a bit more delicate to
translate, because of the presence of noise, average power
constraints, and the focus on GDoF rather than exact capacity.
Given a cyclic partition, for the invertibility property in
the Gaussian case, it suffices to require the mapping from

X[m]
u � (X [m]

1,u , . . . , X [m]
K ,u) to Y[m]

u � (Y [m]
1,u , . . . , Y [m]

K ,u) to be
invertible within bounded noise distortion. Mathematically we
express the counterpart of (42) as

(Invertibility Property): H (X[m]
u |Y[m]

u ) = o(log(P)) (46)

As before, the m-th sub-channel is said to be invertible if
there exists an optimal cyclic partition �[m]∗ under which
invertibility is satisfied.

We have the following theorem.
Theorem 5: In a K user parallel Gaussian interference net-

work with M sub-channels, if each sub-channel is individually
both TIN optimal and invertible, then the sum-GDoF value
of the parallel Gaussian interference network is achieved by
separate TIN over each sub-channel.

The proof of Theorem 5 appears in Section VI-E.

C. Mildness of Invertibility Condition

The intuition behind the mildness of the invertibility con-
dition is analogous to the commonly encountered issue of
invertibility of channel matrices in wireless networks, i.e., the
property is satisfied everywhere except over an algebraic vari-
ety of lower dimension than the parameter space, and therefore
is increasingly likely to be true when the parameter space is
a large field. In particular, we expect invertibility to hold in
the Gaussian setting almost surely. In the deterministic setting
also, because the signal levels ni j are defined as quantized
versions of αi j log(P), with αi j drawn from a continuum of
real values, as the quality of the quantization improves (with
increasing P), the invertibility is increasingly likely to hold.

To strengthen this intuition, we take a closer look at the
invertibility condition in this section. We will go into details

mainly for the deterministic setting. For the Gaussian setting,
while the insights from deterministic setting are expected to
go through via the usual machinery of translating between
deterministic and Gaussian settings, as used in a number of
works [8], [12]–[14], [26], [27], an in-depth analysis appears to
be extremely cumbersome with little by way of new insights.
Hence we will restrict the discussion in the Gaussian setting
primarily to just an intuitive level.

1) ADT Deterministic Model:
a) 3 users: Let us start with the ADT deterministic model

for K = 3, with arbitrary M , where we explicitly characterize
the invertibility condition.

Lemma 1: For the m-th sub-channel of a 3 user ADT
deterministic interference network, if n[m]

12 + n[m]
23 + n[m]

31 �=
n[m]

21 + n[m]
32 + n[m]

13 , then sub-channel m is invertible under any
cyclic partition.

Proof: For any cyclic partition, consider the bi-partite graph
comprised of the participating input and output levels as the
two sets of vertices and the cross links between them as the
edges. According to Theorem 7, if this graph is acyclic then
invertibility must hold. Therefore, we only need to show that
when n[m]

12 + n[m]
23 + n[m]

31 �= n[m]
21 + n[m]

32 + n[m]
13 , the bipartite

graph is acyclic. Let us suppose the opposite, i.e., the graph
has a cycle. Since only cross links are considered, for the
3 user case, the cycle must must traverse all 3 users. The
6 edges along the way correspond to 6 interfering links with
strength n[m]

j i . The bit sent from Transmitter i to Receiver j

is shifted n[m]
j i places. Therefore as we traverse the 6 edges,

the net shift factor encountered is n[m]
12 + n[m]

23 + n[m]
31 − n[m]

21 −
n[m]

32 − n[m]
13 , which must equal zero for the cyclical path to

return to its origin. But this contradicts the assumption that

n[m]
12 + n[m]

23 + n[m]
31 �= n[m]

21 + n[m]
32 + n[m]

13 . This completes the
proof by contradiction.

Combining the result of Lemma 1 with the result of
Theorem 4, we have the explicit result for the 3 user parallel
ADT deterministic interference network.

Theorem 6: For the 3 user parallel ADT deterministic
interference network where each sub-channel is individually
TIN optimal, if each sub-channel also satisfies

n[m]
12 + n[m]

23 + n[m]
31 �= n[m]

21 + n[m]
32 + n[m]

13 , ∀m ∈ IM (47)

then the sum-capacity of the 3 user parallel ADT deterministic
interference network is achieved by a separate TIN solution
over each sub-channel.

b) Acyclic bipartite graph of cross channels between
participating levels (includes cyclic interference networks):
The following theorem presents a general result which was
also used in the proof of invertibility for the 3 user case.

Theorem 7: For each sub-channel of a K user parallel
ADT deterministic interference network, view the cross links
between the participating input and output levels of an optimal
cyclic partition as the edges of an undirected bipartite graph.
If this bipartite graph is acyclic, then the sub-channel is
invertible. If each sub-channel individually is TIN optimal,
then separate TIN over each sub-channel achieves the sum-
capacity of the K user parallel ADT deterministic interference
network.
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Fig. 6. (a) The acyclic bipartite graph of a sub-channel that satisfies the TIN
optimality condition and the tree created to invert the input bit levels. Note
that the graph is undirected, direction sign is added to highlight the order of
how the tree is created. (b) A more tree-centric view. Note that as the graph is
bipartite, the levels alternate between input and output. As participating edge
is used to go from input to output, there is only one edge from an input node
to an output node. The participating output level is the modulo sum of all its
connected input nodes. The leaves are output bits and are only connected to
one input node from above. As such, an iterative inverting from bottom to
top is feasible.

Before proceeding to the proof details, we first give an
example. Consider a sub-channel of a 4 user ADT determin-
istic interference network, whose acyclic bipartite graph is
shown in Figure 6. The sub-channel is TIN optimal. Consider
the optimal cyclic partition �∗ = {{1, 2, 3, 4}} with participat-
ing edges {e12, e23, e34, e41}. Let us show that it is invertible.
Start from input bit X2,(1) and create the tree as shown in
Figure 6. Inverting from the leaves would recover all input
levels.

Proof: Since the optimality of separate TIN is already
established subject to invertibility, all that remains is to show
that invertibility holds. We will prove that in the absence of
cycles in the bi-partite graph described above, one can always
start from any participating input bit level as the root and build
a tree with participating output bit levels as leaves such that we
can proceed to the end of the tree (leaves) and start inverting
sequentially from participating output levels to recover all
participating input levels along the tree. The construction is
as follows. Start at any participating input bit level as the
root. When we leave the input bit level for an output bit level,
always choose a participating edge. Note that for each input
bit level, there is only one participating edge. Also, there is
only one participating edge for each output bit level. After
reaching the output bit level, if it is connected nowhere else
then this is the leaf and we are done. If it is connected to other
input bit levels, the edges must all be non-participating edges
as the only participating edge has been used to arrive at the
output bit. Again, for each input level reached, choose the only
participating edge to reach the next output bit level. Because
the graph has no cycles, the process must end eventually.
We cannot end at an input level, because every input bit level
must have a participating edge going out. Therefore we must
end at output bit levels (leaves). Then we can traverse this
tree back and find the original input bit level and all input bits
along the way.

Fig. 7. (a) A sub-channel that satisfies the TIN optimality condition
and dominant interference condition (48) for the dominant cyclic partition
�∗ = {{1, 2, 3, 4}}. A cycle is highlighted in red. (b) The cyclic bipartite
graph and the tree created to invert X2,(3). Note that the graph is undirected,
direction sign is added to highlight the order of how the tree is created.

We mention that although Theorem 7 establishes that the
acyclic condition is sufficient for a sub-channel to be invert-
ible, it is not necessary. Such examples are not uncommon,
e.g., one appears in Figure 7 in this paper.

Next we consider another interesting subclass of the general
K user ADT deterministic interference network, i.e., the cyclic
interference networks where each sub-channel contains only
one cycle (different sub-channels may have different cycles).
As the bi-partite graph is trivially acyclic, invertibility holds.
Combined with Theorem 4, we settle the optimality of separate
TIN for cyclic interference networks. The result is stated in
the following corollary.

Corollary 2: For a K user parallel ADT deterministic
interference network where each sub-channel is individually
TIN optimal, if each sub-channel is also a cyclic interfer-
ence network, then the sum-capacity of the K user parallel
ADT deterministic interference network is achieved by a
separate TIN solution over each sub-channel.

Remark: Note that a cyclic interference network has an
acyclic bi-partite graph as defined in Theorem 7. This is
because in a cyclic network each receiver receives interfer-
ence from only one transmitter, so that each output level
can only be connected to one input level in the bi-partite
graph.

c) Networks with dominant partitions: Our study of
invertibility can be naturally extended to the following
situation. For sub-channel m, consider an optimal cyclic
partition �[m]∗. If the interference caused by each Transmitter
k ∈ IK to its cyclic predecessor �[m]∗(k) is strictly the
strongest, i.e., n[m]

�[m]∗(k)k
> n[m]

j k ,∀ j /∈ {k,�[m]∗(k)}, we say

that �[m]∗ is a dominant cyclic partition and sub-channel m
satisfies the dominant interference condition. The following
theorem considers the networks where each sub-channel sat-
isfies the dominant interference condition.

Theorem 8: For a K user parallel ADT deterministic
interference network where the TIN optimality condition is
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satisfied in each sub-channel, if each sub-channel also satisfies

n[m]
�[m]∗(k)k

> n[m]
j k , ∀ j, k ∈ IK , j /∈ {k,�[m]∗(k)}, m ∈ IM

(48)

then the sum-capacity of the K user parallel ADT determinis-
tic interference network is achieved by a separate TIN solution
over each sub-channel.

Proof: We only need to prove that when each sub-channel
satisfies the dominant interference condition (48), invertibility
is implied. Although in this case, the bipartite graph may
contain cycles, we are still able to construct trees in a way
that no cycle would be encountered, such that inverting from
the output bit leaves can recover all input levels. Similar to
the construction given in Theorem 7, for any input bit level,
we leave it through a participating edge and for any output bit
level, we leave it through a non-participating edge. When this
rule is used in transversing the graph, no cycle can be created.
To see this we assume the opposite. If a cycle exists when
we build the tree, then each input bit node is connected to
a participating edge for leaving and a non-participating edge
for coming back. As this is a cycle, the net scaling factor
encountered must be 0, which means the sum of the strengths
of all leaving edges must equal that of all coming edges.
This is a contradiction as from the dominant cyclic partition
condition, for each input bit node, the strength of the leaving
edge is strictly larger than that of the coming edge. So we
are guaranteed to end up with a desired tree. Repeating this
process would complete the proof.

We illustrate the process with an example. Consider a
sub-channel of a 4 user ADT deterministic interference net-
work, shown in Figure 7. The sub-channel is TIN optimal,
as for each user, signal levels that cause interference do
not suffer interference, and those that suffer interference
cause no interference. Consider the optimal cyclic partition
�∗ = {{1, 2, 3, 4}} with participating edges {e12, e23, e34, e41}.
It is easy to verify that the participating link from each
transmitter is the strongest. For example, for Transmitter 2,
n12 = 3 > max(n32, n42) = max(2, 1) = 2. Thus the
sub-channel also satisfies the dominant interference condition.
Then we prove it is invertible. Toward this end, consider the
input bit X2,(3). Choose the participating edge to connect
to the cyclic predecessor Receiver 1. As Receiver 1 is not
an end yet, we will pass through all of its non-participating
edges to come to input nodes (see Figure 7). After arriving at
Transmitters 3 and 4, again, follow the participating edges to
cyclic predecessor Receiver 2 and 3, respectively. Receiver 2 is
the end and from Receiver 3, we go to Transmitter 2 along the
non-participating edge. Finally, pass through the participating
edge to Receiver 1 and the end comes. It is easy to see we
can invert sequentially from the output end nodes all the way
to recover the desired input bit X2,(3) and the input bits along.
All the other input bits can be recovered following similar
procedures.

2) Gaussian Setting: We now proceed to the Gaussian
setting. Starting with the 3 user case, we provide an intuitive
discussion on why invertibility holds here almost surely.

a) 3 users: If the optimal cyclic partition �∗ has
two cycles, we assume �∗ = {{1}, {2, 3}}, without loss

of generality. Then X1,u = φ, Y2,u = h23 X3,u + n2, Y3,u =
h32 X2,u + n3. The participating inputs are trivially invertible
from the outputs within bounded variance noise distortion
here, simply by normalizing by the channel realization.

If �∗ is a single cycle with all 3 users,
we assume �∗ = {{1, 2, 3}}. Then X1,u =
sign(X1) × 0.X1,(1) . . . X1,(n31), X2,u = sign(X2) ×
0.X2,(1) . . . X2,(n12), X3,u = sign(X3) × 0.X3,(1) . . . X3,(n23).
We define � � n12 + n23 + n31 − n21 − n32 − n13.
As �∗ = {{1, 2, 3}} is the optimal cyclic partition, which
produces the tightest outer bound, � is larger than 0 almost
surely for appropriately large P . Instead of finding a single
bit as in the ADT deterministic model, we consider a
chunk with � bits, e.g., X2,[1] = [X2,(1) . . . X2,(min(�,n12))].
Operating in units of � bits, the invertibility process parallels
the ADT deterministic model. The effect of additive noise
terms becomes vanishingly small at the higher signal levels
(thus limited to only an o(log P) impact, see [28] for this
argument), the carry overs across chunks are vanishingly
small relative to the size of the chunks, and their number also
does not scale with P because the number of chunks remains
constant. Thus, the Gaussian setting parallels the deterministic
setting within o(log P). Note that as the condition for non-
invertibility in the ADT deterministic model is approached,
i.e., as α12 + α23 + α31 − α21 − α32 − α13 approaches zero,
the size of the chunks becomes smaller, and the overhead
of carry over bits increases proportionately. However, except
when it is exactly zero (the setting with infinite overhead),
the overhead does not scale with P , thus the GDoF, almost
surely, continue to mimic the deterministic setting.

b) Networks with dominant partitions:
Theorem 9: For a K user parallel Gaussian interference

network where the TIN optimality condition is satisfied in
each sub-channel, if each sub-channel also satisfies

α[m]
�[m]∗(k)k

> α[m]
j k , ∀ j, k ∈ IK , j /∈ {k,�[m]∗(k)}, m ∈ IM

(49)

then the sum-GDoF value of the K user parallel Gaussian
interference network is achieved by a separate TIN solution
over each sub-channel.

The proof is presented in Section VI-F.

D. GDoF Region for Parallel Networks

The GDoF region of a TIN optimal K user interference
network, as stated in Theorem 1, is comprised only of sum-
GDoF bounds for all subsets of users. For parallel TIN optimal
interference networks, our results characterize the tight sum-
GDoF bounds of any subset of users. So it is natural to wonder
if the set of all tight sum-GDoF bounds for all subsets of users
characterizes the entire GDoF region, and therefore settles the
optimality of TIN for the entire GDoF region in the parallel
setting. In this section, we show through a counter-example
that this is not the case. The following theorem states the
result.

Theorem 10: For the parallel K > 2 user Gaussian inter-
ference network with m > 1 sub-channels, each of which is
individually TIN optimal and invertible, the region described
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Fig. 8. A K = 3 user Gaussian interference network with 2 sub-channels. The
channel strength level is indicated for each link. Each sub-channel satisfies
the TIN optimal condition and dominant interference condition.

by the tightest sum-GDoF bounds of all subsets of users, is
in general not the same as the region achievable by separate
TIN over each sub-channel.

Remark: Note that if either K = 2 or m = 1, then the two
regions are the same. When K > 2 and m > 1, even though
the regions are not the same, the sum-GDoF values are indeed
the same, as we have shown in Theorem 5. Theorem 10 also
applies to the ADT deterministic model. This is readily seen
because the counter-example presented below extends to the
deterministic setting by choosing integer values n[m]

i j = 10α[m]
i j ,

∀i, j ∈ {1, 2, 3}, m ∈ {1, 2}, ε = 0.1.
Proof: Consider a K = 3 user Gaussian interference

network with M = 2 sub-channels, as shown in Figure 8. It is
easily seen that both sub-channels satisfy the TIN optimality
condition and the dominant interference condition, for all sub-
sets of users. Therefore, Theorem 9 establishes that the sum-
GDoF value of all subsets of users in this parallel Gaussian
interference network is achieved by separate TIN over each
sub-channel. Incidentally, the sum-GDoF value for all 3 users
is 3, achieved by the GDoF tuple (d1, d2, d3) = (1, 1, 1)
where every user gets 0.5 GDoF over each sub-channel by
transmitting at full power and each receiver treats interference
as noise.

We now view each TIN optimal sub-channel by itself.
The GDoF region of the first sub-channel by itself is the
set of tuples (d [1]

1 , d [1]
2 , d [1]

3 ) ∈ R
3+ defined by the following

constraints.

d [1]
i ≤ 1, ∀i ∈ {1, 2, 3} (50)

d [1]
i + d [1]

j ≤ 1.5, ∀i, j ∈ {1, 2, 3}, i �= j (51)

d [1]
1 + d [1]

2 + d [1]
3 ≤ 1.5 (52)

Similarly, the individual GDoF region for the second sub-
channel is

d [2]
i ≤ 1, ∀i ∈ {1, 2, 3} (53)

d [2]
i + d [2]

j ≤ 1 + ε, ∀i, j ∈ {1, 2, 3}, i �= j (54)

d [2]
1 + d [2]

2 + d [2]
3 ≤ 1.5 (55)

Considering all sub-channels together, the sum-GDoF
bounds for the parallel interference network (each of which
is tight by itself, as proved in Theorem 5) are the following.

di ≤ 1 + 1 = 2, ∀i ∈ {1, 2, 3} (56)

di + d j ≤ 1.5 + 1 + ε = 2.5 + ε,

∀i, j ∈ {1, 2, 3}, i �= j (57)

d1 + d2 + d3 ≤ 1.5 + 1.5 = 3 (58)

Now, consider the GDoF tuple (d1, d2, d3) = (2, 0.5, 0.5)
which is inside the region described by (56)-(58). We prove
this tuple is not achievable by separate TIN. In other words,
we show that there does not exist a valid (d [1]

1 , d [1]
2 , d [1]

3 ) and a

valid (d [2]
1 , d [2]

2 , d [2]
3 ), such that (d [1]

1 +d [2]
1 , d [1]

2 +d [2]
2 , d [1]

3 +
d [2]

3 ) = (2, 0.5, 0.5). This is shown as follows.
In order to have d [1]

1 + d [2]
1 = 2, we must have

d [1]
1 = d [2]

1 = 1. Given d [2]
1 = 1, from (54), we must have

d [2]
2 ≤ ε and d [2]

3 ≤ ε. Since d [2]
2 ≤ ε, then, in order to

have d [1]
2 + d [2]

2 = 0.5, we must have d [1]
2 ≥ 0.5 − ε. Since

d [1]
1 = 1, d [1]

2 ≥ 0.5 − ε and d [1]
1 + d [1]

2 + d [1]
3 ≤ 1.5, we must

have d [1]
3 ≤ ε. Now, since d [1]

3 ≤ ε and d [2]
3 ≤ ε, we must

have d [1]
3 + d [2]

3 ≤ 2ε. And since ε > 0 can be arbitrarily
small, it contradicts the requirement that d [1]

3 + d [2]
3 = 0.5,

thus completing the proof by counter-example.
Therefore, for parallel interference networks (deterministic

and Gaussian), where each sub-channel is individually TIN
optimal and invertible, either the separate TIN achievable
region is not tight or we need more than sum-rate bounds.
In light of this observation, the optimality of separate TIN for
sum-GDoF is especially remarkable.

Despite the fact that the separate TIN achievable region
does not match the region described by the sum-GDoF bounds
of all subsets of users in general, the two coincide when
the individual GDoF region of each sub-channel by itself is
polymatroidal. We state this result in the following theorem.

Theorem 11: For the parallel K > 2 user Gaussian inter-
ference network with m > 1 sub-channels, each of which
is individually TIN optimal and invertible, if the individ-
ual GDoF region of each sub-channel by itself is polyma-
troidal, then the whole GDoF region of the parallel Gaussian
interference network is achieved by separate TIN over each
sub-channel.

Proof: The separate TIN achievable region is the
Minkowski sum of the individual TIN region of each sub-
channel. As each sub-channel is TIN optimal, the TIN region
of each sub-channel is also the GDoF region of each sub-
channel by itself. If the individual GDoF region of each sub-
channel is a polymatroid, then their Minkowski sum is also a
polymatroid and moreover, the linear inequalities that describe
the Minkowski sum are simply the direct sums of the corre-
sponding linear inequalities that describe the individual GDoF
region of each sub-channel [29, Th. 3]. As the individual TIN
region of each sub-channel is described only by sum-GDoF
inequalities, the Minkowski sum is also described only by
sum-GDoF inequalites. As each sub-channel is individually
invertible, by Theorem 5, these sum-GDoF inequalities are
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valid outer bounds. Therefore the achievable region matches
the outer bound region and the proof is complete.

Remark: The same proof works for the deterministic setting,
such that the result extends to parallel ADT deterministic
networks.

For example, consider the 3 user Gaussian interference
network with 2 sub-channels, as shown in Figure 8. When
ε ≥ 0.25, the individual GDoF region ((50)-(55)) of each
sub-channel is polymatroidal, such that the whole GDoF
region of the parallel network is described only by sum-GDoF
bounds ((56) to (58)).

In general, when the individual TIN region of each sub-
channel by itself is not polymatroidal, then in order to describe
the separate TIN achievable region for parallel channels,
we further need weighted sum-GDoF inequalities, which are
strictly tighter than linear combinations of sum-GDoF inequal-
ities. Progress in this direction is reported in [30]. In order to
prove that the weighted sum-GDoF inequalities that describe
the Minkowski sum are valid outer bounds, [30] translates the
weighted sum-GDoF problem to the sum-GDoF problem of
replicated networks where replicas of existing users are added
as auxiliary users and the network connectivity is chosen to
ensure that any achievable scheme for the original network
also works in the new network and vice versa. If the invert-
ibility property is satisfied in the replicated network, then we
obtain the sum-GDoF value of the replicated network, which in
turn is equal to the weighted sum-GDoF value of the original
network. Due to the introduction of additional structure, the
understanding of invertibility conditions in replicated networks
remains a challenging topic for future work.

VI. PROOFS

A. Proof of Theorem 3

The sum-GDoF value is expressed by the linear program

(L P1) D� = max d1 + d2 + · · · + dK (59)

such that
∑

Vk∈π

dk ≤
∑

Vk∈π

αkk − w(π),

∀π ∈ [�] (60)

dk ≥ 0, ∀k ∈ IK (61)

In Section VI-B we show that the non-negativity
constraint (61) can be eliminated from L P1 without affecting
its value. This allows us to express the sum-GDoF in terms of
the dual LP as follows.

(L P2) D� = min
∑

π∈�

λπ

⎛

⎝
∑

Vk∈π

αkk − w(π)

⎞

⎠ (62)

such that
∑

π∈�

λπ 1(Vk ∈ π) = 1, ∀k ∈ IK

(63)

λπ ≥ 0, ∀π ∈ [�] (64)

where 1(·) is the indicator function that returns the values
1 or 0 when the argument to the function is true or false,
respectively. Note that (63) has an equality constraint instead
of ≥ because the non-negativity constraint (61) has been
eliminated from L P1.

Equivalently,

(L P3) D� =
K∑

k=1

αkk

− max
∑

π∈�

λπw(π) (65)

such that
∑

π∈�

λπ 1(Vk ∈ π) = 1, ∀k ∈IK

(66)

λπ ≥ 0, ∀π ∈ [�] (67)

Let us also define the integer constrained version of
this LP.

(I P4) D�∗
� =

K∑

k=1

αkk

− max
∑

π∈�

λπw(π) (68)

such that
∑

π∈�

λπ1(Vk ∈π) = 1, ∀k ∈IK

(69)

λπ ∈ {0, 1}, ∀π ∈ [�] (70)

Note that the integer program I P4 is simply the best cyclic
partition bound D�∗

� . This can be seen as binary λπ indicates
whether π belongs to the cyclic partition or not and (69) says
that each user is represented in exactly one cycle.

Since imposing an integer constraint cannot make the max
term larger, it is already clear that D�∗

� ≥ D� . This is
not surprising, as the best cyclic partition bound D�∗

� is by
definition an outer bound to the sum GDoF D� . To prove the
other direction (which is much harder), let us reformulate L P3
by changing the perspective from cycles to edges. Instead of
the multipliers λπ that are associated with cycles, we will use
multipliers ti j that are associated with edges. Define

ti j =
∑

π∈�

λπ 1(ei j ∈ π), ∀(i, j) ∈ IK × IK (71)

We now translate the constraints (66) on cycles to edges.
A cycle incident on vertex k must have exactly one incoming
and one outgoing edge. (66) says that the net contribution
from λπ for all cycles associated with any particular vertex
is 1. Clearly, then the net contribution for all edges leaving a
transmitter (vertex), or all edges entering a receiver (vertex),
must be unity.

K∑

j=1

ti j = 1, ∀i ∈ IK (72)

K∑

i=1

ti j = 1, ∀ j ∈ IK (73)

and the objective value is equivalently re-written as
∑

π∈�

λπw(π) =
∑

π∈�

λπ

∑

ei j ∈π

w(ei j ) (74)

=
∑

π∈�

λπ

∑

(i, j )∈IK ×IK

w(ei j )1(ei j ∈ π) (75)
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=
∑

(i, j )∈IK ×IK

w(ei j )
∑

π∈�

λπ 1(ei j ∈ π) (76)

=
∑

(i, j )∈IK ×IK

ti j w(ei j ) (77)

Substituting into L P3, this gives us the new LP

(L P5) D� ≥
K∑

k=1

αkk

+ min
∑

(i, j )∈IK ×IK

ci j ti j (78)

such that
K∑

j=1

ti j = 1, ∀i ∈ IK (79)

K∑

i=1

ti j = 1, ∀ j ∈ IK (80)

ti j ≥ 0, ∀(i, j) ∈ IK × IK

(81)

where we defined ci j = −w(ei j ), and the ≥ sign appears
because we dropped the constraint (71). In this standard
form, this LP is recognizable as the minimum weight per-
fect matching problem, and its solution is known to be
integral, i.e., the optimizing ti j must take values in {0, 1}
(See [31], [32, Th. 5]).

However, note that any integral solution to L P5 gives us a
valid cyclic partition bound, D�

� . Therefore we have,

D� ≥ D�
� (82)

≥ D�∗
� (83)

because a cyclic partition bound cannot be smaller than the
optimal cyclic partition bound. Since we have already shown
that D� ≤ D�∗

� , we must have D�∗
� = D� .

B. Redundancy of Non-Negativity Constraints in L P1

Before we prove the redundancy of non-negativity
constraints in L P1, let us first highlight the non-trivial nature
of the problem. Consider the following L P , which seems
similar to L P1.

max R1 + R2 + R3
such that R1 + R2 ≤ 10, R1 + R3 ≤ 10, R2 + R3 ≤ 30,

(R1, R2, R3) ∈ R
3+ (84)

It is easy to see that the max value is 20 achieved with
(R1, R2, R3) = (0, 10, 10). However, if we ignore the
non-negativity constraint (R1, R2, R3) ∈ R

3+, then we can
achieve a sum value of 25 with (R1, R2, R3) = (−5, 15, 15).
Thus, in this L P , which looks similar to L P1, one cannot
ignore the non-negativity constraints. So let us see why this
can be done in L P1.

Returning to sum-GDoF characterization in L P1, we already
assumed that the TIN optimality condition (27) is satisfied by
the network, but let us now further assume that it is satisfied
with strict inequality. We note that there is no loss of generality
here, because the case with equality immediately follows from

a continuity argument. Strict inequality in the TIN optimality
condition means the following is true.

αii > max
j : j �=i

{α j i} + max
k:k �=i

{αik}, ∀i, j, k ∈ IK (85)

We need the following lemmas.
Lemma 2: Given that (85) is satisfied, the sum-GDoF

must be achieved by a GDoF tuple (d1, d2, · · · , dK ) with
dk > 0,∀k ∈ IK .

Proof: Suppose that the sum-GDoF are achieved with a
GDoF tuple where di = 0. Replacing ni j with αi j in Figure 2,
it is evident that user i has αii −max j : j �=i{α j i }−maxk:k �=i {αik}
signal levels that neither cause interference, nor suffer interfer-
ence. Thus, user i can be assigned di = αii −max j : j �=i{α j i }−
maxk:k �=i {αik} > 0 GDoF without hurting any other user, thus
improving the sum-GDoF value. Since the sum-GDoF value
cannot be improved, we have a contradiction that completes
the proof. �

Lemma 3: Consider a region

D = R
K+ ∩ Du (86)

where Du ⊂ R
K is closed and convex.

If max(d1,d2,··· ,dK )∈D
∑K

k=1 dk
�= S < ∞ is achieved by

a tuple (d1, d2, · · · , dK ) with dk > 0,∀k ∈ IK , then

max
(d1,d2,··· ,dK )∈D

K∑

k=1

dk = max
(d1,d2,··· ,dK )∈Du

K∑

k=1

dk (87)

Proof: To set up a proof by contradiction, suppose, on the
contrary, that while the max sum value in D is S, which is
achieved by the tuple d ∈ D with dk > 0,∀k ∈ IK , there
exists a tuple du ∈ Du that achieves the sum value Su such

that S < Su < ∞. Define v = du − d and Sv = ∑K
k=1 vk .

Clearly, Sv = Su −S > 0. Consider the tuple dε = d+εv, with
ε ∈ [0, 1], chosen such that dε ∈ R

K+ . This is possible because
all elements of d are strictly positive. Since Du is convex, and
we have both d ∈ Du and du ∈ Du , therefore we must have a
convex combination of the two, dε ∈ Du . Since we also have
dε ∈ R

K+ , it follows that dε ∈ D. But this is a contradiction,
because the sum-value achieved by dε is Sε = S + εSv > S,
when S was assumed to be the max value in D. �

By choosing D as the constraint space for L P1, and Du as
the same region without the non-negativity constraint on the di ,
Lemma 2 and Lemma 3 imply that if (85) is satisfied, then
there is no loss of generality in dropping the non-negativity
constraints in L P1.

Finally in the case where the TIN optimality condition is
satisfied possibly with equalities, a simple continuity argument
can be applied as follows. Let us increase all αii by a
small positive amount ε. The resulting network is still TIN
optimal, but now it satisfies the TIN optimality condition with
a strict inequality. Since each of the bounds is perturbed by at
most K ε, the sum-GDoF for the new network cannot exceed
that of the original by more than K ε. Note that for the new
network, because of Lemma 2 and Lemma 3 one can drop the
non-negativity constraints with no loss of generality. Thus, in
the limit ε → 0+, the sum-GDoF of the old network and the
new network converge to the same value, as do the two linear
programs, with and without the non-negativity constraints.
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Fig. 9. The same 3 user parallel ADT deterministic interference network network as Example 1. All the interfering input bits are labeled.
Those that do not belong to X [m]

i,u are made solid.

Thus, even when the users satisfy only the TIN optimality
condition (27) there is no loss of generality in dropping the
non-negativity constraints.

C. Outer Bound Proof of Example 1

Before going to the outer bound proof for Theorem 4, we
provide a proof specifically for Example 1 first, in order to
illustrate the main insights in a simpler setting. For clarity of
exposition, we redraw the network in Figure 9. We want to
prove the sum-capacity of this 3 user parallel ADT determin-
istic interference network is bounded above by 18.

For Receiver 1, from Fano’s inequality, we have

n(R1 − ε) ≤ I (W1; Y [1]n

1 , Y [2]n

1 , Y [3]n

1 ) (88)

= H (Y [1]n

1 , Y [2]n

1 , Y [3]n

1 )

− H (Y [1]n

1 , Y [2]n

1 , Y [3]n

1 |W1) (89)

≤ 9n − H (X [1]n

2,(1) ⊕ X [1]n

3,(1), X [1]n

2,(2) ⊕ X [1]n

3,(2), . . .

X [2]n

2,(1) ⊕ X [2]n

3,(1), X [2]n

2,(2) ⊕ X [2]n

3,(2)) (90)

where (90) follows from the fact that each bit can only carry
at most 1 bit of information.

For Receiver 2, we provide the bits that are sent from
Transmitter 2 and cause interference at undesired receivers,
i.e., the bits labeled in Figure 9, as side information from a
genie. Then we have

n(R2 − ε)

≤ I (W2; Y [1]n

2 , Y [2]n

2 , Y [3]n

2 , X [1]n

2,(1), X [1]n

2,(2), X [2]n

2,(1), . . .

X [2]n

2,(2), X [3]n

2,(1)) (91)

= H (Y [1]n

2 , Y [2]n

2 , Y [3]n

2 , X [1]n

2,(1), X [1]n

2,(2), X [2]n

2,(1), . . .

X [2]n

2,(2), X [3]n

2,(1)) − H (Y [1]n

2 , Y [2]n

2 , Y [3]n

2 , X [1]n

2,(1), . . .

X [1]n

2,(2), X [2]n

2,(1), X [2]n

2,(2), X [3]n

2,(1)|W2)

(92)

= H (X [2]n

2,(2)) + H (X [1]n

2,(1), X [1]n

2,(2), X [2]n

2,(1), X [3]n

2,(1)|X [2]n

2,(2))

+ H (Y [1]n

2 , Y [2]n

2 , Y [3]n

2 |X [1]n

2,(1), X [1]n

2,(2), X [2]n

2,(1), . . .

X [2]n

2,(2), X [3]n

2,(1))

− H (X [1]n

3,(1), X [3]n

3,(1), X [3]n

3,(2) ⊕ X [3]n

1,(1)) (93)

≤ 5n + H (X [1]n

2,(1), X [1]n

2,(2), X [2]n

2,(1), X [3]n

2,(1)|X [2]n

2,(2))

− H (X [1]n

3,(1), X [3]n

3,(1), X [3]n

3,(2) ⊕ X [3]n

1,(1)) (94)

where the third term in (93) is no more than 4n, in (94),
the positive term is exactly X2,u with conditioning on other
interfering bit (solid node in Figure 9), and the negative term
is the interference. Similarly, for Receiver 3, we have

n(R3 − ε) ≤ 4n

+ H (X [1]n

3,(1), X [2]n

3,(1), X [2]n

3,(2), X [3]n

3,(1), X [3]n

3,(2)|X [1]n

3,(2))︸ ︷︷ ︸
=H(Xn

3,u |X [1]n
3,(2))

− H (X [2]n

2,(1), X [3]n

2,(1))︸ ︷︷ ︸
Interference

. (95)

Adding (90), (94) and (95), we have

n(R1 + R2 + R3 − ε)

≤ 18n + H (Xn
2,u|X [2]n

2,(2)) + H (Xn
3,u|X [1]n

3,(2))

− H (X [1]n

2,(1) ⊕ X [1]n

3,(1), X [1]n

2,(2) ⊕ X [1]n

3,(2), . . .

X [2]n

2,(1) ⊕ X [2]n

3,(1), X [2]n

2,(2) ⊕ X [2]n

3,(2))

− H (X [1]n

3,(1), X [3]n

3,(1), X [3]n

3,(2) ⊕ X [3]n

1,(1)) − H (X [2]n

2,(1), X [3]n

2,(1))

(96)

≤ 18n + H (Xn
2,u, Xn

3,u |X [3]n

1,(1), X [2]n

2,(2), X [1]n

3,(2))

− H (X [1]n

2,(1) ⊕ X [1]n

3,(1), X [1]n

2,(2), X [2]n

2,(1) ⊕ X [2]n

3,(1), X [2]n

3,(2), . . .

X [1]n

3,(1), X [3]n

3,(1), X [3]n

3,(2), X [2]n

2,(1), X [3]n

2,(1)|X [3]n

1,(1),

X [2]n

2,(2), X [1]n

3,(2)) (97)

= 18n + H (Xn
1,u, Xn

2,u, Xn
3,u |X [3]n

1,(1), X [2]n

2,(2), X [1]n

3,(2))
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− H (Yn
1,u, Yn

2,u, Yn
3,u |X [3]n

1,(1), X [2]n

2,(2), X [1]n

3,(2)) (98)

= 18n (99)

where in (97), the second term follows from the indepen-
dence of Xi and in the third term, we add conditioning

on X [3]
1,(1), X [2]

2,(2), X [1]
3,(2), which cannot increase entropy. The

negative term in (97) is now the interfering signals resulting
from Xi,u , i.e., Yi,u . In the last step, we use the invertibility
property, already verified for Example 1. Normalizing by n
and applying the limit n → ∞, we arrive at the desired outer
bound.

D. Proof of Theorem 4

Corollary 1 provides the achievable rate∑M
m=1

[∑K
i=1 n[m]

ii − w(�[m]∗)
]

by separate TIN over
each sub-channel. We only need to prove that it is an
outer bound, under the assumption that each sub-channel
is invertible. Consider the optimal cyclic partition for each
sub-channel. Then by definition, w(�[m]∗) = ∑K

i=1 n�[m]∗(i)i .
We define i [m]

max � argmax j �=i n[m]
j i to be the user that receives

the most interference from Transmitter i in sub-channel m.
Writing the binary expansion of the channel input,

X [m]
i =

n[m]
ii∑

b=1

X [m]
i,(b)2

−b (100)

=
n[m]

�[m]∗(i)i∑

b=1

X [m]
i,(b)2

−b

︸ ︷︷ ︸
�X [m]

i,u

+
n[m]

i[m]
max i∑

b=n[m]
�[m]∗(i)i

+1

X [m]
i,(b)2

−b

︸ ︷︷ ︸
�X [m]

i,v

+
n[m]

ii∑

b=n[m]
i[m]
max i

+1

X [m]
i,(b)2

−b

︸ ︷︷ ︸
�X [m]

i,q

(101)

= X [m]
i,u + X [m]

i,v + X [m]
i,q (102)

where X [m]
i,u , X [m]

i,v , X [m]
i,q are the bits that interfere at Receiver

�[m]∗(i), the other bits that interfere at Receiver i [m]
max and

the remaining input bits, respectively (see Figure 10). We use
Xi,u to denote the stack of X [m]

i,u for all sub-channels,

i.e., Xi,u = [X [1]
i,u , . . . , X [M]

i,u ]. Similar notation is used for Xi,v

with v replacing u.
Give Xi,u , Xi,v as side information from a genie to

Receiver i . Then from Fano’s inequality, we have

n(Ri − ε)

≤ I (Wi ; Yn
i , Xn

i,u , Xn
i,v ) (103)

= H (Yn
i , Xn

i,u , Xn
i,v ) − H (Yn

i , Xn
i,u , Xn

i,v |Wi ) (104)

= H (Xn
i,u |Xn

i,v ) + H (Xn
i,v ) + H (Yn

i |Xn
i,u , Xn

i,v )

− H (Yn
i |Wi ) (105)

≤ H (Xn
i,u |Xn

i,v ) + n
M∑

m=1

(n[m]
i[m]
max i

− n[m]
�[m]∗(i)i )

Fig. 10. The signal levels of Transmitter i and Receiver i . As n[m]
ii ≥

max j �=i n[m]
j i + maxk �=i n[m]

ik , the signal levels that cause interference

(X [m]
i,u , X [m]

i,v ) suffer no interference at the desired receiver.

+ n
M∑

m=1

(n[m]
ii − n[m]

i[m]
max i

) − H (Yn
i |Wi ) (106)

= H (Xn
i,u |Xn

i,v ) − H (Yn
i |Wi ) + n

M∑

m=1

(n[m]
ii − n[m]

�[m]∗(i)i )

(107)

where the second term in (106) follows from the fact that the
entropy of X [m]

i,v is smaller than the number of bits therein
and the third term in (106) is due to the property that
the signal levels in Yi that receive Xi,u , Xi,v do not suffer
interference (see Figure 10), because of each sub-channel is
TIN optimal.

Adding (107) for i ∈ {1, . . . , K }, we have

K∑

i=1

n(Ri − ε) ≤
K∑

i=1

H (Xn
i,u |Xn

i,v ) −
K∑

i=1

H (Yn
i |Wi )

+ n
K∑

i=1

M∑

m=1

(n[m]
ii − n[m]

�[m]∗(i)i ) (108)

≤ H (Xn
1,u, . . . , Xn

K ,u |Xn
1,v , . . . , Xn

K ,v )

−
K∑

i=1

H (Yn
i |Wi , Xn

1,v , . . . , Xn
K ,v )

+ n
M∑

m=1

(

K∑

i=1

n[m]
ii −

K∑

i=1

n[m]
�[m]∗(i)i ) (109)

= H (Xn
1,u, . . . , Xn

K ,u |Xn
1,v , . . . , Xn

K ,v )

− H (Yn
1,u, . . . , Yn

K ,u |Xn
1,v , . . . , Xn

K ,v )
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+ n
M∑

m=1

[
K∑

i=1

n[m]
ii − w(�[m]∗)

]
(110)

= n
M∑

m=1

[
K∑

i=1

n[m]
ii − w(�[m]∗)

]
(111)

where (109) follows from the independence of Xi and the
fact that conditioning does not increase entropy. The sec-
ond term of (110) follows from the definition of Y [m]

k,u =
∑K

i=1,i �=k 2n[m]
ki X [m]

i,u and the fact that given the desired message

Wk and X [m]
i,v , X [m]

i,p , the only thing left in Y [m]
k is Y [m]

k,u . (111) is

due to the invertibility assumption. Normalizing (111) by n
and applying the limit n → ∞, we arrive at the desired outer
bound.

E. Proof of Theorem 5

As separate TIN achieves GDoF∑M
m=1

[∑K
i=1 α[m]

ii − w(�[m]∗)
]
, we prove that this is

an outer bound. The proof is similar to that for the ADT
deterministic model with the difference that the input of
the Gaussian network has average power constraint 1.
For sub-channel m, consider the optimal cyclic partition

�[m]∗ with weight w(�[m]∗) = ∑K
i=1 α[m]

�[m]∗(i)i . Let us

define i [m]
max to be the user that receives the strongest

interference from Transmitter i over sub-channel m, i.e.,
i [m]
max � argmax j �=i α

[m]
j i . Writing the binary expansion of the

channel input,

X [m]
i = sign(X [m]

i )

∞∑

b=−∞
X [m]

i,(b)2
−b (112)

= sign(X [m]
i )

0∑

b=−∞
X [m]

i,(b)2
−b

︸ ︷︷ ︸
�X [m]

i,p

+ sign(X [m]
i )

n[m]
�[m]∗(i)i∑

b=1

X [m]
i,(b)2

−b

︸ ︷︷ ︸
�X [m]

i,u

+ sign(X [m]
i )

n[m]
i[m]
max i∑

b=n[m]
�[m]∗(i)i

+1

X [m]
i,(b)2

−b

︸ ︷︷ ︸
�X [m]

i,v

+ sign(X [m]
i )

∞∑

b=n[m]
i[m]
max i

+1

X [m]
i,(b)2

−b

︸ ︷︷ ︸
�X [m]

i,q

(113)

= X [m]
i,p + X [m]

i,u + X [m]
i,v + X [m]

i,q (114)

where X [m]
i,p , X [m]

i,u , X [m]
i,v , X [m]

i,q are the bits that have power
more than 1, the bits that interfere at Receiver �[m]∗(i),

the other interfering bits that appear at Receiver i [m]
max and

the remaining input bits that may only appear at the desired
receiver, respectively. Xi,u is used to denote [X [1]

i,u , . . . , X [M]
i,u ].

Similar notations are used for Xi,p, Xi,v with p, v replacing u,
respectively.

We borrow a lemma from [13] to bound the entropy of Xi,p ,
the bits that have peak power more than 1. Intuitively, it
means that those bits only have bounded entropy, thus limited
influence on capacity.

Lemma 4 (Lemma 6 in [13]): The following bound on the
entropy holds: H (Xn

i,p) ≤ 2nM .
For a proof, we refer the readers to [13].
Giving Xi,u , Xi,v and Xp � (X1,p, . . . , XK ,p) as side

information from a genie to Receiver i , we have

n(Ri − ε)

≤ I (Wi ; Yn
i , Xn

i,u , Xn
i,v , Xn

p) (115)

= I (Wi ; Xn
p) + I (Wi ; Xn

i,u , Xn
i,v |Xn

p)

+ I (Wi ; Yn
i |Xn

i,u , Xn
i,v , Xn

p) (116)

= H (Xn
p)︸ ︷︷ ︸

≤nO(1)

− H (Xn
p|Wi )︸ ︷︷ ︸

≥0

+H (Xn
i,u, Xn

i,v |Xn
p)

− H (Xn
i,u, Xn

i,v |Xn
p, Wi )︸ ︷︷ ︸

=0

+h(Yn
i |Xn

i,u , Xn
i,v , Xn

p)

− h(Yn
i |Xn

i,u , Xn
i,v , Xn

p, Wi )︸ ︷︷ ︸
=h(Yn

i |Wi )

(117)

≤ H (Xn
i,u |Xn

i,v , Xn
p) + H (Xn

i,v |Xn
p)

+ h(Yn
i |Xn

i,u , Xn
i,v , Xn

p) − h(Yn
i |Wi ) + nO(1) (118)

≤ H (Xn
i,u |Xn

i,v , Xn
p) + n

M∑

m=1

(n[m]
i[m]
max i

− n[m]
�[m]∗(i)i )

+ n
M∑

m=1

1

2
log

[
2πe

(∑

j �=i

Pα
[m]
i j + Pα

[m]
ii 2

−2n[m]
i[m]
max i

)]

− h(Yn
i |Wi ) + nO(1) (119)

≤ H (Xn
i,u |Xn

i,v , Xn
p)

+ n
M∑

m=1

[
1

2
(α[m]

i[m]
max i

− α[m]
�[m]∗(i)i ) log P + 1

]

+ n
M∑

m=1

1

2
log

[
2πe

(
K P

α
[m]
ii −α

[m]
i[m]
max i

)]

− h(Yn
i |Wi ) + nO(1) (120)

= H (Xn
i,u |Xn

i,v , Xn
p) − h(Yn

i |Wi )

+ n
M∑

m=1

1

2
(α

[m]
ii − α

[m]
�[m]∗(i)i ) log P + nO(1) (121)

where we use Lemma 1 in the first term of (117). The
third term in (119) is due to the fact that the differential
entropy of a random variable is maximized by Gaussian
distribution given the covariance constraint, and condition-
ing on X [m]

i,p , X [m]
i,u , X [m]

i,v , the magnitude of desired input is

smaller than 2
−n[m]

i[m]
max i (see (113)). All the remaining interfering

input has power constraint 1. In (120), we use n[m]
ki =
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� 1
2α[m]

ki log2 P� ⊂ ( 1
2α[m]

ki log2 P − 1, 1
2α[m]

ki log2 P] and the

TIN optimality condition such that α[m]
i j ≤ α[m]

ii − α[m]
i[m]
max i

.
Adding (121) for i ∈ {1, . . . , K }, we have

K∑

i=1

n(Ri − ε)

≤
K∑

i=1

[
H (Xn

i,u |Xn
i,v , Xn

p) − h(Yn
i |Wi )

]

+ n
K∑

i=1

M∑

m=1

1

2
(α

[m]
ii − α

[m]
�[m]∗(i)i ) log P + nO(1) (122)

≤ H (Xn
u|Xn

v , Xn
p) −

K∑

i=1

h(Yn
i |Wi , Xn

v , Xn
p)

+ n

2
log P

M∑

m=1

(
K∑

i=1

α[m]
ii −

K∑

i=1

α[m]
�[m]∗(i)i

)
+ nO(1)

(123)

≤ H (Xn
u|Xn

v , Xn
p) − h(Yn

u |Xn
v , Xn

p)

+ n

2
log P

M∑

m=1

[
K∑

i=1

α
[m]
ii − w(�[m]∗)

]
+ nO(1)

(124)

≤ n

2
log P

M∑

m=1

[
K∑

i=1

α[m]
ii − w(�[m]∗)

]
+ no(log P)

(125)

where in (123), Xu is the collection of Xi,u for all users,
i.e., Xu = (X1,u, . . . , XK ,u). Similar notations are used for
Xv and Yu . The second term of (124) is due to the definition
that Y [m]

i,u = ∑K
j=1, j �=i h[m]

i j X [m]
j,u + Z [m]

i and given the desired

message Wi and X [m]
j,v , X [m]

j,p , the only thing left in the received

signal Y [m]
i is Y [m]

i,u . (125) is due to the invertibility assumption
and is derived as follows.

H (Xn
u|Xn

v , Xn
p) − h(Yn

u |Xn
v , Xn

p)

= H (Xn
u|Yn

u, Xn
v , Xn

p) − h(Yn
u |Xn

u, Xn
v , Xn

p) (126)

≤
n∑

t=1

H (Xu(t)|Yu(t), Xv (t), Xp(t)) + no(log P) (127)

≤
n∑

t=1

H (Xu(t)|Yu(t)) + no(log P) (128)

≤
n∑

t=1

M∑

m=1

H (X[m]
u (t)|Y[m]

u (t)) + no(log P) (129)

≤ Mno(log P) + no(log P) = no(log P) (130)

where (126) follows from expanding I (Xn
u; Yn

u|Xn
v , Xn

p) in two
ways, and (130) is due to the definition of invertibility as stated
in (46).

Normalizing (125) by 1
2 n log P and letting first n and then

P approach infinity, we obtain the matching outer bound and
complete the proof.

F. Proof of Theorem 9

Instead of an appeal to the ADT deterministic model, which
could still be made, it is worthwhile in this section to consider
a more direct proof. So let us see why the invertibility property

is almost surely true, i.e., H (X[m]
u |Y[m]

u ) = o(log P). We focus
on one sub-channel, and the sub-channel index is omitted.
We have

−I (Xu; Yu) = H (Xu|Yu) − H (Xu) (131)

= h(Yu |Xu)︸ ︷︷ ︸
o(log P)

−h(Yu) (132)

⇐⇒ H (Xu|Yu) = H (Xu) − h(Yu) + o(log P) (133)

Thus, for invertibility, it suffices to prove H (Xu) − h(Yu) =
o(log P).

We prove that when (49) holds for sub-channel m, the
invertibility property is implied. Towards this end, we define
Vi,u = h�[m]∗(i)i Xi,u + Z�[m]∗(i), Vu = (V1,u, . . . , VK ,u) and
prove

H (Xu) − h(Vu) = o(log P) (134)

h(Vu) − h(Yu) = o(log P). (135)

Let us prove them one by one. First, consider (134). It can
be proved by noticing that |h�[m]∗(i)i | =

√
Pα�[m]∗(i)i such that

in Vu , all bits in Xu are received above the noise floor, such
that given the integer part of the noise Z = (Z1, . . . , Z K ),
denoted as [Z], we can recover Xu from Vu . Mathematically,

H (Xu|Vu, [Z]) = 0 (136)

such that

H (Xu) = I (Xu; Vu, [Z]) (137)

= I (Xu; Vu) + I (Xu; [Z]|Vu) (138)

= h(Vu) − h(Vu |Xu)︸ ︷︷ ︸
=o(log P)

+ H ([Z]|Vu)︸ ︷︷ ︸
≤H([Z])=O(1)

− H ([Z]|Vu, Xu)︸ ︷︷ ︸
≥0

(139)

≤ h(Vu) + o(log P) (140)

On the other hand, noticing I (Xu; [Z]|Vu) ≥ 0 and plugging
in (138), we have

H (Xu) ≥ I (Xu; Vu) = h(Vu) + o(log P) (141)

Combining (140) and (141), we have (134). Note that the
derivations are similar to those in [13], [28].

Next, we prove (135). Let us rewrite Vu and Yu in the
matrix form

Vu = GXu + Z̄, Yu = FXu + Z (142)

where

G = diag(h�[m]∗(1)1, h�[m]∗(2)2, . . . , h�[m]∗(K )K ) (143)

F = [h j i ]K×K − diag(h11, . . . , hK K ) (144)

and Z̄ = (Z�[m]∗(1), . . . , Z�[m]∗(K )) is a permutation of
Z = (Z1, . . . , Z K ). G and F are invertible almost surely
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and

FG−1 =
[

h j i

h�[m]∗(i)i

]

K×K

− diag

(
h11

h�[m]∗(1)1
, . . . ,

hK K

h�[m]∗(K )K

)
(145)

Define σ as the smallest singular value of FG−1, and
introduce β � min(σ, 1). Let us also define Z′ ∼
N (0, FG−1(FG−1)T − βI) and Z′ is independent of
Z. The positive semidefinite property of the covariance
matrix is easily established from the definition of β.
We now have

h(Vu) − h(Yu)

= h(GXu + Z̄) − h(FXu + Z) (146)

≤ h(GXu + Z̄) − h(FXu + βZ) (147)

= h(GXu + Z̄) − I (FXu + βZ; FXu) − h(βZ) (148)

≤ h(GXu + Z̄) − I (FXu + βZ + Z′; FXu) − h(βZ)

(149)

= h(GXu + Z̄) − h(FXu + βZ + Z′)︸ ︷︷ ︸
=h

(
FG−1(GXu+Z̄)

)

+ h(βZ + Z′) − h(βZ) (150)

= h(GXu + Z̄) − h(GXu + Z̄) − log
∣∣∣FG−1

∣∣∣ (151)

+ 1

2
log(2πe)K

∣∣∣FG−1(FG−1)T − β2I + β2I
∣∣∣

− 1

2
log(2πe)K |β2I| (152)

= − log
∣∣∣F(G)−1

∣∣∣ + 1

2
log |FG−1||(FG−1)T |

− 1

2
log(β2) (153)

= −1

2
log(β2) (154)

where (147) follows from the fact that β ≤ 1. In (149), we
use the data processing inequality as FXu → FXu + βZ →
FXu + βZ + Z′ forms a Markov chain.

It only remains to show that β is o(log P). As β =
min(σ, 1), it suffices to show σ = o(log P). By definition,
σ = minx ||FG−1x||, where x ∈ R

K×1 is a unit vector.
Let us prove the claim by contradiction. Choose a small
positive ε such that ε2 < 1

2K 3 . Suppose σ decays too
fast with respect to P , then choose P sufficiently large
such that

σ = min||x||=1
||FG−1x|| ≤ ε (155)

|h j i |
|h�[m]∗(i)i |

=
√

Pα j i −α
�[m]∗(i)i ≤ ε, ∀ j /∈ {i,�[m]∗(i)}.

(156)

Suppose the minimizing unit vector that corresponds to σ is
x∗ = [x1, . . . , xK ]T . Then the j -th entry of the K × 1 vector

FG−1x∗ (denoted as y j ) is

y j =
K∑

i=1,i �= j

h j i

h�[m]∗(i)i
xi

=
K∑

i=1,i �= j,�[m]∗(i) �= j

h j i

h�[m]∗(i)i
xi + xio (157)

where �[m]∗(io) = j and its absolute value

|y j | ≥ |xio | −
K∑

i=1,i �= j,�[m]∗(i) �= j

∣∣∣∣∣
h j i

h�[m]∗(i)i
xi

∣∣∣∣∣ (158)

≥ |xio | − (K − 2)ε (159)

where (159) follows from (156) and |xi | ≤ 1 as x∗ is a unit
vector. Also,

1 =
K∑

io=1

|xio |2 ≤
K∑

j=1

(
|y j | + (K − 2)ε

)2
(160)

≤
K∑

j=1

2
(
|y j |2 + (K − 2)2ε2

)
(161)

≤ 2ε2 + 2K (K − 2)2ε2 ≤ 2K 3ε2 (162)

where we use (159) to get (160) and (155) is used in (162)
such that

∑K
j=1 |y j |2 ≤ ε2. We get the desired contradiction

as ε2 < 1
2K 3 by assumption.

The above proof relies heavily on the fact that σ = o(log P),
which is only true when the dominant interference condition is
satisfied. In general, we can not use this direct matrix inversion
method to prove the invertibility for the Gaussian case. Proofs
along the lines of the ADT deterministic model seem more
generally applicable.

VII. DISCUSSIONS

In the context of K user parallel Gaussian interference
networks when each sub-channel satisfies the TIN optimal
condition of Geng et al., we show that separate TIN over
each sub-channel is optimal under a mild condition from
the perspective of sum-GDoF. The main message is that the
simple ADT deterministic model is still very insightful for
the optimality of TIN, because TIN is robust enough to
not be sensitive to the details that are not captured by the
ADT deterministic model.
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