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Abstract— A private information retrieval (PIR) scheme is
a mechanism that allows a user to retrieve any one out of
K messages from N non-communicating replicated databases,
each of which stores all K messages, without revealing anything
(in the information theoretic sense) about the identity of the
desired message index to any individual database. If the size of
each message is L bits and the total download required by a
PIR scheme from all N databases is D bits, then D is called
the download cost and the ratio L/D is called an achievable
rate. For fixed K, N ∈ N, the capacity of PIR, denoted by C,
is the supremum of achievable rates over all PIR schemes and
over all message sizes, and was recently shown to be C =
(1+1/N +1/N2 +· · ·+1/N K−1)−1. In this paper, for arbitrary
K and N, we explore the minimum download cost DL across
all PIR schemes (not restricted to linear schemes) for arbitrary
message lengths L under arbitrary choices of alphabet (not
restricted to finite fields) for the message and download symbols.
If the same M-ary alphabet is used for the message and download
symbols, then we show that the optimal download cost in
M-ary symbols is DL = � L

C �. If the message symbols are in
M-ary alphabet and the downloaded symbols are in M′-ary
alphabet, then we show that the optimal download cost in M′-ary
symbols, DL ∈ {� (L′/C)�, � (L′/C� − 1, � (L′/C)� − 2}, where
L′ = �L logM ′ M�, i.e., the optimal download cost is character-
ized to within two symbols.

Index Terms— Private information retrieval, download cost,
capacity, finite message length.

I. INTRODUCTION

IN THE private information retrieval (PIR) prob-
lem [1], [2], we have K messages, stored at N

distributed and non-communicating databases. A PIR scheme
allows a user to retrieve any one of the K messages, while
revealing no information to any individual database (even
if the database has unbounded computation power) about
the retrieved message index. Typical quality measures of
PIR schemes include communication complexity [1]–[7],
computational overhead [8]–[10], storage overhead [11]–[19],
upload cost, download cost [11], [12], [14], [18], [20],
and rate [14], [18], [20]. In this work we will focus on
download cost and rate. If the size of each message is L bits
and the total download required by a PIR scheme from
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all N databases is D bits, then D is called the download cost
and the ratio L/D is called an achievable rate. The capacity
of PIR, denoted by C , is defined to be the supremum of
achievable rates over all PIR schemes and over all message
sizes. It was shown recently in [20] that1

C =
(

1+ 1

N
+ 1

N2 + · · · +
1

N K−1

)−1

(1)

The reciprocal of capacity, 1/C , similarly represents the
infimum of download cost per message bit over all PIR
schemes and over all message sizes. Fundamental information
theoretic measures such as these are essentially asymptotic
in character, involving limits as message lengths L → ∞.
Remarkably, [20] shows that these asymptotically optimal
values are also achieved exactly when the message length
parameter L is any integer multiple of N K . However, since
in practice the message length parameter L can be arbitrary,
an important question that remains open is to determine opti-
mal download cost and rate values for arbitrary fixed values
of L, in particular when L is not an integer multiple of N K .
In this work, we explore the minimum download cost across
all PIR schemes (not restricted to linear schemes) for arbitrary
message lengths under arbitrary choices of alphabet (not
restricted to finite fields) for the message and download sym-
bols. If the same M-ary alphabet is used for the message and
download symbols, then we show that the optimal download
cost in M-ary symbols is DL = � L

C �. If the message symbols
are in M-ary alphabet and the downloaded symbols are in
M ′-ary alphabet, then we show that the optimal download
cost in M ′-ary symbols, DL ∈

{⌈
L ′
C

⌉
,
⌈

L ′
C

⌉
− 1,

⌈
L ′
C

⌉
− 2

}
,

where L ′ = �L logM ′ M�. Correspondingly, the maximum
achievable rate is automatically characterized in every case
as L/DL .

Notation: N is the set of natural numbers. For inte-
gers Z1, Z2, Z1 ≤ Z2, we use the compact notation

[Z1 : Z2] = {Z1, Z1 + 1, · · · , Z2}. Similarly, A[Z1:Z2]
	=

{AZ1, AZ1+1, · · · , AZ2} for any variable A. The notation X ∼
Y is used to indicate that X and Y are identically distributed.
The notation |A| is used to denote the cardinality of a set
when A is a set, and the length of a tuple when A is a
tuple. For sets S1, S2, we define S1/S2 as the set of elements
that are in S1 and not in S2. For a permutation function
λ(·) applied to some l-tuple U = (U(1), U(2), · · · , U(l)),
we will allow some abuse of notation to write λ(U) =
(U(λ(1)), U(λ(2)), · · · , U(λ(l))).

1We will use the symbol C to represent the expression in (1) throughout
this paper.
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II. PROBLEM STATEMENT

There are K messages W1, · · · , WK , each of which is an
arbitrary string of length L comprised of M-ary symbols.

Wk =
(

Wk(1), Wk(2), · · · , Wk(L)
)
∈ [0 : M − 1]L
∀k ∈ [1 : K ] (2)

Note that there are M L possible distinct realizations of each
message. Note that message realizations are arbitrary, i.e., we
do not enforce any statistical assumption on the message
symbols.

There are N databases. Each database stores all the mes-
sages W1, · · · , WK .

Depending upon the desired message index θ ∈ [1 : K ],
the user follows one of K strategies. These strategies
are specified in terms of K N random queries, Q[θ]n ,
∀n ∈ [1 : N],∀θ ∈ [1 : K ] that are privately generated by the
user a-priori, i.e., without any knowledge of the message
realizations. In order to retrieve Wθ , the user sends the query
Q[θ]n to the n-th database, ∀n ∈ [1 : N].

Upon receiving Q[θ]n , the n-th database returns an answering
string A[θ]n , which is a function of Q[θ]n and the data stored
(i.e., messages W1, · · · , WK ). The answering string A[θ]n is

comprised of M ′-ary symbols, A[θ]n ∈ [0 : M ′ − 1]|A[θ ]n |.
From all the information that is now available to the

user (A[θ][1:N], Q[θ][1:N]), he must be able to correctly decode
the desired message Wθ . That is, the following correctness
constraint must be satisfied.

[Correctness] Wθ is a deterministic function of

A[θ][1:N], Q[θ][1:N]. (3)

To protect the user’s privacy, the query presented to each
database must be identically distributed regardless of the
desired message index.

[Privacy] Q[θ]n ∼ Q[θ ′]n , ∀θ, θ ′ ∈ [1 : K ], n ∈ [1 : N]. (4)

Note that the databases do not collude so that the privacy
constraint (4) is specified with respect to each individual
database.

The download cost, D, for a PIR scheme is the maximum
value (across all random realizations of queries) of the total
number of M ′-ary symbols downloaded by the user from all
the databases.

D = max
N∑

n=1

|A[θ]n | (5)

Our goal is to characterize the optimal (minimum over all PIR
schemes) download cost DL , for arbitrary fixed message size
L. The optimality is across all PIR schemes, i.e., including
non-linear PIR schemes.

III. RESULTS

A. Optimal Download Cost for Matching
Alphabet (M = M ′)

Consider the setting where the messages and down-
loads are comprised of symbols from the same alphabet,

i.e., M = M ′ ∈ N/{1}. Our main result for this setting appears
in the following theorem.

Theorem 1: For PIR with N ∈ N databases, each storing all
K ∈ N messages, each message comprised of L ∈ N symbols
from M-ary alphabet, M ∈ N/{1}, where the downloads
are comprised of symbols from the same M-ary alphabet,
the optimal download cost is DL =

⌈ L
C

⌉
M-ary symbols.

The proof of converse (i.e., the impossibility claim) of
Theorem 1 follows from the capacity result of [20] and
appears in Section IV. The achievability is proved, first for
the case L = N K−1 in Section V, and then for arbitrary L
in Section VI.

Based on Theorem 1, the following observations are in
order.

1) Given the message size and alphabet constraints, since
the minimum download cost corresponds to the max-
imum rate, Theorem 1 equivalently characterizes the
optimal rate for arbitrary message size in the matching
alphabet case, as L/� L

C �.
2) Reference [11] shows that when K ≥ 2 and N ≥ L+1,

then the optimal download is DL = L + 1. This result
can be recovered as a special case of Theorem 1 by
noting that when K ≥ 2 and N ≥ L + 1,

DL =
⌈

L

C

⌉
(6)

= L +
⌈

L

(
1

N
+ 1

N2 + · · · +
1

N K−1

)⌉
(7)

= L + 1 (8)

where (8) follows because 0 < 1
N + 1

N2 + · · ·+ 1
N K−1 <

1
N−1 ≤ 1

L . Theorem 1 completes the picture by charac-
terizing the optimal download cost for all N, K , L.

3) Reference [20] presents a PIR scheme which achieves a
rate equal to capacity C if L = nN K where n ∈ N is
any positive integer, so that the corresponding download
is D = L

C . This result can be recovered as a special
case of Theorem 1 by noting that when L = nN K , then
L
C = nN K (1+1/N+· · ·+1/N K−1) = nN(1+N+· · ·+
N K−1) is a positive integer so that DL =

⌈ L
C

⌉ = L
C .

4) A naive extension of the PIR scheme of [20] to the set-
ting when L is not an integer multiple of N K , is obtained
by padding zeros to each message so that the message
lengths are rounded up to the closest integer multiple
of N K . The gap between the download cost of the naive
scheme and the optimal download cost in Theorem 1 can
be unbounded. For an example, if L = N K−1, then the
download cost of the naive scheme is D = N K /C , while
the optimal download cost is DL =

⌈ L
C

⌉ = N K−1/C .
5) In the absence of any constraints on message lengths,

we know from [20] that the maximum achievable rate
across all PIR schemes is the capacity C . For constrained
message length L, Theorem 1 shows that the maximum
achievable rate is L/DL = L/

⌈ L
C

⌉
which is in general

less than C . The message length L = N K−1 is par-
ticularly significant in light of Theorem 1, because this
is the shortest message length for which the achieved
rate equals the capacity C . This is seen as follows.
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In order to achieve the capacity, the download cost must
be D = L

C = DL which must be a positive integer value.
But if L < N K−1, then

D = L

C
= L

(
1+ 1

N
+ · · · + 1

N K−1

)
(9)

= L

(
1+ N + · · · + N K−1

N K−1

)
/∈ N (10)

because N K−1 and 1+ N + · · · + N K−1 are co-prime.
This is verified, e.g., through Bezout’s identity,

N K−1(N) + (1+ N + · · · + N K−1)(1− N) = 1 (11)

B. Optimal Download Cost for Mismatched
Alphabet (M = M ′)

Now consider PIR schemes with mismatched alphabet,
i.e., the messages are represented in M-ary alphabet, and the
downloaded symbols are in M ′-ary alphabet, M ′ = M . For
this setting the optimal download cost to within 2 symbols is
characterized in the following theorem.

Theorem 2: For PIR with N ∈ N databases, each stor-
ing all K ∈ N messages, each message comprised of
L ∈ N symbols from M-ary alphabet, M ∈ N/{1}, where the
downloads are comprised of symbols from M ′-ary alphabet,
M ′ ∈ N/{1}, M ′ = M , the optimal download cost DL ∈{⌈

L ′
C

⌉
,
⌈

L ′
C

⌉
− 1,

⌈
L ′
C

⌉
− 2

}
, where L ′ = �L logM ′ M�.

The proof of Theorem 2 appears in Section VII.
The following observations place Theorem 2 in perspective.

1) The proof of Theorem 2 presented in Section VII shows

that the download cost
⌈ �L logM′ M�

C

⌉
is always achiev-

able, and the download cost for any PIR scheme cannot
be less than � L logM′ M

C �. Therefore, in particular, when⌈ �L logM′ M�
C

⌉
= � L logM′ M

C �, the exact optimal download

cost is DL = � L logM′ M
C �.

2) It is easy to create examples where mismatched alphabet
leads to less efficient PIR schemes than possible with
matched alphabets. However, this is not always the
case. The following examples show how mismatched
alphabet can in some cases be beneficial in terms of rate
relative to matched alphabet. Consider N = 2, K = 2,
L = 3, M = 9. Here C = 2/3. The highest rate
achievable with matched alphabet (M ′ = M) is L

�L/C� =
3/5 < C whereas the rate achieved with the mis-

matched alphabet M ′ = 3 < M , is L logM′ M
�L ′/C� =

2/3 = C . Similarly one can construct examples with
M ′ > M where mismatched alphabet produces a higher
rate than the best possible with matched alphabet,
e.g., N = 2, K = 2, L = 3, M = 4 where the best
rate with matched alphabet is again 3/5 < C , but the
mismatched alphabet M ′ = 8 achieves rate 2/3 = C .

IV. PROOF OF THEOREM 1: CONVERSE

The converse for Theorem 1 is the impossibility claim,
i.e., that no PIR scheme with matched alphabet (M = M ′)

can achieve a download cost smaller than DL = � L
C �. This is

proved as follows.
The message realizations are arbitrary, as is the choice of

the desired message index θ ∈ [1 : K ]. By arbitrary, what is
meant is that all realizations are possible. Therefore the PIR
scheme must work for every possible realization of message
symbols and θ . Any PIR scheme that works for arbitrary
realizations, will also work if they are uniformly randomly
generated. Therefore, for the converse argument let us assume
uniform distributions on the realizations of message symbols,
and on θ . The advantage of assigning a distribution to these
arbitrary quantities is that we are able to use the information
theoretic formulation of the PIR problem as in [20], and
the upper bounds on rate that are derived in [20] are also
applicable in our current setting. In particular, C is still an
upper bound on the achievable rate of a PIR scheme with
arbitrary message realizations and θ and arbitrary message
length L. Since capacity is an upper bound on the rate of
all PIR schemes, C ≥ L/DL , so that DL ≥ L

C , and because
DL ∈ N, we must have DL ≥

⌈ L
C

⌉
.

V. PROOF OF THEOREM 1: ACHIEVABILITY FOR L = N K−1

In [20], it is shown that the capacity (and the corresponding
optimal download cost) of PIR is achievable when L = N K

bits. Here we present a more efficient PIR scheme to show
that a smaller message size, L = N K−1 bits (M-ary symbols
in general), is sufficient to achieve a rate equal to C (and
the optimal download cost) when the alphabets are matched,
i.e., M = M ′. This PIR scheme is significant because (as noted
in Observation 5, Section III-A) L = N K−1 is the smallest
message size needed to achieve capacity, and also because
it is the key ingredient that will allow us to subsequently
expand the achievability proof to arbitrary L in Section VI.
Note that since the N = 1 case is trivial (optimal to
download all messages), we will consider only N ≥ 2 in this
section.

The PIR scheme that we present here is closely related
to the capacity achieving PIR scheme presented in [20]. For
both schemes the queries are comprised only of sums of
symbols from various messages. Since our new scheme con-
siders M-ary alphabet, the “sums” are interpreted as modulo-
M sums. In both schemes no symbol appears more than
once in the query for any particular database. The difference
between the two schemes lies in the requirement of symmetry
across databases. Recall that the PIR scheme of [20] is based
on the iterative application of three steps corresponding to
symmetry across databases, symmetry across messages within
the query to each database, and exploiting side information.
The key to reducing the message size from L = N K to
L = N K−1 is to eliminate the requirement of symmetry across
databases. Therefore, the new PIR scheme for L = N K−1,
formalized in the Q-Gen Algorithm in Section V-D,
is based on the iterative application of the following
two steps.

(1) Enforcing Message Symmetry within the Queries to
Each Database: The goal is to make the queries
to a database symmetric with respect to messages.
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For instance if the query to database 1 includes
l instances of sums of symbols from messages
W1, W2, W3, then it must include l instances of sums
of symbols from each of the

(K
3

)
combinations of

3 messages. Message symmetry is defined formally
in Section V-B. The procedure is formalized in the
M-Sym Algorithm, presented in Section V-C. All the
queries that do not involve desired message symbols
(I terms in the Q-Gen Algorithm) are introduced only
through the M-Sym algorithm.

(2) Exploiting Side Information: The goal of this step
is to exploit queries from other databases that were
added to enforce message symmetry (and do not con-
tain desired message symbols), as side information
to construct new queries which are sums of symbols
from desired message and the side information avail-
able from other databases. This step is formalized in
the Exploit-SI Algorithm, presented in Section V-C.
Except for an initialization step, all the queries involv-
ing desired message symbols (M terms in the Q-Gen
Algorithm) are introduced only through the Exploit-SI
algorithm.

Let us start with a few simple examples for small K , N values
to illustrate the key ideas.

A. Examples

1) K = 2 Messages, N = 2 Databases, L = N K−1 = 2
Symbols per Message: Let [a1, a2] represent a random per-
mutation of L = 2 symbols from W1. Similarly, let [b1, b2]
represent an independent random permutation of L = 2
symbols from W2. The key to the privacy of the scheme is
that these random permutations are generated privately by the
user and are unknown to the databases.

Suppose the desired message is W1, i.e., θ = 1. The
PIR scheme always starts by requesting the first desired
symbol (in this case, a1) from the first database (DB1).
Applying Step (1), we achieve message symmetry by includ-
ing b1 from DB1. Next we apply Step (2) to exploit
the side information available at DB1, i.e., b1, in order to
retrieve a new desired symbol a2 from the second data-
base (DB2) by mixing it with b1. At this point the query
to each database is symmetric, and there is no side infor-
mation that remains unexploited. Thus the construction is
complete.

DB1 DB2

a1

(1)−→ DB1 DB2

a1, b1

(2)−→ DB1 DB2

a1, b1 a2 + b1

Similarly, the queries for θ = 2 are constructed as follows.

DB1 DB2

b1

(1)−→ DB1 DB2

a1, b1

(2)−→ DB1 DB2

a1, b1 a1 + b2

Note that the application of Step (1) only introduces new terms
that do not involve symbols from the desired message, whereas
the application of Step (2) only introduces new terms that
involve symbols from the desired message.

To see why this scheme is private, recall that [a1, a2] are
random permutations of two symbols from W1 and [b1, b2]

are random permutations of two symbols from W2. These
permutations are known only to the user, and not to the
databases. Therefore, regardless of whether θ = 1 or θ = 2,
DB1 is asked for one randomly chosen symbol of each
message, and DB2 is asked for a sum of a pair of randomly
chosen symbols from each message. Since the permutations
are uniform, all possible realizations are equally likely, and
privacy is guaranteed. A formal proof of privacy for the general
setting appears in Section V-F.

The scheme is correct, because each desired message sym-
bol is either downloaded directly or as a sum with side
information terms that are separately downloaded.

Finally, note that the download cost is D = 3 = � L
C �,

because C = 2/3 for this case. The rate achieved is L/D =
2/3 = C .

2) K = 3 Messages, N = 2 Databases, L = N K−1 = 4
Symbols per Message: Let [a1, · · · , a4] represent a random
permutation of 4 M-ary symbols from message W1. Similarly,
[b1, · · · , b4] and [c1, · · · , c4] are random permutations of
4 M-ary symbols each from messages W2, W3, respectively.
The uniformly random and independent permutations are
generated privately by the user. Suppose θ = 1. The query
generation algorithm proceeds as follows.

DB1 DB2

a1

(1)−→ DB1 DB2

a1, b1, c1

(2)−→
DB1 DB2

a1, b1, c1 a2 + b1
a3 + c1

(1)−→
DB1 DB2

a1, b1, c1 a2 + b1
a3 + c1
b2 + c2

(2)−→
DB1 DB2

a1, b1, c1 a2 + b1
a4 + b2 + c2 a3 + c1

b2 + c2

Again, note that the application of Step (1) only introduces
new terms that do not involve symbols from the desired
message, whereas the application of Step (2) only introduces
new terms that involve symbols from the desired message. The
queries generated when θ = 2, 3 are as follows.

θ = 2 θ = 3
DB1 DB2

a1, b1, c1 a1 + b2
a2 + b4 + c2 b3 + c1

a2 + c2

DB1 DB2

a1, b1, c1 a1 + c2
a2 + b2 + c4 b1 + c3

a2 + b2

Correctness is straightforward, privacy is ensured by message
symmetry and random permutations, and the rate is L/D =
4/7 which matches the capacity C for this case. The download
achieved is D = 4 symbols which is also optimal.

3) K = 3 Messages, N = 3 Databases,
L = N K−1 = 9 Symbols per Message: Let
[a1, · · · , a9], [b1, · · · , b9], [c1, · · · , c9] be three i.i.d. uniform
permutations of symbols from messages W1, W2, W3,
respectively. The query generation algorithm for θ = 1
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proceeds as follows.

DB1 DB2 DB3

a1

(1)−→ DB1 DB2 DB3

a1, b1, c1
· · ·

· · · (2)−→
DB1 DB2 DB3

a1, b1, c1 a2 + b1 a4 + b1
a3 + c1 a5 + c1

· · ·

· · · (1)−→
DB1 DB2 DB3

a1, b1, c1 a2 + b1 a4 + b1
a3 + c1 a5 + c1
b2 + c2 b3 + c3

· · ·

· · · (2)−→

DB1 DB2 DB3

a1, b1, c1 a2 + b1 a4 + b1
a6 + b2 + c2 a3 + c1 a5 + c1
a7 + b3 + c3 b2 + c2 b3 + c3

a8 + b3 + c3 a9 + b2 + c2

Again, note that the application of Step (1) only introduces
new terms that do not involve symbols from the desired
message, whereas the application of Step (2) only introduces
new terms that involve symbols from the desired message. The
scheme when θ = 2, 3 is as follows.

θ = 2
DB1 DB2 DB3

a1, b1, c1 a1 + b2 a1 + b4
a2 + b6 + c2 b3 + c1 b5 + c1
a3 + b7 + c3 a2 + c2 a3 + c3

a3 + b8 + c3 a2 + b9 + c2

θ = 3
DB1 DB2 DB3

a1, b1, c1 a1 + c2 a1 + c4
a2 + b2 + c6 b1 + c3 b1 + c5
a3 + b3 + c7 a2 + b2 a3 + b3

a3 + b3 + c8 a2 + b2 + c9

Correctness is straightforward, privacy is ensured by mes-
sage symmetry and random permutations, and the rate is
L/D = 9/13 which matches the capacity C for this case.
The download achieved is D = 13 symbols which is also
optimal.

Next we go beyond the simple examples to the general N,
K setting. Let us start by introducing some new definitions
and notation, some of which is needed only to suppress those
aspects of the general setting that are notationally cumbersome
but otherwise inconsequential.

B. Definitions and Additional Notation

1) Uk: For all k ∈ [1 : K ], define2 ordered tuples

Uk � [Uk(1), Uk(2), · · · , Uk(N K−1)] (12)

2The Uk symbols will eventually be mapped to random permutations of
message Wk symbols. We use [Uk (l)] instead of, say [al ], [bl ] as in the
examples, because while the latter notation is more clear, it does not generalize
to K messages.

2) k-Sums, Types: We use the terminology k-sum to denote
an expression representing the sum of k distinct variables,
each drawn from a different Ui tuple, i.e., Ui1 ( j1)+Ui2 ( j2)+
· · · + Uik ( jk), where i1, i2, · · · , ik ∈ [1 : K ] are all distinct
indices. Furthermore, we will define such a k-sum to be of
type {i1, i2, · · · , ik}, or i[1:k] in our compact notation. If q
represents a k-sum, the function type(q) returns its type.
Denote Tk as the set of all possible types of a k-sum, i.e., all
possible choices of k distinct indices in [1 : K ]. Note that
|Tk | =

(K
k

)
.

The next two items are introduced to facilitate a compact
notation. The first of these is a function, new(·), which will
allow us to suppress unimportant details about symbol indices.

3) The new(·) Function: For any ordered tuple U , let
new(U) be a function that, starting with U(1), returns
the “next” element in U each time3 it is called with the
same tuple U as its argument. So, for example, the follow-
ing sequence of calls to this function: new(U2),new(U1),
new(U1),new(U1) + new(U2) will produce U2(1), U1(1),
U1(2), U1(3)+U2(2) as the output.

4) Ordered Access to Elements of a Set: In a similar
spirit, for any set A, when accessing its elements (e.g., in an
algorithm), we will use the notation

−→
A to indicate that the

elements of A are to be accessed in some specified order,
the details of which are not significant, because all ordering
rules will produce (possibly different) optimal PIR schemes.
Let us assume by default that the ordering is the natural
lexicographic increasing order. For example,

−−−−→[1 : K ] refers to
increasing order of integers 1 through K .

−→Tk denotes that
the types, i.e., the {i1, i2, · · · , ik} terms in Tk are individually
sorted and then accessed in lexicographic increasing order. For
a set Q that is comprised of various k-sums the notation

−→
Q

represents that the order in which the elements are accessed
is, first in increasing order of k, then within the same k in
increasing order of type, and then for multiple instances of
the same type the elements are accessed in increasing order
of the j index of the Ui ( j) with the smallest i . Some examples
of this notation:⋃
k∈−−→[1:2]

{U1(k)+ new(U2)} = {U1(1)+U2(1), U1(2)+U2(2)}
⋃

q∈−→Q
{q + new(U1)} = {U1(1)+U2(4), U1(2)+U2(2)

+U3(3), U1(3)+U2(3)+U3(2)}
where Q = {U2(2) + U3(3), U2(4), U2(3) + U3(2)}, so that−→
Q denotes that the terms of Q are accessed in the order
U2(4), U2(2)+U3(3), U2(3)+ U3(2).

5) The Count(·) and Max(·) Functions: Count(Q, i[1:k])
denotes the number of k-sums of type {i1, i2, · · · , ik} that are
present in Q

Count(Q, i[1:k])
	= |{q : q ∈ Q, type(q) = i[1:k]}|, (13)

Max(Q, k) denotes the maximum of the number of k-sums of
the same type in Q, with the maximization being across all

3We will deal with N K−1-tuples and the algorithms will guarantee that the
new(.) function is not called more than N K−1 times for the same tuple.
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types of k-sums,

Max(Q, k)
	= max

i[1:k]∈Tk

Count(Q, i[1:k]) (14)

6) Message Symmetry: Message symmetry is defined as
the condition that ∀k ∈ [1 : K ], Q contains equal number
of k-sums for every type {i1, i2, · · · , ik} ∈ Tk .

Count(Q, i[1:k]) = Count(Q, i ′[1:k]), ∀i[1:k], i ′[1:k] ∈ Tk (15)

C. Two Subroutines

For the sake of clarity, here we separately present the two
procedures needed to implement the message symmetry and
side information exploitation steps, which will ultimately be
incorporated into the overall query generation algorithm.

1) Algorithm (1): Achieving Message Symmetry (M-Sym
Algorithm): The algorithm takes as input a set Q comprised
of various k-sums, and produces as output a set Q∗ comprised
of additional terms that need to be included in Q to make it
message symmetric, i.e., Q ∪ Q∗ satisfies message symmetry.
For each k ∈ [1 : K ], and for each type i[1:k] ∈ Tk ,
the algorithm checks if there are Max(Q, k) instances of that
type, and if not, then it generates as many new instances as
necessary to bring up the number of instances of that type to
Max(Q, k).

Algorithm (1) M-Sym Algorithm
1: Input: Q
2: Output: Q∗
3: Initialize: Q∗ ← ∅.
4: for k = 1 : K do
5: for each i[1:k] ∈ −→Tk do
6: if Count(Q, i[1:k]) < Max(Q, k) then
7: for i = 1 : Max(Q, k)− Count(Q, i[1:k]) do
8:

Q∗ ← Q∗ ∪ {new(Ui1)+ new(Ui2 )+ · · · + new(Uik )}
9: end for (i)

10: end if
11: end for (i[1:k])
12: end for (k)

Note that Q∪Q∗ satisfies message symmetry because for all
types i[1:k] ∈ Tk , Count(Q ∪ Q∗, i[1:k]) = Max(Q ∪ Q∗, k) =
Max(Q, k).

To illustrate the M-Sym Algorithm, let us revisit the exam-
ples presented earlier in Section V-A. In all three examples,
when invoking Step (1), we run the M-Sym Algorithm once
for each database. For example, consider the third example
with K = 3 messages, N = 3 databases, and desired message
index θ = 1. When we invoke Step (1) for the second
time, consider DB2. The input to the M-Sym Algorithm is
Q = {a2 + b1, a3 + c1}, which is not yet symmetric, and
the output of the M-Sym Algorithm is Q∗ = {b2 + c2},
whose union with Q is now symmetric. The symmetry of
the messages is important to prove the privacy of the PIR
scheme (see Lemma 3).

2) Algorithm (2): Exploiting Side Information (Exploit-SI
Algorithm): Algorithm (2) formalizes the side information
exploitation step. This algorithm takes as input N query sets
Q1, Q2, · · · , QN , which are comprised of side information
terms, i.e., terms that do not contain any desired message sym-
bols, i.e., ∀n ∈ [1 : N] and ∀q ∈ Qn , θ /∈ type(q) and which
have not previously been exploited. The algorithm produces
N sets Q′1, Q′2, · · · , Q′N as output. Q′n, n ∈ [1 : N] is built by
combining each element q in Q1, · · · , Qn−1, Qn+1, · · · , QN

with a “new” variable Uθ (which corresponds to a desired
message symbol).

Algorithm (2) Exploit-SI Algorithm
1: Input: Q1, Q2, · · · , QN

2: Output: Q′1, Q′2, · · · , Q′N
3: Initialize: All output are initialized as null sets.
4: for n = 1 : N do
5: for n′ = 1 : N and n′ = n do
6: for each q ∈ −→Qn′ do
7:

Q′n ← Q′n ∪ {new(Uθ )+ q}
8: end for (q)
9: end for (n′)

10: end for (n)

To illustrate the Exploit-SI Algorithm, let us revisit the
examples presented earlier in Section V-A. In all three exam-
ples, when invoking Step (2), we run the Exploit-SI Algo-
rithm once. For example, consider the third example with
K = 3 messages, N = 3 databases and desired message
index θ = 1. When we invoke Step (2) for the second time,
the input to the Exploit-SI Algorithm is Q1 = {∅}, Q2 =
{a2 + b1, a3 + c1, b2 + c2}, Q3 = {a4 + b1, a5 + c1, b3 + c3},
and the output of the Exploit-SI Algorithm is Q′1 = {a6+b2+
c2, a7 + b3 + c3}, Q′2 = {a8 + b3 + c3}, Q′3 = {a9 + b2 + c2},
where each side information symbol from other databases
is used to retrieve a new desired symbol. The exploitation
of side information is important for the efficiency of the
PIR scheme such that the rate achieved matches the capacity
(see Lemma 2).

D. A Deterministic Query Generation
Algorithm (Q-Gen Algorithm)

We now proceed to a query generation algorithm.4 The
algorithm produces N query sets Q(DB, θ), for all DB ∈
[1 : N] as functions of θ . For internal book-keeping in the
algorithm, we will partition each query set into K subsets
called blocks, such that block k ∈ [1 : K ] contains only
k-sums. Further we will partition each block into two subsets
denoted by I and M such that the M partition contains only
those types of k-sums which involve variables from Uθ , and

4Note that this is not the final step in the query generation. The output of this
deterministic algorithm is in terms of the Uk variables. The final step, to be
presented in Section V-E, maps Uk variables to private random permutations
of Wk variables, to produce the random queries that are then sent to the
databases.
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the I partition contains the remaining k-sums which do not
involve the Uθ variables.

As in the simple examples presented earlier, for all DB ∈
[1 : N], θ ∈ [1 : K ], the query sets Q(DB, θ) are built starting
only from a single element in Q(1, θ), which is the first
desired message symbol Uθ , and then evolves through iterative
application of the M-Sym and Exploit-SI sub-routines. Note
that the memory of calls to the new(·) function is assumed to
be global, i.e., the memory is not reset when the sub-routines
are called. Similarly, θ is assumed to be available to the sub-
routines as a global variable.

Algorithm (3) Q-Gen Algorithm
1: Input: θ
2: Output: Q(1, θ), · · · , Q(N, θ)
3: Initialize: All query sets are initialized as null sets. Also

initialize Block← 1;
4:

Q(1, θ, Block,M)← {new(Uθ )}
Q(1, θ, Block,I)← M-Sym(Q(1, θ, Block,M))

∀DB ∈ [2 : N], Q(DB, θ, Block,M)← ∅,
Q(DB, θ, Block,I)← ∅,

5: for Block = 2 : K do
6:

(Q(1, θ, Block,M), · · · , Q(N, θ, Block,M))

← Exploit-SI(Q(1, θ, Block− 1,I), · · · ,
Q(N, θ, Block − 1,I))

7: for DB = 1 : N do
8:

Q(DB, θ, Block,I)← M-Sym(Q(DB, θ, Block,M))

9: end for (DB)
10: end for (Block)
11: for DB = 1 : N do
12: Q(DB, θ)← ⋃

Block∈[K ]
(
Q(DB, θ, Block,I)∪

Q(DB, θ, Block,M)
)

13: end for (DB)

To illustrate the Q-Gen Algorithm, let us revisit the exam-
ples presented earlier in Section V-A. Consider the third
example with K = 3 messages, N = 3 databases and desired
message index θ = 1. For Block = 1, the queries for DB1 are
generated as Q(1, θ, Block,M) = {a1}, Q(1, θ, Block,I) =
{b1, c1}. For Block = 2 and Block = 3, we first exploit side
information to retrieve more desired symbols, and then make
the queries to each database symmetric to restore the privacy.
We end at Block 3 because all side information is used and
the queries to each database satisfy symmetry.

Based on Algorithm (3), we have two immediate
observations.

1) Consider the number of instances with type
{i1, · · · , ik−1, θ} in Q(DB, θ, k,M), i.e.,

Count(Q(DB, θ, k,M), {i1, · · · , ik−1, θ}).
Q(DB, θ, k,M) is produced in Step 6 of Algorithm (3)
as one of the outputs of the Expoit-SI algorithm.
From Step 7 of the Expoit-SI algorithm, we know
that the instances with type {i1, · · · , ik−1, θ} in
Q(DB, θ, k,M) are produced by combining a new vari-
able from Uθ with each element of type {i1, · · · , ik−1} in
Q(DB′, θ, k − 1,I), DB′ = DB, i.e.,

Count(Q(DB, θ, k,M), {i1, · · · , ik−1, θ})
=

∑
DB′ =DB

Count(Q(DB′, θ, k − 1,I), {i1, · · · , ik−1})

∀DB ∈ [1 : N], θ ∈ [1 : K ], k ∈ [2 : K ],
{i1, · · · , ik−1} ∈ Tk−1 (16)

2) From Step 4 and Step 8 of Algorithm (3), we know that
Q(DB, θ, k,I) ∪ Q(DB, θ, k,M),∀k ∈ [1 : K ] satisfies
message symmetry (15).

1) Structure of Q(DB, θ): Key properties of Q(DB, θ) are
summarized in the following lemma.

Lemma 1: Q(DB, θ) produced by Algorithm (3) satisfies
the following properties.

1) Q(DB, θ),∀DB ∈ [1 : N], θ ∈ [1 : K ] is a union of
K disjoint sets (called “blocks”), that are indexed by
k ∈ [1 : K ]. Block k only contains k-sums. For any
type i[1:k] ∈ Tk , block k of Q(DB, θ) contains v(DB, k)
instances of type i[1:k], where v(DB, k) is a function only
of DB, k.

2) ∀i ∈ [1 : K ], if Ui ( j) and Ui ( j ′) appear anywhere in
the same Q(DB, θ) then j = j ′.

3) Exactly v(DB)
	=∑K

k=1 v(DB, k)
(K−1

k−1

)
distinct variables

for each Ui , i ∈ [1 : K ] appear in Q(DB, θ).
Proof:

1) Block k, k ∈ [1 : K ] of Q(DB, θ) is the set
Q(DB, θ, k,I) ∪ Q(DB, θ, k,M), which satisfies mes-
sage symmetry based on Observation 2. From Step 4
of Algorithm (3), we know that Block 1 only contains
1-sums. From Steps 6 and 8, we know that the type
of each instance in Block k, k ∈ [2 : K ] contains one
more variable than that of any instance in Block k − 1.
Therefore, by induction, Block k only contains k-sums.
As each Block k satisfies message symmetry, we have

Count(Q(DB, θ, k,M), {i1, · · · , ik−1, θ})
= Max(Q(DB, θ), k) (17)

Count(Q(DB, θ, k − 1,I), {i1, · · · , ik−1})
= Max(Q(DB, θ), k − 1) (18)

and (16) reduces to

Max(Q(DB, θ), k) =
∑

DB′ =DB

Max(Q(DB′, θ), k − 1)

(19)

Combined with the fact that Max(Q(1, θ), 1) = 1,
Max(Q(DB, θ), 1) = 0,∀DB ∈ [2 : N] (obtained
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from Step 4 of Algorithm (3)), we conclude that
Max(Q(DB, θ), k) depends only on DB and k. Therefore,
v(DB, k) = Max(Q(DB, θ), k) and v(DB, k) is a function
of only DB, k.

2) Fix any database DB. Consider the case where
i = θ first. Note that desired variables only appear
in Q(DB, θ, Block,M). From Step 4 and Step 6
in Algorithm (3), we see that the desired variables,
i.e., the Uθ variables appear only through the new(Uθ )
function so that each of them has a distinct index.
Next, consider the non-desired variables, Ui , i = θ ,
which either appear in Steps 4 and 8 through the
new(Uk) function or appear in Step 6 which in turn
come from Q(DB, θ, Block − 1,M) and each of them
was introduced once through the new(Uk) function and
used exactly once. Therefore, these Uk variables also
have distinct indices within Q(DB, θ).

3) This claim follows directly from the previous two
claims. Note that we have shown that all variables from
Ui are distinct, so v(DB) is equal to the number of
times that variables in Ui appear in Q(DB, θ). In the
k-th block, Q(DB, θ) contains v(DB, k) instances of
k-sums of each type and there are

( K
k−1

)
types of k-sums

that include i . Therefore, the number of instances of
tuple Ui in block k is v(DB, k)

(K−1
k−1

)
. Summing over all

K blocks, we have v(DB) =∑K
k=1 v(DB, k)

(K−1
k−1

)
.

According to Lemma 1 the query sets Q(DB, θ) are com-
prised of K blocks, the k-th block contains v(DB, θ) instances
of every possible type of k-sum, and no Ui ( j) variable appears
more than once in Q(DB, θ). Therefore, the structure of the
query set may be summarized in the following corollary.

Corollary 1: Given DB, θ , for every Uk , k ∈ [1 : K ], there
exists its permutation Uk that depends only on DB, θ, k,

Uk � λDB,θ,k(Uk) (20)

such that Q(DB, θ) can be expressed as

Q(DB, θ) =
⋃

k∈−−−→[1:K ]

⋃
i[1:k]∈−→Tk

v(DB,k)⋃
l=1

{new(Ui1)+ . . .

. . .new(Ui2 )+ · · · + new(Uik )} (21)

Remark: As an example, consider the example with K = 3,
N = 3, L = 9 that was presented earlier in Section V-A.
Suppose DB = 2, θ = 3. The query Q(DB, θ) = Q(2, 3) is
reproduced as follows.

Q(2, 3) = {a2 + b2, a1 + c2, b1 + c3, a3 + b3 + c8},
which can be equivalently written in the form in Corollary 1
by setting

λ2,3,1(U1) = (a2, a1, a3, a4, a5, a6, a7, a8, a9) (22)

λ2,3,2(U2) = (b2, b1, b3, b4, b5, b6, b7, b8, b9) (23)

λ2,3,3(U3) = (c2, c3, c8, c1, c4, c5, c6, c7, c9) (24)

Note that here U1 = [a1, · · · , a9], U2 = [b1, · · · , b9], U3 =
[c1, · · · , c9].

E. Mapping to Message Symbols to Produce Q[θ]
DB

To produce the actual query sent to the databases, we map
the Uk(i) variables to message symbols. This mapping is spec-
ified by K privately chosen permutations γ1, γ2, · · · , γK , each
of which is uniformly random over all possible (N K−1)! per-
mutations over the index set [1 : N K−1] and the permutations
are independent of each other and of θ . Specifically, Uk(i) is
replaced with Wk(γk(i)), ∀k ∈ [1 : K ], i ∈ [1 : N K−1]. This
operator is denoted by � . For example, �({U1(2), U3(4) +
U5(6)}) = {W1(γ1(2)), W3(γ3(4)) + W5(γ5(6))}. After this
random mapping is applied to Q(DB, θ), we obtain the actual
query set Q[θ]DB that is sent to database DB.

Q[θ]DB = “�
(
Q(DB, θ)

)
” (25)

We use the double-quotes notation around a symbol to repre-
sent the query about its realization. For example, while W1(1)
is the realization of one message symbol, in our notation
“W1(1)” only represents the question: “what is the value of

W1(1)?” Q[θ]DB is a (unordered) set and the questions in the set
are sent in an order that is independent of θ (say, uniformly
random) to the databases.

F. Proof of Correctness, Privacy and Optimality

We prove that the achievable scheme is correct, private and
optimal in the following two lemmas.

Lemma 2: The PIR scheme constructed through the Q-Gen
Algorithm is correct, i.e., it satisfies (3). The message size is
L = N K−1 and the download cost is optimal, D = L

C .
Remark: L

C is an integer, so that DL = � L
C � = L

C .
Proof: Note that all desired message symbols are either

retrieved directly with no interference or they appear with
interference q that is downloaded separately from another
database so it can be subtracted to retrieve the desired symbols.
Therefore, all the desired message symbols are retrievable and
the correctness constraint (3) is satisfied.

In order to compute the message size and download cost,
we proceed as follows. Using (19), we have

v(1, 1) = 1 (26)

v(DB, 1) = 0, ∀DB ∈ [2 : N] (27)

v(DB, k) =
∑

DB′ =DB

v(DB′, k − 1),∀k ∈ [2 : K ] (28)

⇒ v(2, k) = · · · = v(N, k),∀k ∈ [2 : K ] (29)

Now we know that the number of instances of each type over
each block is the same for databases 2 to N . Next we derive
the total number of instances of each type over each block
across all databases. For all k ∈ [2 : K ],
v(1, k)

(28)(29)= (N − 1)v(2, k − 1) (30)

v(2, k)
(28)(29)= v(1, k − 1)+ (N − 2)v(2, k − 1) (31)

⇒ v(1, k)+ (N − 1)v(2, k)
(30)(31)= (N − 1)v(2, k − 1)

+ (N − 1)
(
v(1, k − 1)+ (N − 2)v(2, k − 1)

)
(32)
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= (N − 1)
(
v(1, k − 1)+ (N − 1)v(2, k − 1)

)
(33)

= · · · (34)

= (N − 1)k−1
(
v(1, 1)+ (N − 1)v(2, 1)

)
(35)

(27)= (N − 1)k−1 (36)

From Lemma 1, we have shown that there are v(DB) =∑K
k=1 v(DB, k)

(K−1
k−1

)
desired variables in each Q(DB, θ). Note

that desired variables all appear through new(Uθ ) so that they
are distinct across databases. Thus the message size (the total
number of desired symbols that are retrieved) is

L =
N∑

DB=1

K∑
k=1

v(DB, k)

(
K − 1

k − 1

)
(37)

(29)=
K∑

k=1

(
v(1, k)+ (N − 1)v(2, k)

)(
K − 1

k − 1

)
(38)

(36)=
K∑

k=1

(N − 1)k−1
(

K − 1

k − 1

)
(39)

=
K−1∑
k=0

(N − 1)k
(

K − 1

k

)
= N K−1 (40)

We next compute the download cost and show that the
achieved download cost is optimal, i.e., D = L

C . The
k-th block of Q(DB, θ) contains v(DB, k) instances of
k-sums of each possible type, and there are

(K
k

)
possible

types of k-sums. Therfore, the cardinality of Q(DB, θ) is∑K
k=1 v(DB, k)

(K
k

)
. Summing over all databases, we have

D =
N∑

DB=1

K∑
k=1

v(DB, k)

(
K

k

)

(29)=
K∑

k=1

(
v(1, k)+ (N − 1)v(2, k)

)(
K

k

)

(36)=
K∑

k=1

(N − 1)k−1
(

K

k

)

=
K−1∑
k=1

(N − 1)k−1
(

K

k

)
+ (N − 1)K−1

=
K−1∑
k=1

(N − 1)k−1
[(

K − 1

k − 1

)
+

(
K − 1

k

)]
+(N − 1)K−1

=
K∑

k=1

(N − 1)k−1
(

K − 1

k − 1

)
+

K−1∑
k=1

(N − 1)k−1
(

K − 1

k

)

(40)= N K−1 +
K−1∑
k=1

(N − 1)k−1
(

K − 1

k

)

= L + 1

N − 1

K−1∑
k=1

(N − 1)k
(

K − 1

k

)

= L + 1

N − 1

[
K−1∑
k=0

(N − 1)k
(

K − 1

k

)
− 1

]

= L + 1

N − 1
(N K−1 − 1) = L + N K−1

(
1
N − 1

N K

1− 1
N

)

= L

(
1− 1

N K

1− 1
N

)
= L

C

Lemma 3: The PIR scheme constructed through the Q-Gen
Algorithm is private, i.e., it satisfies (4).

Proof: From Corollary 1, we know that Q(DB, θ) depends
on θ only through the permutation functions λDB,θ,k(Uk), for
each k ∈ [1 : K ]. But, Uk are uniform permutations of message
symbols, Uk = γk(Wk). Because any permutation of a uniform
permutation is also uniform,

λDB,θ,k(γk(Wk))) ∼ γk(Wk). (41)

Furthermore, because γ1, γ2, · · · , γ j are independent,

(λDB,θ,1(γ1(W1))), λDB,θ,2(γ2(W2))), · · · , λDB,θ,K (γK (WK ))))

∼ (γ1(W1), γ2(W2), · · · , γK (WK ))

Since Q(DB, θ) is a function of (λDB,θ,1(γ1(W1))),
λDB,θ,2(γ2(W2))), · · · , λDB,θ,K (γK (WK )))), which is identi-
cally distributed for all θ ∈ [1 : K ], Q(DB, θ) is also
identically distributed for all θ ∈ [1 : K ]. Thus condition (4)
is satisfied and the scheme is private.

Remark: The query size of the PIR scheme to database DB
is equal to the size of the description for the permutation in
λDB,θ,k(γk(Wk))). Note that we do not attempt to optimize the
upload cost in this paper, which is possible, as shown in [20].

Remark: In all PIR schemes presented in this paper,
we assume that each database stores all K messages. So the
total storage required across all N databases is equal to K N
times the message size.

VI. PROOF OF THEOREM 1: ACHIEVABILITY

FOR ARBITRARY L
The optimal PIR scheme is a combination (analogous to

time sharing arguments in channel capacity studies) of the
capacity achieving scheme with message size L = N K−1

that was presented in the previous section, and a PIR scheme
from [11] (see the remark on replicated storage above
Section V of [11]) which is related to blind interference
alignment as noted in [21] (see the discussion section of [21]).
Since the main objective of [11] is PIR with distributed
storage, the scheme that we need is recovered as an implicit
special case of [11] (when replication coding is used across
the databases). To make the scheme explicit, we restate this
result in the following theorem.

Theorem 3 [11]: For PIR with N ≥ 2 databases, each
storing K ∈ N messages, each message comprised of L =
N − 1 symbols from M-ary alphabet, M ∈ N/{1}, where the
downloads are comprised of symbols from the same M-ary
alphabet, the download cost D = N = L + 1 M-ary symbols
is achievable.

While the scheme is implicitly contained in [11], for the
sake of completeness we give an explicit proof of Theorem 3
in Section VI-E. We also note that the binary alphabet (M = 2)
case is considered recently in [17] (see [17, Construction 1]).
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A. Examples

To convey the main ideas let us start with some examples
for small values of K , N, L. The idea of constructing the
optimal achievable scheme is to greedily use the most efficient
PIR scheme (the capacity achieving scheme) repeatedly, and
when the number of remaining symbols per message is less
than required, we turn to the next most efficient scheme (the
scheme in Theorem 3), and continue to use the scheme in
Theorem 3 with possibly smaller and smaller message sizes
until all symbols are considered.

1) K = 2 Messages, N = 2 Databases, L = 3 Sym-
bols per Message: We show that the download cost D =
� L

C � = �3/(2/3)� = 5 symbols is achievable. The scheme
is as follows. For each message, divide the L = 3 message
symbols into two groups, where the first group is comprised
of 2 symbols and the second group is comprised of 1 symbol.
For the first group, we use the capacity achieving scheme with
message length N K−1 = 2 so that the download cost achieved
is 2/C = 3 symbols. For the second group, we use the scheme
described in Theorem 3 so that the download cost achieved is
N = 2 symbols. Adding the two, the overall download cost is
D = 5 symbols, as desired.

2) K = 3 Messages, N = 3 Databases, L = 25 Symbols
per Message: We show that the download cost D = � L

C � =�25/(9/13)� = 37 symbols is achievable. The scheme is as
follows. For each message, divide the L = 25 symbols into
three groups, where the first group is comprised of 18 symbols,
the second group is comprised of 6 symbols and the third
group is comprised of 1 symbol. For the first group, we further
divide the 18 symbols to 2 sub-groups, each of which is
comprised of 9 symbols. For each sub-group, we use the
capacity achieving scheme with message length N K−1 = 9
so that the download cost achieved per sub-group is 9/C =
13 symbols. In total, the download cost for the first group is
26 symbols. Note that the second group only has 6 symbols per
message so that we can not use the capacity achieving scheme
and we turn to the scheme in Theorem 3. For the second group,
we further divide the 6 symbols to 3 sub-groups, each of which
is comprised of 2 symbols. For each sub-group, we use the
scheme described in Theorem 3 with N = 3 databases, so that
the download cost per sub-group is N = 3 symbols. In total,
the download cost for the second group is 9 symbols. Note now
that the third group only has 1 symbol per message so that even
the scheme for the second group does not apply and we turn to
the same class of scheme but with shorter (matching) message
length. For the third group, we use the scheme described in
Theorem 3 with N ′ = 2 databases (say, the first two databases)
and message size L ′ = 1 symbol (matching the size of the
third group), so that the download cost achieved is N ′ = 2
symbols. Adding the download cost of the three groups up,
the overall download cost is D = 26 + 9 + 2 = 37 symbols,
as desired.

B. Description of Achievable Scheme for Arbitrary L

We now describe the general achievable scheme for arbi-
trary L, following the examples presented above. We first fully
use the capacity achieving scheme with message size N K−1.

To this end, we view each N K−1 symbols as a group and
proceed until the number of symbols that remain is smaller
than N K−1,

L = G1 N K−1 + L1 (42)

where G1 = � L
N K−1 � and 0 ≤ L1 ≤ N K−1 − 1. If L1 = 0,

we are done. Otherwise, for the L1 symbols that remain,
we fully use the scheme in Theorem 3 with N databases
and message size N − 1. We view each N − 1 symbols as a
group and proceed until the number of symbols left is smaller
than N − 1,

L1 = G2(N − 1)+ L2 (43)

where G2 = � L1
N−1 � and 0 ≤ L2 ≤ N − 2. If L2 = 0, we are

done. Otherwise, for the L2 ≥ 1 symbols that are left, we use
the scheme in Theorem 3 with L2+ 1 databases (say, the first
L2 + 1 ≤ N − 1 databases) and message size L2. Therefore
the message size and the achievable download cost are

L = G1 N K−1 + G2(N − 1)+ L2

D =
{

G1 N K−1/C + G2 N if L2 = 0

G1 N K−1/C + G2 N + L2 + 1 otherwise

This completes the description of our achievable scheme.
Remark: Our achievability proofs have used three types of

schemes, i.e., the capacity achieving scheme for message size
N K−1, the scheme in Theorem 3 with message size N−1, and
the scheme in Theorem 3 with message size L2. The upload
cost (query size) of our achievable scheme is equal to the sum
of the upload cost of all three types of schemes. Note that when
we use the same type of scheme several times, we can reuse
the same query such that the upload cost does not scale (see
[2, Proposition 4.1.1]).

C. Proof That the Scheme Is Correct and Private

Since we construct our PIR scheme as a concatenation of
multiple PIR schemes, let us present the following theorem to
show that such a concatenation yields a PIR scheme that is
correct and private.

Theorem 4: For PIR with N ∈ N databases, each storing all
K ∈ N messages, each message comprised of L ∈ N symbols
from M-ary alphabet, M ∈ N/{1}, where the downloads are
comprised of symbols from the same M-ary alphabet, if there
are J ∈ N schemes with message length L j , j ∈ [1 : J ]
and download cost D j , j ∈ [1 : J ], respectively, and the
message lengths add up to L, i.e.,

∑J
j=1 L j = L, then there

exists a PIR scheme with message length L and download cost
D =∑J

j=1 D j .
Proof: The scheme is based on dividing the L message

symbols to J groups so that the j -th group is comprised of
L j symbols per message. Then we use the given scheme with
message length L j for the j -th group, so that the download
cost achieved is D j symbols. Specifically, the queries for each
group are generated independently, given the same desired
message index. Combining the download cost for all J groups,
we achieve the desired download cost. We are left to prove
that this symbol sharing scheme produces a correct and private
PIR scheme.
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Correctness is easy to see as the scheme for each group is
correct. Privacy is proved as follows. Consider any database
n, n ∈ [1 : N] and any desired message index θ, θ ∈ [1 : K ].
Denote the query of the scheme for the j -th group as Q[θ]n ( j).
Since the scheme for the j -th group is private, we have that
Q[θ]n ( j) ∼ Q[θ

′]
n ( j), for all θ, θ ′ ∈ [1 : K ] and ∀ j ∈

[1 : J ]. Now since for any θ , the queries for each group
are generated independently, their joint probability distribution
function is the product of the marginal probability distribution
functions, i.e.,

Pr(Q[θ]n (1), Q[θ]n (2), · · · , Q[θ]n (J ))

= Pr(Q[θ]n (1))× Pr(Q[θ]n (2))× · · · × Pr(Q[θ]n (J ))

= Pr(Q[θ ′]n (1))× Pr(Q[θ ′]n (2))× · · · × Pr(Q[θ ′]n (J ))

for all θ, θ ′ ∈ [1 : K ]. Therefore the overall query for all
groups is identically distributed regardless of the index of
the desired message θ , and the symbol sharing scheme is
private (4).

D. Proof That the Achieved Download Cost D = � L
C �

We next show that the achievable download cost in (44)
satisfies D ∈ [ L

C , L
C + 1) so that D = � L

C �. Note that in
the converse proof, we have already shown that for all PIR
schemes, D ≥ L

C holds. So we only need to prove that
D < L

C + 1. Here we have two cases.
Case 1: L2 = 0. We have

D <
L

C
+ 1 (44)

⇔ G1 N K−1/C + G2 N

< (G1 N K−1 + G2(N − 1))/C + 1 (45)

⇔ G2 N < G2(N − 1)/C + 1 (46)

When N = 1, we have G2 = 0 so that (46) holds. When
N ≥ 2, plugging in C = 1−1/N

1−(1/N)K = N K−1
(

N−1
N K−1

)
, we have

G2 N < G2

(
N K − 1

N K−1

)
+ 1 (47)

⇔ G2 < N K−1 (48)

which holds because G2 = � L1
N−1 � ≤ L1 ≤ N K−1 − 1 <

N K−1.
Case 2: L2 ≥ 1. Note that when L2 ≥ 1, we have N ≥ 2

such that C = 1−1/N
1−(1/N)K . As a result,

D <
L

C
+ 1 (49)

⇔ G1 N K−1/C + G2 N + L2 + 1

< (G1 N K−1 + G2(N − 1)+ L2)/C + 1 (50)

⇔ G2 N + L2 < (G2(N − 1)+ L2)/C (51)

⇔ G2 N + L2 < (G2(N − 1)+ L2)

(
N K − 1

(N − 1)N K−1

)

⇔ G2

N K−1 < L2

(
N K−1 − 1

(N − 1)N K−1

)
(52)

⇔ G2(N − 1) < L2(N K−1 − 1) (53)

which is proved as follows

L2(N K−1 − 1) ≥ N K−1 − 1 (54)

≥ L1 = G2(N − 1)+ L2 > G2(N − 1)

(55)

Thus the proof is complete.

E. Proof of Theorem 3

We now present the scheme with download cost D = N
and message length L = N − 1. Consider

Wk =
(

Wk(1), Wk(2), · · · , Wk(N − 1)
)
, ∀k ∈ [1 : K ] (56)

where each Wk(i), i ∈ [1 : N − 1] is an M-ary symbol.
The queries are specified as follows. To retrieve Wθ

privately, the user first generates a random vector of
length (N − 1)K , [h1(1), · · · , h1(N − 1), · · · , hθ (1), · · · ,
hθ (N −1), · · · , hK (N −1)], where each element is uniformly
distributed over {0, 1}. Then the queries are set as follows.

Q[θ]1 = [h1(1), · · · , hθ (1), · · · , hθ (N − 1), · · · , hK (N − 1)]
Q[θ]2 = [h1(1), · · · , hθ (1)⊕ 1, · · · , hθ (N − 1), · · · ,

hK (N − 1)]
· · ·

Q[θ]N = [h1(1), · · · , hθ (1), · · · , hθ (N − 1)⊕ 1, · · · ,
hK (N − 1)]

where ⊕ represents the modulo-2 sum. The answer from each
database is the modulo-M sum of the scalar product of each
message symbol and the corresponding coefficient in the query
vector.

A[θ]1 =
K∑

k=1

N−1∑
i=1

hk(i)Wk(i)

A[θ]2 =
K∑

k=1

N−1∑
i=1

hk(i)Wk(i)+ (−1)hθ (1)Wθ (1)

· · ·
A[θ]N =

K∑
k=1

N−1∑
i=1

hk(i)Wk(i)+ (−1)hθ (N−1)Wθ (N − 1)

The user decodes Wθ (i), i ∈ [1 : N − 1] by subtracting A[θ]1
from A[θ]i+1, with no error. Therefore, the PIR scheme is correct.

Privacy is guaranteed because each query is independent of
the desired message index θ . This is because regardless of the
desired message index θ , each query Q[θ]n ,∀n is individually
comprised of elements that are i.i.d. uniform over {0, 1}.

Each answer is comprised of 1 symbol, so the download
cost achieved is D = N symbols. The proof is complete.

VII. PROOF OF THEOREM 2

A. Converse

First let us prove the converse. As in the converse proof
of Theorem 1, the PIR capacity [20] provides a general
upper bound on rate, and therefore a general lower bound
on download cost for any given message length, which holds
regardless of the choice of alphabet used to represent the
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messages and download symbols. For message length L and
download cost D, the rate is L log2(M)

D log2(M ′) which cannot exceed

capacity. Therefore we automatically have the lower bound

on download cost as D ≥ L log2(M)
C log2(M ′) , and because D ∈ N,

we must have

D ≥
⌈

L log2(M)

C log2(M ′)

⌉
(57)

B. Achievability
For the proof of achievability, let us construct a simple

(sub-optimal) PIR scheme whose download cost is nonetheless
guaranteed to be within 2 M ′-ary symbols of the lower bound.
The scheme is described as follows.

Let us map the messages from M-ary alphabet to M ′-ary
alphabet. Each message is comprised of L symbols that are
from an M-ary message alphabet, i.e., for each message there
are M L possible distinct realizations. L ′ symbols from M ′-ary
alphabet are capable of representing M ′L ′ distinct realizations.
To have distinct representations for distinct message realiza-
tions, we must have M ′L

′ ≥ M L . For this, L ′ = �L logM ′ M�
is sufficient.5 Now the message symbols and the download
symbols are from the same M ′-ary alphabet, so that we can use
the PIR scheme used to establish achievability in Theorem 1
to achieve download cost D = � L ′

C �, measured in M ′-ary
download symbols. Next let us prove that even for this simple
scheme, the gap to optimality is no more than 2 M ′-ary
symbols.

Since the N = 1 case is trivial (optimal to fully download
all messages), let us assume N ≥ 2. Note that for N ≥ 2 it
is always true that C ≥ 1/2, i.e., 1/C ≤ 2. Starting with the
general upper bound (57),⌈

L ′

C

⌉
≥ DL ≥

⌈
L log2(M)

C log2(M ′)

⌉
(58)

=
⌈

L logM ′(M)

C

⌉
(59)

≥
⌈�L logM ′(M)� − 1

C

⌉
(60)

=
⌈

L ′

C
− 1

C

⌉
(61)

≥
⌈

L ′

C
− 2

⌉
(62)

=
⌈

L ′

C

⌉
− 2 (63)

VIII. CONCLUSION

Recent work has characterized the capacity, C (supremum
of the ratio of message size over download cost, i.e., L/D) of
PIR when the message size L → ∞. In this work, we have
shown that for arbitrary fixed message size L ∈ N, when
the messages and downloads are comprised of symbols from

5The sub-optimality of the scheme becomes obvious here because, for
example if M ′ is much larger than M, then we could jointly code all K M-ary
messages symbols to only 1 M ′-ary message symbol, therefore download
cost of 1 M ′-ary symbol would be enough, whereas our naive scheme will
download at least 1/C symbols.

the same arbitrary M-ary alphabet, the optimal download
cost is DL = � L

C �; and when the messages and downloads
are comprised of symbols from different alphabets (messages
from M-ary alphabet and downloads from M ′-ary alphabet,
M = M ′), the optimal download cost (in M ′-ary
symbols) DL ∈

{⌈
L ′
C

⌉
,
⌈

L ′
C

⌉
− 1,

⌈
L ′
C

⌉
− 2

}
, where

L ′ = �L logM ′ M�.
An interesting feature of our PIR scheme is that it allows

arbitrary M-ary alphabet (not restricted to finite fields). This is
because the scheme downloads only direct sums modulo-M of
various message symbols. As the next step in this direction the
extension to TPIR (PIR with T -privacy) may be of interest.
The capacity of TPIR for unconstrained alphabet is charac-
terized in [22], and the capacity achieving scheme presented
there relies on finite field operations (multiplications) and
existence of MDS codes. PIR schemes based on finite fields
can be extended to arbitrary M-ary alphabet by decomposing
M into its prime factors and concatenating PIR schemes over
the finite fields corresponding to the prime factors. However,
the extension may be difficult when field size constraints
imposed by arbitrary M-ary alphabet are incompatible with
the MDS code requirements.
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