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Abstract— We study the degrees of freedom (DoF) of the
layered 2 × 2 × 2 multiple-input-multiple-output (MIMO)
interference channel where each node is equipped with arbitrary
number of antennas, the channels between the nodes have
arbitrary rank constraints, and subject to the rank-constraints
the channel coefficients can take arbitrary values. The DoF
outer bounds reveal a fundamental rank-matching phenomenon,
reminiscent of impedance matching in circuit theory. It is well
known that the maximum power transfer in a circuit is achieved
not for the maximum or minimum load impedance but for the
load impedance that matches the source impedance. Similarly,
the maximum DoF in the rank-constrained 2 × 2 × 2 MIMO
interference network is achieved not for the maximum or
minimum ranks of the destination hop, but when the ranks
of the destination hop match the ranks of the source hop.
In fact, for mismatched settings of interest, the outer bounds
identify a DoF loss penalty that is precisely equal to the
rank-mismatch between the two hops. For symmetric settings,
we also provide achievability results to show that along with the
min-cut max-flow bounds, the rank-mismatch bounds are
the best possible, i.e., they hold for all channels that satisfy
the rank-constraints and are tight for almost all channels that
satisfy the rank-constraints. Limited extensions—from sum-DoF
to DoF region, from 2 unicasts to X message sets, from 2 hops
to more than 2 hops and from 2 nodes per layer to more than
2 nodes per layer—are considered to illustrate how the insights
generalize beyond the elemental 2 × 2 × 2 channel model.

Index Terms— Rank matching, degrees of freedom, multihop
multiflow, capacity.

I. INTRODUCTION

THE 2 × 2 × 2 interference channel, which is a layered
network comprised of two source nodes, two relay nodes

and two destination nodes, is an elemental model for the
study of the information theoretic foundations of multihop
multiflow networks. Many of the key ideas behind multihop
multiflow networks, such as interference neutralization [2],
aligned interference neutralization [3], aligned interference
diagonalization [4], opportunistic scheduling [5], network
condensation and manageable interference [6], [7] have been
discovered through the degrees of freedom (DoF) studies of
the 2 × 2 × 2 interference channel and its natural extensions
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Fig. 1. 2 × 2 × 2 MIMO interference channel with M antennas at each
node where all channels in the first hop have rank r[1] and all channels in
the second hop have rank r[2] .

to more than 2 sources/relays/destinations/hops, arbitrary
topologies, and even non-layered settings [8]. Continuing
along this path, in this work we explore a generalization of
the 2 × 2 × 2 interference network to the multiple-input-
multiple-output (MIMO) setting with arbitrary ranks for
each of the channels involved. Such rank-constraint setting
arises naturally due to path correlation, fading, topology
structure, network coding operations, etc. The goal is to
shed light on the information theoretic implications of the
dimensionality constraints of the sub-networks comprising a
multihop multiflow network. Parameterizing the problem in
terms of the ranks of each of the constituent channels, allows
us to go beyond the basic min-cut arguments to identify an
intriguing “rank matching” property, somewhat reminiscent of
“impedance matching” in circuit theory. It is well known that
the maximum power transfer in a circuit is achieved not for
the maximum or minimum load impedance but for the load
impedance that matches the source impedance. Similarly, the
maximum DoF in the elementary 2×2×2 MIMO interference
network is achieved not for the maximum or minimum ranks
of the destination hop, but when the ranks of the destination
hop match the ranks of the source hop. In fact, for mismatched
settings of interest, the loss in DoF turns out to be precisely
equal to the rank-mismatch between the two hops.

As an example, consider the 2 × 2 × 2 MIMO interference
channel illustrated in Fig. 1 where all nodes are equipped with
M antennas, all channels in the first hop have rank r [1], and
all channels in the second hop have rank r [2]. Aside from the
rank-constraints, the channels can take arbitrary values. The
min-cut max-flow bound for this network simply states that
the sum-DoF, d� ≤ min(4r [1], 4r [2], 2M). However, as we
show in this work, the rank-constraints enforce the following
rank-mismatch bound on the sum-DoF.

d� ≤ 2M − �r (1)

where �r = |r [1]−r [2]| is the rank-mismatch term. Combined
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Fig. 2. A 2 × 2 × 2 MIMO interference channel with M antennas at each
node and arbitrary ranks. The symbols on the links identify the pairing of
channels in rank-matching outer bounds. 2M DoF are not achievable unless
similarly marked channels have the same ranks, e.g., r(S1R1) must be equal
to r(R2D2).

with the min-cut max-flow bounds, this produces the tightest
possible bound for the given rank-constraints,

d� ≤ min(4r [1], 4r [2], 2M − �r) (2)

This is the tightest bound possible in the sense that 1) it holds
for all channels that satisfy the given rank-constraints, and
2) there exist channels that satisfy the given rank-constraints
for which the bound is tight. In fact, the bound is tight
for almost all channels that satisfy the rank-constraints.
Remarkably, except for severely rank-deficient scenarios
when the min-cut max-flow bounds are active, for moderately
rank-deficient settings that are of main interest, it is the
rank-mismatch bound that is active. Also note that the best
possible outcome, d� = 2M , sometimes referred to as
“everyone gets the entire cake” [3]–[5], is possible only if
�r = 0, i.e., ranks in the two hops are matched.

The rank matching phenomenon is not limited to symmetric
settings. Consider, for example the case illustrated in Fig. 2
where all ranks are allowed to be different from each other.
The rank-mismatch bound here takes the following form.

d� ≤ 2M − �r (3)

�r = max(|r(S1R1) − r(R2D2)|, |r(S2R2) − r(R1D1)|,
|r(S1R2) − r(R1D2)|, |r(S2R1) − r(R2D1)|)

Note that in terms of rank-matching, a channel originating at
S1(S2) is paired with a channel terminating at D2(D1), and
a channel terminating at R1(R2) is paired with a channel
originating at R2(R1). The channel pairings are indicated
in Fig. 2. 2M DoF cannot be achieved unless each of these
pairs of associated channels have matching ranks.

As a simple application of this bound, let us recover
the DoF results for the various non-trivial topologies of the
2 × 2 × 2 SISO (M = 1) interference channel. Following the
terminology of [2], these are labeled as the Z Z , SS, Z S, SZ ,
X Z , X S, Z X , SX and X X topologies. Fig. 3 illustrates some
of them. The rank-mismatch bound immediately identifies
SZ , Z S, SX, Z X, X S, X Z as the rank mis-matched topolo-
gies (�r = 1) which can therefore only have 1 DoF, whereas
SS, Z Z , X X are the rank-matched topologies (�r = 0),
which have indeed been shown to have 2 DoF.

The rank matching phenomenon persists even in further
generalized settings with arbitrary antenna configurations

Fig. 3. Some topologies of 2×2×2 SISO interference channel. Z S and S X
topologies have DoF 1 as r(S2R1) does not match r(R2D1). In contrast, all
ranks match in Z Z and X X topologies such that they have 2 DoF.

and/or redundant dimensions, i.e., when certain signal
dimensions at a node may be inaccessible to/from any other
node. Indeed, to gain as much insight as possible, we consider
the generalized setting in this work. This is described in the
system model that we present next.

II. SYSTEM MODEL

The 2 × 2 × 2 MIMO interference channel is comprised
of 3 layers and there are two nodes in each layer. Layer 1
contains the two source nodes S1,S2, layer 2 contains the two
relay nodes R1,R2, and layer 3 contains the two destination
nodes, D1,D2. The j -th source, relay, and destination node is
equipped with M(S j ), M(R j ), M(D j ) antennas, respectively.
In addition to this notation which identifies the sources, relays
and destinations explicitly and is therefore easier to grasp, we
will also use an alternative compact notation which identifies
nodes only by the layer index when brevity is the priority,
e.g., in the details of the longer proofs. According to this
compact notation, the j -th node in layer l has Ml

j antennas,
j ∈ {1, 2}, l ∈ {1, 2, 3}. So, for example, M(R2) = M2

2 and
M(D1) = M3

1 .
At time index t ∈ N, the various inputs and outputs are

related as follows.

Yl+1
j (t) =

2∑

i=1

Hl
j i(t)X

l
i (t) + Zl+1

j (t),

j ∈ {1, 2}, l ∈ {1, 2} (4)

where Yl+1
j (t) is the Ml+1

j ×1 received signal vector observed
at node j in layer l +1, Xl

i(t) is the Ml
i ×1 transmitted signal

vector sent by node i in layer l and Zl+1
j (t) is the Ml+1

j × 1
vector of independent and identically distributed (i.i.d.) zero
mean unit variance circularly symmetric complex Gaussian
noise terms, respectively. Hl

j i(t) is the Ml+1
j × Ml

i channel
matrix from node i in layer l to node j in layer l +1. In other
words, Hl

j i(t) is the channel matrix between node i and node j
over the l-th hop. All symbols are complex and noise processes
are i.i.d over time. Si has an independent message Wi for Di ,
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i ∈ {1, 2}. Each transmitting node is subject to average power
constraint P . The encoding functions at the relays are assumed
to be known everywhere. The time index, t , will occasionally
be suppressed for concise notation, when no ambiguity would
be caused.

The rank-constraints are stated as follows, ∀t ∈ N.

rank(H1
11(t)) = r(S1R1) rank(H1

12(t)) = r(S2R1)

rank(H1
21(t)) = r(S1R2) rank(H1

22(t)) = r(S2R2)

rank(H2
11(t)) = r(R1D1) rank(H2

12(t)) = r(R2D1)

rank(H2
21(t)) = r(R1D2) rank(H2

22(t)) = r(R2D2) (5)

The channel coefficients can take arbitrary values and are
also allowed to vary in time as long as the rank-constraints
are satisfied and the non-zero singular values of each channel
matrix are bounded away from zero and infinity. Perfect
channel knowledge is assumed everywhere. Finally, the defi-
nitions of codebooks, achievable rates, capacity, and degrees
of freedom are all used in the standard sense.

III. RESULTS

In this section we present our two main results — the
general statement of the rank mismatch outer bound, and a
proof that (along with the min-cut max-flow bound) it is tight,
at least in symmetric settings.

A. Rank-Mismatch Outer Bound

Without loss of generality, let us discard any redundant
dimensions (dimensions that are not accessible to/from any
other node) from the sources and destinations, respectively,
so that,

M(Si ) ≤ r(SiR1) + r(SiR2), i ∈ {1, 2} (6)

M(Dk) ≤ r(R1Dk) + r(R2Dk), k ∈ {1, 2} (7)

For example, if M(Si ) > r(SiR1) + r(SiR2), then certain
signal dimension at source Si cannot be seen, by both relays.
Therefore, when M(Si ) is bigger than r(SiR1) + r(SiR2),
we may set M(Si ) = r(SiR1) + r(SiR2), without any
loss. Similarly discarding redundant dimensions at the relays,
the effective number of transmit antennas Mt (R j ), and the
effective number of receive antennas Mr (R j ) at the j -th relay,
j ∈ {1, 2}, are constrained as follows.

Mt (R j ) ≤ r(R jD1) + r(R jD2) (8)

Mr (R j ) ≤ r(S1R j ) + r(S2R j ) (9)

For compact notation, let us define

ī =
{

1, if i = 2
2, if i = 1

, j̄ =
{

1, if j = 2
2, if j = 1

(10)

With these simplifications of the notation, we are ready to state
the main result in the following theorem.

Theorem 1: For the rank-constrained 2 × 2 × 2 MIMO
interference channel defined in Section II, the sum-DoF, d� ,
satisfy the following outer bound for all i, j ∈ {1, 2}.

d� ≤ 1

2

{[
M(Si ) + Mr (R j )

]
+

[
Mt (R j̄ ) + M(Dī )

]}

−|�ri j | (11)

where

�ri j =
[
r(SiR j ) − r(R j̄Dī )

]
− 1

2

{[
M(Si ) + Mr (R j )

]

−
[

Mt (R j̄ ) + M(Dī )
] }

(12)
Remark: Note that the bounds have a dual character,

i.e., the same bounds hold for the reciprocal network obtained
by reversing the direction of communication.

Remark: Consider the rank-mismatch bound (11), e.g., for
i = 2, j = 1. It can be equivalently stated as the following
two bounds, which highlight the ‘rank-mismatch’ aspect,
while (11) highlights the ‘penalty’ aspect.

d� ≤ M(S2) + Mr (R1) + r(R2D1) − r(S2R1) (13)

d� ≤ Mt (R2) + M(D1) + r(S2R1) − r(R2D1) (14)

Remark: Note that for all i, j ∈ {1, 2}, the first hop channel
SiR j is paired with the second hop channel R j̄Dī . This is the
same pairing as indicated in Fig. 2. In the best case scenario,
the rank-mismatch bound that is active is the average of the
number of antennas in the two paired channels. This best case
corresponds to the rank-mismatch term �ri j taking zero value,
which happens only if the difference of ranks between the
paired channels equals half of the corresponding difference of
the number of antennas.

r(SiR j ) − r(R j̄Dī )

= 1

2

{[
M(Si ) + Mr (R j )

]
−

[
Mt (R j̄ ) + M(Dī )

]}
(15)

The insight obtained here is that ideally the difference of ranks
should be half of the difference of antennas in the paired
channels. Otherwise, the deviation from the ideal value is the
loss term associated with each bound.

Theorem 1 has profound implications in terms of the
rank-matching phenomenon — in addition to the examples
presented in the introduction section, please refer to the
extensions in Section IV for interesting insights. However, we
note that the theorem is obtained based only on arguments
that are fairly standard for DoF bounds, similar to, e.g.,
[2]. As such, this is a remarkable case of simple arguments
leading to surprising insights. The proof of Theorem 1 is
presented in Section VI-A.

B. Tightness of Rank-Mismatch Outer Bounds

Having presented the rank-mismatch outer bounds in
Theorem 1, we next consider the natural question ‘How tight
are these bounds?’. This seems to be a difficult question to
answer in full generality due to the abundance of parameters.
Nevertheless, for the symmetric setting illustrated in Fig. 1,
where all channels in the first hop have rank r [1] and all
channels in the second hop have rank r [2], and all nodes
have M antennas, we are able to prove that (combined with
min-cut max-flow bounds) the rank-mismatch bounds are the
best possible bounds for the given rank-constraints. By best
possible we mean that 1) the bounds are satisfied by all
channels that satisfy the rank-constraints, and 2) there exist
channels that satisfy the given rank-constraints for which the
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bounds are tight. Not only that, but the bounds are tight for
almost all channels that satisfy the rank-constraints, i.e., they
are tight almost surely for generic channels, where by generic
channels we mean that the channels are drawn according to
a continuous distribution over the algebraic variety defined
by the rank-constraints. For instance, one may assume that
each M × M channel over the l-th hop is a product of an
M ×r [l] channel matrix and a r [l]×M channel matrix, each of
which is generated randomly and independently of the others
across space and time, according to a continuous distribution.
We state this result as the following theorem.

Theorem 2: For the rank-constrained symmetric 2 × 2 × 2
MIMO interference channel illustrated in Fig. 1, the sum-DoF
outer bound d� ≤ min(4r [1], 4r [2], 2M − |r [1] − r [2]|) is
the best possible for the given rank-constraints. For generic
time-varying channels, the bound is tight almost surely.

The proof is presented in Section VI-B.
Beyond the symmetric setting of Theorem 2, a general

achievability proof for asymmetric settings seems prohibitively
cumbersome due to the abundance of parameters. However,
based on numerous examples that we have attempted, we
note that even for asymmetric settings, subject only to the
rank-constraints stated in (5), the rank-mismatch bounds
appear to be the best possible when combined with min-cut
max-flow bounds.

IV. EXTENSIONS

In this section, to catch a glimpse of the implications
of the rank-matching bounds beyond the sum-DoF of the
2 × 2 × 2 MIMO interference channel, we consider a few
limited extensions — beyond sum-DoF to DoF region, beyond
2 unicasts to general message sets (X setting), beyond 2 hops
to the 2 × 2 × 2 × 2 setting and beyond 2 nodes per layer
to the K × K × K setting. In particular, we find that the
DoF loss due to rank-mismatch may be circumvented, at least
in symmetric settings, through expanded message sets and/or
expanded number of hops.

A. Beyond Sum-DoF: DoF Region
The insights from the sum-DoF characterization are suffi-

cient to establish the DoF region for the symmetric setting,
which is given by the rank-mismatch sum-DoF bound com-
bined with single user min-cut max-flow bounds. We state this
result as the following theorem.

Theorem 3: For the rank-constrained symmetric 2 × 2 × 2
MIMO interference channel illustrated in Fig. 1, with generic
time-varying channels, the DoF region is the set of all tuples
(d1, d2) satisfying

d1 + d2 ≤ 2M − |r [1] − r [2]| (16)

d1 ≤ min(2r [1], 2r [2], M) (17)

d2 ≤ min(2r [1], 2r [2], M) (18)
The proof is presented in Section VI-C.

B. Beyond 2 Unicasts: X Message Setting

Next we consider the X message setting, where there is an
independent message from each source to each destination.

Fig. 4. While the first hop (Z) and the last hop (S) are mismatched if
connected directly to each other, linear processing at the intermediate hop
facilitates rank-matching so that the first hop, which has a Z topology, sees
the rest of the network as a Z topology, and at the same time, the last hop,
which has an S topology, sees the rest of the network as an S topology. Thus
the presence of the intermediate hop increases the DoF from 1 to 2.

We want to characterize the sum-DoF for the symmetric
setting. It turns out that the 4 messages in the network provide
enough flexibility to fully exploit the signal space resources
such that the rank-mismatch penalty term disappears and the
min-cut max-flow bound is achievable. We state this result as
the following theorem.

Theorem 4: For the rank-constrained symmetric 2 × 2 × 2
MIMO X channel, whose underlying channels are the same
as that of Fig. 1, but with 4 independent messages, one from
each source to each destination, the min-cut max-flow bounds
d� ≤ min(4r [1], 4r [2], 2M) are achievable for generic time-
varying channels almost surely.

The proof is presented in Section VI-D.

C. Beyond 2 Hops: 2 × 2 × 2 × 2 MIMO
Interference Channel

Consider a 2 unicast interference network with multiple
hops. From the perspective of the relay nodes in any given
layer, if linear precoding schemes are employed at all other
layers of relay nodes, then the network appears effectively as
a 2 × 2 × 2 MIMO interference network. The rank matching
criterion tells us that from the perspective of the chosen
layer of relay nodes, the ranks of the effective channels
from the sources to these relays should match the ranks of
corresponding channels from these relays to the destinations.
Otherwise, Theorem 1 identifies the loss incurred by rank-
mismatch. In other words, the goal of other relay layers is to
facilitate the matching of ranks as much as possible. This is
a useful general design principle and moreover, it is local in
the sense that only the net rank information of other hops
is needed such that iterative design may be possible. For
example, consider the 2 × 2 × 2 SISO interference channel
with Z S topology, which has DoF 1. Suppose we are allowed
to add a fully connected intermediate hop inside (see Fig. 4),
how should we design the relay operations such that we can
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Fig. 5. 2 × 2 × 2 × 2 MIMO interference channel with M antennas at each
node where all channels in the l-th hop have rank r[l], l ∈ {1, 2, 3}.

increase DoF? In this case, it turns out that we can achieve
2 DoF. To see this, let us set

H 1
12H 2

11α1 + H 1
22H 2

12α2 = 0 (19)

H 2
11H 3

21β1 + H 2
21H 3

22β2 = 0 (20)

where H l
j i is the channel coefficient from node i to node j over

the l-th hop and αi , βi are the amplify and forward coefficients
used by the relays (see Fig. 4). This creates two interference
free paths from the sources to their desired destinations. From
a rank matching perspective, α1, α2 are chosen such that the
first two hops appear like an S topology to match the last hop,
which itself has an S topology, and β1, β2 are chosen such that
the last two hops appear like a Z topology to match the first
hop, which itself has a Z topology. This is illustrated in Fig. 4.

Motivated by the observation that the intermediate hop can
increase DoF by facilitating rank-matching, we explore how
much gain can be obtained in the symmetric 2 × 2 × 2 × 2
MIMO interference channel illustrated in Fig. 5, where all
nodes are equipped with M antennas, and all channels in the
l-th hop have rank r [l], l ∈ {1, 2, 3}. Somewhat surprisingly,
we show that the min-cut max-flow bounds are tight, for
almost all channels that satisfy the rank-constraints. In other
words, no matter how much mismatched are the first hop
and last hop, the intermediate hop is able to compensate
this rank-mismatch, up to its capability, i.e., its own min-cut.
That is, when the first hop is directly connected to the third
hop, the sum-DoF value is min(4r [1], 4r [3], 2M −|r [1] − r [3]|)
and if we add the intermediate hop, the sum-DoF value
becomes min(4r [1], 4r [2], 4r [3], 2M) such that the rank-
mismatch penalty term disappears. As a result, when
4r [2] ≥ min(4r [1], 4r [3], 2M − |r [1] − r [3]|), this translates to
a strict DoF increase. We state this result as the following
theorem.

Theorem 5: For the rank-constrained symmetric 2×2×2×2
MIMO interference channel illustrated in Fig. 5, the min-cut
max-flow bounds min(4r [1], 4r [2], 4r [3], 2M) are achievable
for generic time-varying channels almost surely.

The proof is presented in Section VI-E.

D. Beyond 2 Nodes Per Layer: K × K × K
Interference Network

Next we consider a case with more than 2 flows, that is, the
K -DoF feasibility condition for the K × K × K interference
network, obtained very recently in [9, Th. 2].1

1Reference [9], which appeared on ArXiv (April 19, 2014) a few weeks
after our Globecom submission of this work (March 31, 2014), independently
obtains outer bounds that are similar to our outer bounds, underscoring the
fundamental significance of these bounds.

While a K × K × K network appears to be an extension that
goes beyond the 2 × 2 × 2 interference network that we study
here, we will show that the outer bound needed for the K -DoF
feasibility result of [9] also follows directly from Theorem 1
(sufficiency is also proved for generic channel coefficients
in [9]). This is because clustering nodes (allowing cooperation
among them) reduces a K ×K ×K SISO interference network
to a 2 × 2 × 2 MIMO interference network. Since cooperation
does not hurt, the outer bound for the 2×2×2 MIMO interfer-
ence network also applies to the K ×K ×K SISO interference
network. The feasibility condition is restated as follows.

Theorem 6 (Rephrased From [9, Th. 2]): In order for
a K × K × K interference network to have K DoF, we have
the following two claims.

1) (Claim 1): If Si is not connected to R j ,∀i,
j ∈ {1, · · · , K }, then the channel between all relays
except R j and all destinations except Di must be rank-
deficient.

2) (Claim 2): As a dual statement, if Ri is not connected
to D j ,∀i, j ∈ {1, · · · , K }, then the channel between
all sources except S j and all relays except Ri must be
rank-deficient.

This K -DoF feasibility condition perfectly fits the rank
matching principle. In order to allow K DoF in the network, if
a certain link is not present (creating a rank-deficiency), then
its paired channel in the other hop must be rank-deficient as
well. Let us show how both claims follow from our Theorem 1.

Without loss of generality consider Claim 1 when
i = j = 1. In order to map a K × K × K interference
network to a 2 × 2 × 2 setting such that we can use
Theorem 1, we allow full cooperation between all sources
except S1 such that they become another super source that
we call S ′

2. Similarly, all relays/destinations except R1/D1
are clustered to become a super relay/destination that we
call R′

2/D′
2. With this transformation, Claim 1 becomes that

in order for the K × K × K interference network to have
K DoF, if r(S1R1) = 0, then r(R′

2D′
2) < K − 1.

To prove this by contradiction, we show that if
r(S1R1) = 0 and r(R′

2D′
2) = K − 1, the newly formed

2 × 2 × 2 MIMO interference network can not have K DoF,
which in turn means that the original K × K × K interference
network can not have K DoF, as cooperation can never hurt
the sum-DoF. So we wish to prove

r(S1R1) = 0, r(R′
2D′

2) = K − 1 ⇒ d� < K . (21)

For this purpose, let us substitute into (11) with i = j = 1,
ī = j̄ = 2, r(S1R1) = 0, r(R′

2D′
2) = K − 1, M(S1) =

M(D1) = Mr (R1) = Mt (R1) = 1, M(S ′
2) = M(D′

2) =
Mr (R′

2) = Mt (R′
2) = K − 1. Then we have

d� ≤ 1

2
[(1 + 1) + (K − 1 + K − 1)]

−
∣∣∣∣0 − (K − 1) − 1

2
[(1 + 1) − (K − 1 + K − 1)]

∣∣∣∣
(22)

= K − 1 < K , (23)

Claim 2 which is the dual of Claim 1, similarly follows from
Theorem 1, as Theorem 1 itself has a dual character.
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V. DISCUSSION

Although the focus of this paper is primarily on the
2 ×2 ×2 interference channel, the fundamental nature of rank
matching phenomenon leads to broad applicability in general
multiflow multihop networks, as evident from the various
extensions considered in the previous section. Furthermore,
note that the rank-matching bounds are not limited to wireless
networks. Indeed, as is the case with most DoF results, the
same bounds are applicable to the deterministic counterparts
of wireless networks over finite fields [10]–[12]. As such,
they seem particularly useful to go beyond the Precoding-
Based-Network-Alignment (PBNA) paradigm considered
in [13] and [14]. In PBNA a multiple unicast network is
reduced to a single hop deterministic counterpart of a wireless
interference network by allowing only linear operations
(e.g., random linear network coding) at intermediate nodes,
whereas all the intelligence lies at the source and destination
nodes. As a step beyond PBNA one could allow some
intelligence at a subset of the intermediate relay nodes. For
example, in a 2-unicast PBNA framework, (or a K -unicast
setting which is reduced to 2-unicast by clustering of nodes)
one could select 2 MIMO relay nodes, either because
these nodes exist as such or by clustering, such that the
network reduces to a 2 × 2 × 2 layered MIMO interference
network. Since the structure of the network is reflected
in the rank deficiencies of the constituent channels, the
rank-matching bounds are applicable and may lead to new
insights.

VI. PROOFS

A. Proof of Theorem 1

Consider the rank-mismatch bound (11) for i = 2, j = 1.
It can be equivalently stated as the following two bounds.

d� ≤ M(S2) + Mr (R1) + r(R2D1) − r(S2R1) (24)

d� ≤ Mt (R2) + M(D1) + r(S2R1) − r(R2D1) (25)

Consider (24). Given a sequence of reliable coding schemes
(indexed by n) spanning n channel uses, we note that from
Y2n

1 , Y2n

2 , Y3n

1 , one can decode both messages. From Fano’s
inequality, we proceed as follows.

n(R1 + R2 − εn)

≤ I (W1, W2; Y2n

1 , Y2n

2 , Y3n

1 ) (26)

= h(Y2n

1 , Y2n

2 , Y3n

1 ) − h(Y2n

1 , Y2n

2 , Y3n

1 |W1, W2)︸ ︷︷ ︸
=h(Z2n

1 ,Z2n
2 ,Z3n

1 )=no(log P)

(27)

≤ h(Y2n

1 ) + h(Y3n

1 |Y2n

1 ) + h(Y2n

2 |Y2n

1 , Y3n

1 )

+ no(log P) (28)

≤ nMr (R1) log P + h(Y3n

1 |Y2n

1 , X2n

1 )

+ h(Y2n

2 |Y2n

1 , Y3n

1 , W1) + I (W1; Y2n

2 |Y2n

1 , Y3n

1 )︸ ︷︷ ︸
=no(n)

+ no(log P) (29)

≤ nMr (R1) log P + h(H2n

12X2n

2 + Z3n

1 |Y2n

1 , X2n

1 )

+ h(Y2n

2 |Y2n

1 , Y3n

1 , W1, X1n

1 ) + no(log P)

+ no(n) (30)

≤ nMr (R1) log P + h(H2n

12X2n

2 + Z3n

1 )

+ h(H1n

22X1n

2 + Z2n

2 |H1n

12X1n

2 + Z2n

1 , Y3n

1 , W1, X1n

1 )

+ no(log P) + no(n) (31)

≤ nMr (R1) log P + nr(R2D1) log P

+ h(H1n

22X1n

2 + Z2n

2 |H1n

12X1n

2 + Z2n

1 )

+ no(log P) + no(n) (32)

≤ nMr (R1) log P + nr(R2D1) log P

+ nrank

([
H1

22

H1
12

])
log P − nr(S2R1) log P

+ no(log P) + no(n) (33)

≤ n[Mr (R1) + r(R2D1) + M(S2) − r(S2R1)] log P

+ no(log P) + no(n) (34)

where the conditional differential entropy of the second term
in (27) is equal to the differential entropy of noise therein.
In (29), the first term is a result of the fact that Gaussian
distribution is the entropy maximizer subject to covariance
constraint and Y2

1 has only Mr (R1) dimensions, the second
term follows from the fact that the transmitted signal
of R1, X2n

1 is a function of its received signal, Y2n

1 , and the

fourth term is due to the property that from Y3n

1 , one can
decode W1. In (30), we subtract out the contribution of X2

1

from Y3
1 in the second term and use the property that X1

1
is a function of W1 in the third term. In (31), the property
that reducing conditioning can not increase entropy is used
to get the second term and we subtract out the contribution
of X1

1 from Y2
2, Y2

1 in the third term. In (32), the second
term is due to the fact that rank(H2

12) = r(R2D1) and
the third term is obtained by dropping conditioning, which
can not increase entropy. (33) follows from the property
that Gaussian distribution maximizes conditional entropy
subject to covariance constraint and rank(H1

12) = r(S2R1).
To obtain (34), we use the fact that

rank

([
H1

22

H1
12

])
≤ M(S2).

Finally, let first n and then P go to infinity. Then we
normalize (34) by n log P and arrive at (24).

In fact, (25) can also be shown similarly. However, let
us provide an alternative proof that might be more intuitive.
To obtain this outer bound, we will give D1 certain side
information through a genie such that D1 can decode both
messages.

First, we give D1 the part of the signal observed at R1
that is comprised only of the noise and what is sent from S2,
that is, S1 = H1

12X1
2 + Z2

1. Note that the S1 has no more
than r(S2R1) DoF (prelog of differential entropy). Given any
reliable coding scheme, D1 is assured to be able to decode W1
and reconstruct the signal sent from S1, i.e., X1

1. Combined
with S1 and full channel knowledge, D1 is able to reconstruct
the signal observed by R1, that is Y2

1 = H1
11X1

1 + S1 =
H1

11X1
1 + H1

12X1
2 + Z2

1. Then, as we assume the encoding
functions of the relays are globally known, D1 can construct
the transmitted signal for R1, X2

1, by performing encoding
on Y2

1 using the encoding function of R1.
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Next, we give D1 the part of transmitted signal sent
by R2 that is seen at D2 but is not seen at D1, that is
S2 = (H2

22/H2
12)X

2
2 + Z, where H2

22/H2
12 consists of

column vectors that span the intersection of the column-
span of H2

22 and the null-space of H2
12. Z is independent

noise distributed as Z ∼ CN (0, I). Because rank(H2
12) =

r(R2D1) and rank(H2
22) ≤ Mt (R2), the dimension of S2 is

at most Mt (R2) − r(R2D1). As D1 knows X2
1, it can get the

received signal sent from R2, H2
12X2

2 + Z3
1 by subtracting the

contribution of X2
1 from Y3

1. Thus, D1 now has access to X2
2

within bounded noise-distortion (without loss of generality,
eliminate redundant dimensions that are not seen by either
destination, if any, from X2

2 and note that (H2
22/H2

12)X
2
2 and

H2
12X2

2 together provide sufficiently many linear equations to
solve for all the non-redundant dimensions of X2

2).
Now that it has access to X2

1, and X2
2 within bounded

noise-distortion, D1 is able to construct (within bounded noise
distortion) the total received signal observed at D2.

As D2 is guaranteed to be able to decode W2, so can D1
(possibly after reducing noise by a bounded amount that is
inconsequential for DoF). Since, D1 is able to decode all
messages from Y3

1, S1, S2, the sum-DoF of all messages is
bounded by the sum of the dimensions (pre-logs) of Y3

1, S1, S2,

d� ≤ M(D1) + r(S2R1) + Mt (R2) − r(R2D1) (35)

which gives us (25).
Thus we have proved (11) for i = 2, j = 1. Since all bounds

have the same structure, the proof applies for every choice of
indices, i, j ∈ {1, 2}. �

B. Proof of Theorem 2

First, notice that the outer bound min(4r [1], 4r [2],
2M − |r [1] − r [2]|) is valid. The first two terms are min-cut
max- flow bounds and the last term follows from Theorem 1.

As we will use linear schemes, which satisfy duality/
reversibility, we may assume r [1] ≤ r [2] without any loss
of generality. In this case, the outer bound simplifies to
min(4r [1], 2M − (r [2] − r [1])).

For different configurations of M, r [1], r [2], both the outer
bound and the channel constructed may vary. As such, based
on relationship between M, r [1] and r [2], we divide the total
parameter space into 4 disjoint regimes (see Fig. 6). We will
first show for each regime, that there exist channels that satisfy
all rank-constraints, for which the outer bound is tight. We will
conclude with the generalization that the bound is tight almost
surely for generic channels.

• Regime 1 (r [1] + r [2] ≤ M): The constructed channel
appears in Fig. 7. The connectivity is simple. The sources
are connected to the relays with 4 orthogonal links. The
relays are connected to the destinations with 4 orthogonal
links and possibly a fully connected 2×2 subnetwork. For
the channels that are shown as connected, one may choose
the coefficients to be generic, that is, each non-zero
channel coefficient is drawn independently from some
continuous distribution bounded away from zero and
infinity to avoid degenerate scenarios. For example, the
first r [1] antennas of S1 are connected to the first r [1]

Fig. 6. The real axis is partitioned into 4 intervals, (−∞, 2r[1]),
(2r[1], 3

2 r[1] + 1
2 r[2]), ( 3

2 r[1] + 1
2 r[2], r[1] +r[2]), (r[1] +r[2],+∞). Depend-

ing on which interval M falls into, we have 4 regimes. For Regimes 1 and 2,
the outer bound is 4r[1] and for Regimes 3 and 4, the outer bound is
2M − (r[2] − r[1]). Note that by the definition of rank, M ≥ r[2] ≥ r[1] ,
so we only consider those parameter regimes where this condition is true.

Fig. 7. Constructed channel for Regime 1. For clarity, the relay nodes are
shown twice, one for the channels (receive side) of the first hop, the other for
the channels (transmit side) of the second hop.

antennas of R1 with a generic r [1] × r [1] (specifically,
rank r [1]) MIMO channel. We keep this assumption that
every connected channel coefficient is generic for other
regimes as well. Note that all rank conditions are satisfied.
Over such a channel, it is easy to achieve the outer
bound, 4r [1], as min(r [2], M − r [2]) ≥ r [1] such that
we can always route the messages over orthogonal links,
by standard point to point MIMO capacity achieving
schemes.

• Regime 2 ( 3
2 r[1] + 1

2 r[2] ≤ M < r[1] + r[2]): The channel
we construct is shown in Fig. 8. The connectivity is same
as Fig. 7. The outer bound is still 4r [1]. In order to achieve
that, pure routing will not suffice as each orthogonal link
on the second hop only has DoF M − r [2], which can
not support r [1] DoF, as in this regime, r [1] > M − r [2].
As a result, we have to use the fully connected 2 × 2
subnetwork on the second hop. The new idea here is
viewing that as a 2 × 2 X network with 2r [2] − M
antennas at each node, whose sum-DoF value is given by
4
3 (2r [2] − M) [15]. Then as long as 4[r [1] − (M − r [2])],
the total DoF that we fail to route to desired destinations,
is smaller than 4

3 (2r [2] − M), we are able to utilize the
interference alignment scheme over X network to send
the remaining 4[r [1] − (M − r [2])] DoF. We have

4[r [1] − (M − r [2])] ≤ 4

3
(2r [2] − M)

⇔ 2M ≥ 3r [1] + r [2] (36)
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Fig. 8. Constructed channel for Regimes 2 and 3. The channel is almost the
same as that in Fig. 7, where the only difference is that M − r[2] is smaller
instead of bigger than r[1] . To highlight such an important distinction which
demands the use of X scheme, we redraw the channel here.

which is satisfied in Regime 2. Therefore the scheme
works.

• Regime 3 (2r[1] ≤ M < 3
2 r[1] + 1

2 r[2]): The channel is
same as that used in Regime 2 (see Fig. 8). Here the

outer bound is 2M − (r [2] − r [1]) < 4r [1]. Note that in
Regime 2, we have already saturated the fully connected
2×2 subnetwork by employing it as an X network to the
most. It may seem impossible to get something more. But
thanks to the outer bound, we are not achieving 4r [1] DoF,
which means that the first hop has left capability. If we
send same information from a source to both relays, the
second hop can be employed as a broadcast channel (BC).
Thus there exists a tradeoff, between employing the
second hop as an X network or a BC. X scheme costs less
on first hop but achieves fewer DoF on the second hop,
while broadcast scheme achieves more DoF on the second
hop but consumes more on the first hop. To determine
the optimal ratio between them, we assume the second
hop uses the X scheme for fX fraction of time and the
broadcast scheme for fBC fraction of time. Naturally, we
have

fX + fBC = 1. (37)

Note that for the fully connected 2×2 subnetwork, broad-
cast scheme has 2(2r [2] − M) DoF and X scheme has
4
3 (2r [2] − M) DoF. Then by using X scheme fX fraction
of time and broadcast scheme fBC fraction of time, we
need to have 2 fBC (2r [2] − M)+ 4

3 fX (2r [2] − M) DoF to
send at the relays, which are received from the first hop.
The broadcast messages need to be present at both relays
and X messages need only be at one relay, so we need
to send a total of 4 fBC(2r [2] − M) + 4

3 fX (2r [2] − M)
DoF over the first hop, which should equal its capability,
4r [1] − 4(M − r [2]). Note that 4(M − r [2]) DoF are
occupied for routing messages to be sent over orthogonal
links on the second hop. Therefore, we have

4 fBC(2r [2] − M) + 4

3
fX (2r [2] − M)

= 4r [1] − 4(M − r [2]). (38)

Fig. 9. Constructed channel for Regime 4.

Combining (37) (38), we have

fX =
3
2 (r [2] − r [1])

2r [2] − M
, fBC =

1
2 (3r [1] + r [2] − 2M)

2r [2] − M
,

such that the DoF value achieved by X and broadcast
schemes in total is

2 fBC(2r [2] − M) + 4

3
fX (2r [2] − M)

= 3r [1] + r [2] − 2M + 2(r [2] − r [1])
= r [1] + 3r [2] − 2M. (39)

Adding up with 4(M − r [2]) routing DoF, we get
2M − (r [2] − r [1]), as desired.

• Regime 4 (M < 2r[1]): The constructed channel appears
in Fig. 9. We want to show that the outer bound,
2M − (r [2] − r [1]), is achievable. The new element here
is that the first hop itself contains a fully connected
subnetwork. To utilize this, we pair it with the second hop
to get a 2 × 2 × 2 MIMO full rank interference channel
with 2r [1] − M antennas everywhere. By aligned inter-
ference neutralization (AIN), we achieve 2(2r [1] − M)
DoF [3]. Then the fully connected subnetwork on the
second hop is split into 2 parallel subnetworks. Similar
as before, we route 4(M − r [2]) DoF which saturates the
orthogonal links on the second hop. We are left to use
the fully connected 2 × 2 subnetwork with 2(r [2] − r [1])
antennas at each node on the second hop. The first hop
has unused DoF 4(M−r [1])−4(M−r [2]) = 4(r [2]−r [1]),
after AIN and routing. Here we also need to decide how
to share the second hop with X and broadcast schemes.
Then following similar logic, we have

fX + fBC = 1 (40)
8

3
(r [2] − r [1]) fX + 8(r [2] − r [1]) fBC = 4(r [2] − r [1])

(41)

from which we can solve fX = 3
4 , fBC = 1

4 such that the
DoF value achieved is r [2]−r [1] by broadcast scheme and
2(r [2]−r [1]) by X scheme. Adding up with those achieved
by AIN and routing, we get 2(2r [1] − M)+4(M −r [2])+
(r [2] − r [1]) + 2(r [2] − r [1]) = 2M − (r [2] − r [1]), as
desired.
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As a summary, we list the achievable scheme used and
corresponding DoF achieved in Table I, shown at the top of
the next page.

Finally, we consider fully generic channels, guided by
insights from specific channel constructions presented for each
of the regimes. In particular, we will show that through proper
precoding, we can essentially create the specific channel
constructed above such that the achievable scheme with DoF
allocation as specified in Table I obtains the outer bound.
Similarly, we have 4 regimes.

• Regime 1 (r[1] + r[2] ≤ M): We consider the first hop.
Referring to Fig. 7, we want to create 4 orthogonal links,
one from each source to each relay. Towards this end,
we will choose 4 M × r [1] precoding matrices, V1

Z F11,
V1

Z F21, V1
Z F12 and V1

Z F22 as follows.

V1
Z F11 ⊆ N (H1

21), V1
Z F21 ⊆ N (H1

11) (42)

V1
Z F12 ⊆ N (H1

22), V1
Z F22 ⊆ N (H1

12) (43)

where N (A) denotes the right null space of matrix A.
Note that V1

Z F j i, i ∈ {1, 2}, j ∈ {1, 2} is used by Si ,
for R j in the sense R j̄ is zero forced. As the generic
channel H1

j i has rank r [1] such that dim(N (H1
j i)) =

M − r [1] and 2r [1] ≤ r [1] + r [2] ≤ M , such V1
Z F j i exist.

Moreover, at Si , the precoding matrix [V1
Z F1i V1

Z F2i ] has
full rank as the two components are null spaces of generic
channel matrices and the sum of their dimensions, 2r [1]
is smaller than the total space size, M . At R j , the receive
signal space [H1

j1V1
Z F j1 H1

j2V1
Z F j2] also has full rank as

H1
j iV

1
Z F j i is a subspace of H1

j i and the column spaces
of two generic matrices H1

j1 and H1
j2 (with rank r [1]

each) do not intersect in an M dimensional space, since
2r [1] ≤ M . This process creates 4 orthogonal links.
The second hop is similar to the first hop. We choose
precoding matrices at the relays such that undesired
destination is zero forced. The linear independence of
vectors of precoding matrix at the relay and receive signal
space at the destination can be similarly proved. After
creating such orthogonal links as in Fig. 7, we can use
routing to achieve the desired 4r [1] DoF.

• Regime 2 ( 3
2 r[1] + 1

2 r[2] ≤ M < r[1] + r [2]): The first
hop is same as Regime 1, using null spaces to create
orthogonal links. On the second hop, Ri uses following
precoding matrix V2

i of size M × 2r [1].

V2
1 = [V2

Z F11 V2
Z F21 V2

X11 V2
X21] (44)

V2
2 = [V2

Z F12 V2
Z F22 V2

X12 V2
X22] (45)

dim(V2
Z F j i) = M − r [2] (46)

dim(V2
X j i) = r [1] + r [2] − M (47)

wherein V2
Z F j i = N (H2

j̄ i
), and V2

X j i are chosen such
that the following X network alignment conditions are
satisfied.

H2
11V2

X21 = −H2
12V2

X22 ⊆ col(H2
11) ∩ col(H2

12) (48)

H2
21V2

X11 = −H2
22V2

X12 ⊆ col(H2
21) ∩ col(H2

22) (49)

where col(A) denotes the column space spanned by the
columns of matrix A.

Note that

dim(col(H2
11) ∩ col(H2

12))

= dim(col(H2
21) ∩ col(H2

22))

= 2r [2] − M ≥ r [1] + r [2] − M = dim(V2
X j i) (50)

then V2
X j i exist. With vectors chosen in this way, at Ri ,

the precoding matrix V2
i has 2r [1] ≤ M linear indepen-

dent columns. The signal space matrix at D1 is given as

[H2
11V2

1 H2
12V2

2] = [H2
11V2

Z F11 H2
12V2

Z F12 H2
11V2

X11

H2
12V2

X12 H2
11V2

X21] (51)

which has 2(M − r [2]) + 3(r [1] + r [2] − M) = 3r [1] +
r [2] − M ≤ M vectors. To see it has full rank, note that
the precoding vectors V2

Z F11, V2
Z F12 and V2

X11, V2
X12 are

designed based on channels to D2, which are independent

of the channels to D1. It follows that H2
11V2

Z F11, H2
11V2

X11

are generic subspaces of H2
11 and H2

12V2
Z F12, H2

12V2
X12

are generic subspaces of H2
12. Further, H2

11V2
X21 (see (48))

lies in the intersection of col(H2
11) and col(H2

12). Hence
as the size of the matrix does not exceed the number of
receive antennas, it has full rank almost surely. Similarly,
the signal space matrix at D2 also has full rank. We can
now use the first hop to transmit 4r [1] DoF to the
relays which then use a combination of zero forcing and
X scheme with precoding matrices as above to send these
DoF to the destinations.

• Regime 3 (2r[1] ≤ M < 3
2 r[1] + 1

2 r[2]): The first hop is
still the same and we have 4 orthogonal links with
sum-DoF 4r [1]. According to Table I, to each relay, we
will send 3r [1] + r [2] − 2M DoF of common message,
(r [2] − r [1]) DoF which will utilize X scheme and
2(M − r [2]) DoF which will be sent by zero forcing,
over the second hop. This is possible since 2(3r [1] +
r [2] − 2M) + 2(r [2] − r [1]) + 4(M − r [2]) = 4r [1],
which is supportable on the first hop. At each relay, the
zero forcing and X precoding vectors will be chosen the
same as Regime 2. The precoding vectors for broadcast
scheme are the same as X , by noting that for the solution
of (48) (49), if we are transmitting the same message
out, the interference caused to the undesired destination
is nulled (instead of aligned as in X network). At each
destination, the received signal consists of 2(M − r [2])
zero forcing vectors, 3

2 (r [2]−r [1]) X beamformed vectors
( 2

3 of which are desired and the other 1
3 interfering) and

1
2 (3r [1] + r [2] − 2M) broadcast vectors, for a total of M .
Linear independency at the relays and destinations follow
similarly.

• Regime 4 (M < 2r[1]): On the first hop, in order to create
the fully connected 2 × 2 sub-network as in Fig. 9, we
prove that there exist two M×(2r [1]−M) matrices U1

1, U1
2

such that

H1
11U1

1 = H1
12U1

2 (52)

H1
21U1

1 = H1
22U1

2 (53)

Note the difference with (48) (49) where the precoding
vectors are different in the two equations. For the solution
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TABLE I

DoF ACHIEVED BY EACH SCHEME FOR EACH REGIME

of (52), the basis of U1
1 has rank r [1]. Out of the r [1] basis

vectors, M−r [1] vectors lie in N (H1
11) and the remaining

2r [1] − M vectors are in the span of col(H1
11)∩col(H1

12).
Similarly, for the solution of (53), U1

1 has rank r [1]. These
two r [1] dimensional spaces will intersect in a 2r [1] − M
dimensional space, which is the solution that we seek
since it satisfies both equations. Similar solution can be
found for U1

2 as well. Thus, we have found two 2r [1]− M
dimensional spaces, one at each relay, that are accessible
by the same space at each source. This gives us a fully
connected subnetwork. Inside such a 2r [1] − M dimen-
sional space, we design an AIN solution as proposed
in [3], where S1 sends p � 2r [1] − M symbols with
p precoding vectors v1

AI N1,1, · · · , v1
AI N1,p and S2 sends

2r [1] − M − 1 = p − 1 symbols with p − 1 precoding
vectors v1

AI N2,1, · · · , v1
AI N2,p−1. Each precoding vector

has size M × 1. The alignment relationship is same as
that used in [3] (see [3, Table I]). At R1, we have

H1
11v1

AI N1,q+1 = H1
12v1

AI N2,q , q = 1, · · · , p − 1

(54)

and at R2

H1
21v1

AI N1,q = H1
22v1

AI N2,q , q = 1, · · · , p − 1 (55)

Here to find a solution, we will start from a random
1 dimensional subspace of U1

1 and set it as v1
AI N1,1,

then go through (54)(55) to find all other vectors. Note
that as p = 2r [1] − M , we are guaranteed to find
such linearly independent vectors. By a similar aligned
neutralization design on the second hop (see [3, Table II]),
we are able to send 2 p − 1 = 2(2r[1] − M) − 1 DoF
with AIN. By considering a k-symbol extension, we can
send 2k(2r [1] − M) − 1 symbols over such symbol-
extended network by AIN, resulting in 2(2r [1] − M) DoF
asymptotically.
All other symbols are sent by BC, X and routing
(over zero forced orthogonal links) as specified in Table I.
The operations that create these equivalent channels are
the same as Regime 3. This completes the description
of the achievable scheme for generic channels.

C. Proof of Theorem 3

As the DoF region in Theorem 3 is symmetric in r [1], r [2]
and we will use linear schemes, which satisfy duality, we may
assume r [1] ≤ r [2] without loss of generality. In this case, the
DoF region simplifies to

d1 + d2 ≤ 2M − (r [2] − r [1]) (56)

d1 ≤ min(2r [1], M) (57)

d2 ≤ min(2r [1], M) (58)

Fig. 10. The DoF region for the rank-constrained symmetric 2 × 2 × 2
MIMO interference channel. (a) Regimes 1 and 2 ( 3

2 r[1] + 1
2 r[2] ≤ M), and

(b) Regime 3 (2r[1] ≤ M < 3
2 r[1] + 1

2 r[2]), and (c) Regime 4 (M < 2r[1]).

Notice that (56) is the rank-mismatch outer bound.
(57) and (58) follow from the min-cut max-flow bounds.
Having proved the outer bound, we proceed to the achiev-
ability. Similar to the sum-DoF case, for different parameter
regimes, the DoF region varies. As such, we consider the same
4 regimes specified in Fig. 6. We have shown that with proper
linear precoding, for each regime, we can create the specific
constructed channel (see Fig. 7, Fig. 8 and Fig. 9) from generic
channel matrices. Thus without loss of generality, we prove the
DoF region of the constructed channel for each regime. The
DoF region for each regime is plotted in Fig. 10.

• Regimes 1 and 2 ( 3
2 r[1] + 1

2 r[2] ≤ M): The DoF region
is a square as shown in Fig. 10(a) and we only need to
show the achievability of the corner point (2r [1], 2r [1]),
which is the sum-DoF optimal point that has been proved
in Section VI-B.

• Regime 3 (2r[1] ≤ M < 3
2 r[1] + 1

2 r[2]): The DoF region
is a pentagon as shown in Fig. 10(b) and we want
to show the achievability of the two corner points
(2r [1], 2M − r [1] − r [2]), (2M − r [1] − r [2], 2r [1]). As the
ranks of the channels are symmetric, it suffices to
prove the achievability of DoF tuple (d1, d2) = (2r [1],
2M − r [1] − r [2]). To this end, we use the same schemes
introduced in Section VI-B. The DoF allocation of each
scheme is shown in Table II on top of the next page.
Recall that the constructed channel is shown in Fig. 8.
We wish to prove that over each hop, the channels can
support the schemes in Table II. Over the first hop,
S1 has two channels, one to R1 and one to R2. Each
channel has DoF r [1] and can carry half of the DoF for X
scheme and half of the DoF for routing, as r [1] = (r [1] +
r [2] − M)+ (M − r [2]). Thus d1 = 2r [1] DoF can be sent
to the relays. Next we consider d2. S2 has two channels
to the relays, with total DoF 2r [1] as well. Note that
the messages to be sent with broadcast scheme need to
be present at both relays and the messages to be sent
with X and routing schemes can be divided such that
half of each appear in each relay. This is feasible since
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TABLE II

(d1, d2) ACHIEVED BY EACH SCHEME FOR REGIME 3

TABLE III

(d1, d2) ACHIEVED BY EACH SCHEME FOR REGIME 4

r [1] = (3r [1] + r [2] − 2M) + (M − 2r [1]) + (M − r [2]).
This completes the proof of the first hop and we proceed
to the second hop. Consider d1, for the 2(r [1] +r [2] − M)
DoF achieved by X scheme, the interference alignment
scheme in [15] will guarantee that the interference caused
at D2 has dimension r [1] + r [2] − M . This leaves enough
space for the desired signal at D2, since d2 = 2M −
r [1] − r [2] = M − (r [1] + r [2] − M). Therefore the desired
signal can be decoded at D2. Similarly, the messages with
2(M − 2r [1]) DoF of d2 that use X scheme will occupy
M − 2r [1] dimension at D1 and the messages that use
broadcast and routing schemes will not be seen at D1.
As such, D1 can decode the desired message as well,
since M = 2r [1] + (M − 2r [1]) = d1 + (M − 2r [1]) such
that the desired signal space and the interference space
do not overlap.

• Regime 4 (M < 2r[1]): The DoF region is a pentagon
as shown in Fig. 10(c) and we only need to show the
achievability of the corner point (M, M − (r [2] − r [1])),
due to symmetry. To achieve that, the DoF allocation is
shown in Table III on top of this page.
Recall that the constructed channel is shown in Fig. 9.
2r [1] − M DoF for each source will be sent by AIN
over the fully connected 2 × 2 subnetwork of each hop.
The first hop is able to send the remaining messages to
the relays as it has left capability of 4(M − r [1]) DoF,
which is equal to twice of the DoF of the messages
to be sent with broadcast scheme, r [2] − r [1], plus the
DoF of the messages to be sent with X and routing
schemes, 2(r [2] − r [1]) + 4(M − r [2]). Next we consider
the achievability of the messages sent with broadcast,
X and routing schemes over the second hop. The decod-
ing at D1 is guaranteed since D1 does not see any
interference. Interference caused by the messages sent
with X scheme of d1 will occupy r [2] − r [1] dimensions
at D2, whose space do not overlap with its desired signal
space (sent with broadcast scheme of DoF r [2] − r [1]) as
the fully connected subnetwork has 2(r [2]−r [1]) antennas.
Therefore, D2 can decode the desired message as well.
This completes the description of the achievable scheme
for the DoF region.

D. Proof of Theorem 4

The min-cut max-flow outer bound is trivial and we consider
the achievability. As we will use linear schemes, which satisfy
duality, we assume r [1] ≤ r [2] without loss of generality.

Then the outer bound becomes min(4r [1], 2M). We still
consider the 4 parameter regimes in Fig. 6. As linear
precoding operation can reduce generic channel to the
constructed channel, we need to prove the constructed channel
only.

• Regimes 1 and 2 ( 3
2 r[1] + 1

2 r[2] ≤ M): In this case,
the interference message setting can achieve the outer
bound 4r [1], so can the X message setting as here we
can use the interference channel scheme by setting the
other two messages to be null.

• Regime 3 (2r[1] ≤ M < 3
2 r[1] + 1

2 r[2]): Recall that the
constructed channel appears in Fig. 8. In order to achieve
the outer bound 4r [1], after routing 4(M − r [2]) DoF, we
are left with 4(r [1] + r [2] − M) DoF, to be sent over the
channel where the first hop consists of 4 orthogonal links
with r [1] + r [2] − M DoF each and the second hop is a
fully connected 2×2 subnetwork with 2r [2]−M antennas
everywhere. As 2r [2] − M ≥ 2(r [1] + r [2] − M) in this
regime, with zero forcing, beamforming and interference
alignment at the relays and destinations, we are able to
create 2(r [1] + r [2] − M) parallel fully connected 2 × 2
SISO subnetworks over the second hop. As such, we want
to achieve 4(r [1] + r [2] − M) DoF over r [1] + r [2] − M
times the channel shown in Fig. 11, which can be proved
by showing that 4 DoF can be sent over the channel
in Fig. 11. We proceed to show this. In Fig. 11, all nodes
have 2 antennas, the first hop consists of 4 orthogonal
links and the second hop consists of 2 parallel fully
connected 2 × 2 subnetworks. In order to achieve 4 DoF,
we wish to send 4 symbols over each channel use,
where a1, a2 is sent from S1 to D1, D2, respectively
and b1, b2 is sent from S2 to D1, D2, respectively. With
a1, a2 at S1, the transmitted symbols A1, A2 are designed
such that with simple forwarding at the relays, the first
antennas of D1,D2 will receive a1, a2 without interfer-
ence, respectively. This is possible by precoding at S1,
where global channel knowledge is known. With similar
coding done at S2, b1 can be sent to D1 and b2 can be
sent to D2, both interference freely. Therefore, 4 DoF are
achievable here, as desired.

• Regime 4 (M < 2r[1]): Recall that the constructed channel
appears in Fig. 9. The outer bound is 2M . AIN achieves
2(2r [1] − M) DoF and routing achieves 4(M − r [2]) DoF.
The remaining 2M − 2(2r [1] − M) − 4(M − r [2]) =
4(r [2] −r [1]) DoF can be sent over the remaining channel
where the first hop consists of 4 orthogonal links
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Fig. 11. Transmitted/Received symbols are shown inside the squares, which
represent antennas. The relays use simple forwarding. A1, A2 denote two
linear combinations of a1, a2 coded at S1 such that the interference caused
by a1 to D2 and the interference caused by a2 to D1 are zero forced, over the
second hop. Similar coding is performed at S2 such that b1, b2 are received
interference freely at D1 and D2, respectively.

with r [2] − r [1] DoF each and the second hop can be
reduced to 2(r [2] − r [1]) parallel fully connected 2 × 2
SISO subnetwork, and this is r [2]−r [1] times the channel
shown in Fig. 11. The achievability of 4 DoF over the
channel in Fig. 11 is shown above and applying the
scheme r [2] − r [1] times achieves the desired remaining
4(r [2]−r [1]) DoF. This completes the achievability proof.

E. Proof of Theorem 5

We first consider some component channels and show in
each case, the min-cut max-flow bounds are achievable. Then
we consider the symmetric setting illustrated in Fig. 5 and
show that for arbitrary ranks of r [1], r [2], r [3], the channel can
be decomposed into such component channels such that the
min-cut max-flow bounds are achievable overall.

For all the component channels, we assume the connected
channels are generic. The first component channel is the 3 hop
SISO fully connected interference channel, where the min-cut
max-flow bound, 2 DoF are achievable [3], by cascading the
first two hops to one single hop and employing the achievable
scheme for the 2 × 2 × 2 interference channel.

The second class of component channels is shown
in Fig. 12, where all nodes have 2 antennas, one hop consists of
4 orthogonal links and the other hops consist of two parallel
fully connected 2 × 2 subnetworks. We wish to show that
the min-cut max-flow bound, 4 is achievable. For Fig. 12(a),
after S1,S2 route 4 symbols to R1,R2, the last two hops
become two parallel 2 × 2 × 2 interference channels. The first
2 × 2 × 2 interference channel consists of the first antennas of
R1,R2,T1,T2,D1,D2. R1 wants to send b1 to D2 and R2
wants to send a2 to D1 (see Fig. 12(a)). Switching the
destination indices will change this channel to the canonical
2 × 2 × 2 interference channel such that 2 DoF can be
achieved [3]. The second antennas of R1,R2,T1,T2,D1,D2
form another 2 × 2 × 2 interference channel where 2 DoF can
be achieved [3]. Next we consider Fig. 12(b). The situation
is similar. With the forwarding operation at the relays shown
in Fig. 12 (b), the first hop is connected to the third hop with
two parallel 2 × 2 × 2 interference channels and the min-cut
max-flow bound, 4, is achievable.

Fig. 12. The second class of component channels. Transmitted/Received
symbols are shown inside the squares, which represent antennas. The relay
nodes are shown twice (for both receiving and transmitting) and the linear
coding inside the relay is shown by the dashed lines inside the dashed box.
In both cases, forwarding is sufficient to change the channel to two parallel
2 × 2 × 2 interference channels. In (b), L1, L2 each denotes a received linear
combination of a1, b1 at the first antenna of R1,R2, respectively, and J1, J2
each denotes a received linear combination of a2, b2 at the second antenna
of R1,R2, respectively.

The third class of component channels is shown in Fig. 13,
where all nodes have 2 antennas, two hops consist of
4 orthogonal links and the remaining hop consists of two
parallel fully connected 2 × 2 subnetworks. The min-cut
max-flow bound is 4 and we prove it is achievable. The
achievable scheme for Fig. 13(a) is easy. The generic channels
do the necessary coding automatically and the relays just
need to forward what they receive (see Fig. 13(a)). As such,
D1 has two generic linear combinations of a1, a2 such that D1
is able to decode a1, a2 almost surely. Similarly, D2 can get
2 DoF almost surely, resulting in the achievability of 4 DoF.
The last two hops of Fig. 13(b) can be viewed as a dual of the
last two hops of Fig. 13(a). With a1, b1 at R1, the transmitted
symbols L1, L2 are designed such that over the last hop,
D1 receives a1 and D2 receives b1, both interference freely.
This coding is possible because global channel knowledge
is available at the relays, specifically R1 knows the channels
of the last hop. Note that this mixing operation at R1 is
necessary and non-trivial. It is guided by the rank-matching
principle such that the first two hops would appear as fully
connected, to match the third hop. Similar operation is done
at R2. Therefore 4 DoF are achievable almost surely.

The fourth component channel is shown in Fig. 14, where all
nodes have 2 antennas and each hop consists of 4 orthogonal
links. A routing solution achieves 4 DoF, the min-cut max-flow
bound.

Next we proceed to consider the symmetric setting.
As we will use linear schemes, which satisfy duality, we
assume r [1] ≤ r [3] without loss of generality.
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Fig. 13. The third class of component channels. In (a), A1, A2 are
two received linear combinations of a1, a2 and B1, B2 are two received linear
combinations of b1, b2, at corresponding antennas. In (b), L1, L2 denote two
linear combinations of a1, b1 coded at R1 such that the interference caused
by b1 to D1 and the interference caused by a1 to D2 are zero forced, over
the last hop. Similar coding is performed at R2 such that a2, b2 are received
interference freely at D1 and D2, respectively.

Fig. 14. The fourth component channel. Routing over 4 disjoint paths
achieves 4 DoF.

Using the same linear precoding techniques as in
Section VI-B, for any hop, we are able to create a virtual
channel as shown in Fig. 15, which consists of 4 orthogonal
links and possibly a fully connected 2 × 2 subnetwork, with
corresponding dimensions. As such, we will first exploit the
first component channel by cascading fully connected subnet-
works over 3 hops. After exhausting this capability, at least one
hop is left with no fully connected subnetwork and at most two
hops still have fully connected 2 × 2 subnetworks. If there is
exactly one hop that has no fully connected subnetwork, then
we use the second class of component channels, otherwise we
turn to the third class directly. When using the second class,
note that as r [1] ≤ r [3], we have only two cases, corresponding
to the two shown in Fig. 12. After exhausting the second
class, we use the third class of component channels where
only 1 hop has some left fully connected 2 × 2 subnetwork,
as shown in Fig. 13. Finally, we turn to the fourth component

Fig. 15. The virtual channel created by linear precoding.

channel where all links are orthogonal. Note that the 4 classes
of component channels are spatial scale invariant, meaning
that if we scale the number of antennas and the ranks of
each channel by a common factor, the total DoF will scale by
the same factor. Therefore each component channel achieves
the min-cut max-flow bound and the comprised channel will
also achieve the min-cut max-flow bound. This completes the
proof.
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