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Abstract— In the coded caching problem, as originally for-1

mulated by Maddah-Ali and Niesen, a server communicates2

via a noiseless shared broadcast link to multiple users that3

have local storage capability. In order for a user to decode4

its demanded file from the coded multicast transmission, the5

demands of all the users must be globally known, which may6

violate the privacy of the users. To overcome this privacy7

problem, Wan and Caire recently proposed several schemes that8

attain coded multicasting gain while simultaneously guarantee9

information theoretic privacy of the users’ demands. In Device-to-10

Device (D2D) networks, the demand privacy problem is further11

exacerbated by the fact that each user is also a transmitter,12

which appears to be needing the knowledge of the files demanded13

by the remaining users in order to form its coded multicast14

transmission. This paper shows how to solve this seemingly15

infeasible problem. The main contribution of this paper is the16

development of new achievable and converse bounds for D2D17

coded caching that are to within a constant factor of one another18

when privacy of the users’ demands must be guaranteed even19

in the presence of colluding users (i.e., when some users share20

cached contents and demanded file indices). First, a D2D private21

caching scheme is proposed, whose key feature is the addition of22

virtual users in the system in order to “hide” the demands of the23

real users. By comparing the achievable D2D private load with24

an existing converse bound for the shared-link model without25

demand privacy constraint, the proposed scheme is shown to26
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be order optimal, except for the very low memory size regime 27

with more files than users. Second, in order to shed light into 28

the open parameter regime, a new achievable scheme and a new 29

converse bound under the constraint of uncoded cache placement 30

(i.e., when each user stores directly a subset of the bits of the 31

library) are developed for the case of two users, and shown to 32

be to within a constant factor of one another for all system 33

parameters. Finally, the two-user converse bound is extended to 34

any number of users by a cut-set type argument. With this new 35

converse bound, the virtual users scheme is shown to be order 36

optimal in all parameter regimes under the constraint of uncoded 37

cache placement and user collusion. 38

Index Terms— Coded caching, device-to-device (D2D) commu- 39

nications, privacy. 40

I. INTRODUCTION 41

INTERNET data traffic has grown dramatically in the last 42

decade because of on-demand video streaming. The users’ 43

demands concentrate on a relatively limited number of files 44

(e.g., latest films and shows) and that the price of memory 45

components in the devices is usually significantly less than 46

the price of bandwidth. On the above observation, caching 47

becomes an efficient and promising technique for future com- 48

munication systems [3], which leverages the device memory 49

to store data so that future demands can be served faster. 50

Coded caching was originally proposed by Maddah-Ali 51

and Niesen (MAN) for shared-link networks [4]. In the 52

MAN model, a server has access to a library of N equal- 53

length files and is connected to K users through an error-free 54

broadcast link. Each user can store up to M files in its 55

cache. A caching scheme includes placement and delivery 56

phases that are designed so as to minimize the load (i.e., 57

the number of files sent on the shared link that suffices to 58

satisfy every possible demand vector). In the original MAN 59

model, no constraint is imposed in order to limit the amount 60

of information that the delivery phase leaks to a user about 61

the demands of the remaining users. Such a privacy constraint 62

is critical in modern broadcast services, such as peer-to-peer 63

networks, and is the focus of this paper. 64

In order to appreciate the main contributions of our work, 65

in the next sub-section we briefly review the various models 66

of coded caching studied in the literature, which will lead to 67

the new problem formulation in this paper. 68

A. Brief Review of Coded Caching Models 69

Table I shows relevant known results and new results for 70

various coded caching models. The complete memory-load 71
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TABLE I

ACHIEVABLE LOADS FOR VARIOUS CODED CACHING MODELS. NOTATION: d\{k} DENOTES THE VECTOR OBTAINED FROM THE DEMAND VECTOR d
BY REMOVING THE k-TH ELEMENT, AND Ne

�
d\{k}

�
GIVES THE NUMBER OF DISTINCT ELEMENTS IN d\{k}

tradeoff is obtained as the lower convex envelope of the listed72

points. These results are valid for any system parameters73

(N, K); other results that may lead to better tradeoffs but only74

apply to limited parameter regimes are not reported for sake75

of space.76

1) Shared-Link Networks Without Privacy Constraints: In77

the MAN placement phase, letting t = KM/N ∈ [0 : K]78

represent the number of times a file can be copied in the79

network’s aggregate memory (excluding the server), each file80

is partitioned into
(
K
t

)
equal-length subfiles, each of which is81

cached by a different t-subset of users. In the MAN delivery82

phase, each user demands one file. According to the users’83

demands, the server sends
(

K
t+1

)
MAN multicast messages,84

each of which has the size of a subfile and is useful to85

t+1 users simultaneously. The load of the MAN coded caching86

scheme is thus R = ( K
t+1)
(K

t)
= K−t

t+1 .1 The MAN scheme is said87

to achieve a global coded caching gain, also referred to as88

multicasting gain, equal to t+1 because the load with uncoded89

caching Runcoded = K − t = K(1 − M/N) is reduced by a90

factor t+1. This gain scales linearly with network’s aggregate91

memory size. Yu, Maddah-Ali, and Avestimehr (YMA) in [5]92

proved that
(
K−Ne(d)

t+1

)
of the MAN multicast messages are93

redundant when a file is requested simultaneously by multiple94

users, where Ne(d) ∈ [min(N, K)] is the number of distinct95

file requests in the demand vector d ∈ [N]K. The YMA scheme96

is known to be exactly optimal under the constraint of uncoded97

cache placement [5], and order optimal to within a factor of98

2 otherwise [9], for both worst-case load and average load99

when files are requested independently and equally likely.100

The converse bound under the constraint of uncoded cache101

placement for the worst-case load was first derived by a subset102

of the authors in [10], [11] by exploiting the index coding103

acyclic converse bound in [12]. For the case N ≥ K = 2, the104

exact optimality without constraints on the type of placement105

was characterized in [13] by a non-trivial converse bound106

leveraging the symmetries in the coded caching problem.107

2) Shared-Link Networks With Privacy Constraints: For the108

successful decoding of an MAN multicast message, the users109

need to know the composition of this message (i.e., which110

subfiles are coded together). As a consequence, users are111

1In the MAN caching scheme, in order to allow each user to decode its
demanded file, the composition of each coded multicast message sent by the
server must be broadcasted along with the multicast message itself. This is
akin to the “header” in linear network coding, that defines the structure of the
linear combination of the files to enable decoding. Such composition requires
to broadcast metadata along the coded multicast messages. Since the size of
the metadata does not scale with the file size, the metadata overhead does not
contribute to the load in the limit of large file size.

aware of the demands of other users. In practice, schemes 112

that leak information on the demand of a user to other users 113

are highly undesirable. For example, this may reveal critical 114

information on user behavior, and allow user profiling by 115

discovering what types of content the users’ request. Shared- 116

link coded caching with private demands, which aims to 117

preserve the privacy of the users’ demands from other users, 118

was originally discussed in [14] and formally analyzed in an 119

information-theoretical framework by Wan and Caire in [6]. 120

In the private coded caching model, the information about the 121

cached content of each user is unknown to the other users 122

and the composition of each coded multicast message sent 123

by the server must be broadcasted along with the multicast 124

message itself. Following the private coded caching model 125

in [6], various private schemes were proposed in [6], [7], 126

[15]–[18]. Relevant to this paper is the private coded caching 127

scheme based on virtual user proposed in [6], which operates 128

a MAN scheme as if there were KN users in total, i.e., NK−K 129

virtual users in addition to the K real users, and the demands 130

of the virtual users as set such that each of the N files is 131

demanded exactly K times. This choice of demands for the 132

virtual users is such that any real user “appears” to have 133

requested equally likely any of the files from the viewpoint of 134

any other user, which guarantees the privacy of the demands. 135

An improved private caching scheme based on virtual user 136

strategy was proposed in [7], which used the YMA delivery 137

instead of the MAN delivery. Compared to converse bounds 138

for the shared-link model without privacy constraint, it can be 139

shown that this scheme based on virtual users is order optimal 140

in all regimes, except for K < N and M < N
K [6].2 141

To the best of our knowledge, the only converse bound that 142

truly accounts for privacy constraints in the system model 143

of [6] was proposed in [19] for the case K = N = 2. 144

By combining the novel converse bound in [19] with existing 145

bounds without privacy constraint, the exact optimality was 146

fully characterized in [19] for K = N = 2. 147

3) D2D Networks Without Privacy Constraints: In practice, 148

the content of the library may have been already distributed 149

across the users’ local memories and thus can be delivered 150

through peer-to-peer or Device-to-Device (D2D) communica- 151

tions. The shared-link coded caching model was extended to 152

D2D networks in [20]. In the D2D delivery phase, each user 153

broadcasts packets to all other users as functions of its cached 154

content and the users’ demands. The D2D load is the sum of 155

the bits sent by all users normalized by the file length. 156

2The problem in this regime can be intuitively understood as follows:
for M = 0 the achievable load in [6] is N while the converse bound is
min(K, N) = K; the ratio of this two numbers can be unbounded.
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With the MAN cache placement where each file can be157

copied t ∈ [0 : K] times in the aggregate network memory,158

the D2D coded caching scheme in [20] further partitions each159

MAN subfile into t equal-length sub-subfiles. Each user then160

acts as a shared-link server to convey its assigned sub-subfiles161

to the remaining users either with the MAN delivery [20] or162

the YMA delivery [8]. This scheme effectively splits the D2D163

network into K parallel shared-link models, each having N164

files and serving K − 1 users with memory parameter t − 1.165

Yapar et al. [8] proved that this scheme is order optimal to166

within a factor of 4, and exactly optimal under the constraint167

of uncoded cache placement and one-shot delivery (i.e., in a168

one-shot delivery, any user can recover any requested bit from169

the content of its own cache and the transmitted messages by170

at most one other user).171

B. New D2D Networks With Privacy Constraints172

In D2D networks, the demand privacy problem is further173

exacerbated by the fact that each user is also a transmitter,174

which broadcasts coded multicast transmissions based on175

its cached content. Based on the intuition developed from176

the shared-link model, one is tempted to conclude that it177

is impossible to guarantee privacy in D2D networks as the178

demand vector knowledge appears to be necessary to design179

the coded multicast messages. Rather surprisingly, in this180

paper we show that it is possible to guarantee privacy of the181

users’ demands against the other users also in a D2D setting.182

In our new D2D private caching model, the placement phase183

is similar to the shared-link private coded caching model.184

The delivery phase contains two steps. In the first step, each185

user broadcasts a query to the other users based on its local186

cached content and its demand; since the query size does187

not scale with the file size, this step does not contribute to188

the load in the limit for large file size. In the second step,189

after collecting all the queries from all the users, each user190

broadcasts coded multicast messages as a function of the191

queries and its cached content. In the large file size regime,192

the load of the system is defined as the load in the second193

step of D2D communication. The objective of this paper is to194

design a D2D private coded caching scheme for K users, N195

files and memory size M ≥ N/K (so that the aggregate cache196

in the entire network suffices to store the entire library) with197

minimum transmitted load by all users in the delivery phase,198

while preserving the privacy of the users’ demands against the199

other users.200

In the Private Information Retrieval (PIR) problem [21] the201

privacy of the user’s demand against the servers has been202

considered. In the PIR setting, a user wants to retrieve a203

desired file from some distributed non-colluding databases204

(servers), and the objective is to prevent any server from205

retrieving any information about the index of the user’s206

demanded file. Recently, the authors in [22] characterized207

the information-theoretic capacity of the PIR problem by208

proposing a novel converse bound and a coded PIR scheme209

based on interference alignment. The T -privacy PIR problem210

with colluding servers were originally considered in [23],211

where it is imposed that any T -subset of queries sent from212

the user cannot reveal any information about the demand.213

The T -privacy PIR problem with at most T colluding servers 214

where each server has a local coded storage was considered in 215

[24], [25]. Since D2D communications have not been con- 216

sidered in the PIR literature, the D2D caching problem with 217

private demands treated in this paper is not a special case of 218

any existing PIR problem. 219

C. Contributions 220

We start by giving the first known information-theoretic 221

formulation of the D2D coded caching problem with demand 222

privacy. Then we organize the main contributions of this paper 223

as follows. 224

a) Results for general (N, K) from non-trivial extensions 225

of past works: we prove a constant gap result for all 226

parameter regimes except for N > K and M < 2N/K (i.e., 227

the small memory regime with more files than users). 228

More precisely, we propose: 229

(a.1) Coded Scheme A (Theorem 1): This scheme carefully 230

combines the idea of introducing virtual users [7] with 231

that of splitting the D2D network into multiple parallel 232

shared links [8]. 233

(a.2) Optimality (Theorem 2): By comparing Scheme A with 234

a converse bound for the shared-link model without the 235

privacy constraint in [9], we prove that Scheme A is 236

order optimal to within a factor of 6 when N ≥ K and 237

MK/N ≥ 2, and of 12 when N < K and MK/N ≥ 1. 238

b) Results specifically for the case K = 2 under uncoded 239

cache placement: at this point the regime N > K and 240

MK/N ∈ [1, 2) is open, which motivates the in-depth 241

study of the simplest open case, namely the two-user 242

case. We prove the first known general converse bound 243

under uncoded cache placement that accounts for privacy 244

constraints and leads to a constant gap result for any 245

number of files and any memory regime. In particular, 246

we propose: 247

(b.1) Coded Scheme B (Theorem 3): This scheme outper- 248

forms Scheme A for the two-user case. 249

(b.2) New Converse (Theorem 4): Inspired by the converse 250

bounds for non-private shared-link caching models 251

under uncoded cache placement from [11] and for 252

PIR systems from [22], we propose a new con- 253

verse bound under uncoded cache placement for 254

the two-user case by fully considering the privacy 255

constraint.3 256

(b.3) Optimality (Theorem 5): With the new converse bound, 257

under the constraint of uncoded cache placement and 258

N ≥ K = 2, we show that Scheme B is exactly optimal 259

when M ∈ [N/2, (N + 1)/2] or M ∈
[

N(3N−5)
2(2N−3) , N

]
, 260

and is order optimal to within a factor of 3 (numerical 261

simulations suggest 4/3) for the remaining memory 262

size regime. 263

c) Results for general (N, K) under uncoded cache place- 264

ment and user collusion: we leverage the new converse 265

3Our bound is not a generalization of the one for the shared-link private
caching model with N = K = 2 in [19], because the proposed converse
bound heavily depends on the fact that the transmission of each user is a
function of the queries and cached content of this user.
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bound for the two-user case in a cut-set type bound and266

prove a constant gap result for all parameter regime, while267

at the same time considering a stronger notion of privacy268

that allows for colluding users. We propose:269

(c.1) New Converse (Theorem 6): We extend the proposed270

two-user converse bound to the K-user system by271

dividing the K users into two groups, and derive a272

converse bound under uncoded cache placement and273

user collusion.274

(c.2) Optimality (Theorem 7): Under the constraint275

of uncoded cache placement and user collusion,276

Scheme A is shown to be order optimal to within277

a factor of 18 (numerical simulations suggest 27/2)278

when N > K and MK/N ∈ [1, 2). This proves that279

Scheme A is order optimal in all memory regimes280

(that is, also in the regime that was open under the281

converse bound for the non-private shared-link model)282

and it is robust to colluding users.283

Remark 1 (The powerfulness of the two-user converse284

bound): It is rather surprising and quite remarkable to see285

that, in the considered D2D private coded caching problem,286

the converse for the case of K = 2 users combined with a287

cut-set extension yields the order optimality for any system288

parameters under the constraint of uncoded cache placement289

and user collusion. This is in stark contrast to plenty of290

well-known multiuser information theory problems where the291

optimality results for the K = 2 case do not generalize, and292

give in fact little or no hint to the K > 2 case. Paramount293

examples include the general broadcast channel with degraded294

message sets [26], [27], the K-user Gaussian interference295

channel [28], [29], and the non-private shared-link coded296

caching [13]. �297

Remark 2 (Cost of D2D): By using the result in [30], one298

can immediately infer that, under the constraint of uncoded299

cache placement and without privacy constraint, the gap300

between the achieved loads in the shared-link and D2D301

scenarios is at most 2. This is no longer the case when privacy302

is introduced, where the gap between the loads in private303

shared-link and private D2D scenarios can be arbitrarily large304

(i.e., the gap is larger than N/ min(N, K) when M = N/K,305

which can be unbounded). Similar observations were made in306

the context of secure shared-link pliable index coding [31],307

where the authors showed that problems that are feasible308

without security constraints became infeasible when security309

is considered (i.e., there is no constant gap factor independent310

of the system parameters). �311

D. Paper Organization312

The rest of this paper is organized as follows. Section II313

formulates the D2D private caching model. Section III pro-314

vides an overview of all our technical results, and provides315

some numerical evaluations. Sections IV and V provide proofs316

of the proposed achievable schemes and converse bounds,317

respectively. Section VI concludes the paper. Some proofs (i.e.,318

more technical lemmas and tedious gap derivations) may be319

found in the Appendices.320

E. Notation Convention 321

Calligraphic symbols denote sets, bold symbols denote 322

vectors, and sans-serif symbols denote system parameters. 323

We use | · | to represent the cardinality of a set or the 324

length of a vector. Sets of consecutive integers are denoted 325

as [a : b] := {a, a + 1, . . . , b} and [n] := [1 : n]. The symbol 326

⊕ represents bit-wise XOR. a! = a×(a−1)×· · ·×1 represents 327

the factorial of a. We use the convention
(
x
y

)
= 0 if x < 0 or 328

y < 0 or x < y. 329

II. SYSTEM MODEL 330

A (K, N) D2D private caching system comprises the fol- 331

lowing elements. 332

• A library with N independently generated files, where 333

each file is composed of B i.i.d. bits. The files are denoted 334

by (F1, F2, . . . , FN). 335

• K users, each equipped with a local cache. 336

• An error-free broadcast link from each user to all other 337

users (e.g., a shared medium).4 338

The system operates in two phases. 339

• Placement Phase. Note that the placement phase is done 340

without knowledge of later demand. Each user k ∈ 341

[K] first generates some local randomness Pk , which is 342

independent of the library F1, . . . , FN and independent 343

across users, and is only known at user k ∈ [K]. Then 344

user k stores Zk in its cache, where 345

H
(
Zk|Pk, F1, . . . , FN

)
= 0 (placement constraint), 346

(1) 347

The vector of all caches is Z := (Z1, Z2, . . . , ZK). 348

• Delivery Phase. User k ∈ [K] demands the file indexed 349

by dk ∈ [N]. The demand vector is d := (d1, d2, . . . , dK). 350

The delivery phase contains the following two steps. 351

– Step 1: user k ∈ [K], given its randomness Pk, cached 352

content Zk and demand dk, broadcasts the query �k to 353

the other users. 354

– Step 2: after having received all the queries, user k ∈ 355

[K] broadcasts the signal Xk to the other users, where 356

H
(
Xk|Zk, Pk, �1, . . . , �K

)
= 0, (encoding constraint). 357

(2) 358

Note that, the queries �1, . . . , �K act as the metadata 359

explained in Footnote 1, implying the composition of 360

each coded multicast message. 361

Successful decoding is guaranteed if 362

H
(
Fdk

|Zk, Pk, dk, �1, . . . , �K, X1, . . . , XK

)
= 0, 363

∀k ∈ [K], (decoding constraint). (3) 364

4D2D networks may be implemented at the physical/MAC layer, such that
the nodes are physical devices sharing a common transmission medium, or at
the logical or “application” layer, as for example in current peer-to-peer file
sharing systems such as BitTorrent, Gnutella, Kazaa and several others. We do
not make such distinction here and just compute the load as the sum of all
nodes (or “peers”) transmissions expressed in bits, necessary to satisfy the
users demands. This load notion is compliant with the previously defined
coded caching models for D2D and shared link systems.
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Demand privacy5 is guaranteed if365

I
(
d[K]\{k}; Zk, Pk, dk, �1, . . . , �K, X1, . . . , XK

)
= 0,366

(privacy constraint), (4)367

where dS denotes the vector obtained from d by retaining368

only the elements indexed by S.369

Assume that the length of (Pk, �k), k ∈ [K], does not370

scale with B. By the constraint of privacy, the number of371

transmissions in Step 2 of the delivery for different demand372

vectors should be the same. Thus a pair (M, R) is said to be373

achievable if all the above constraints are satisfied with374

lim sup
B→∞

H(Zk)
B

≤ M, ∀k ∈ [K], (cache size), (5a)375

lim sup
B→∞

∑
k∈[K] H(Xk)

B
≤ R, (load). (5b)376

Our objective is to determine377

R�(M) := inf{R : (M, R) is achievable as in (5)}. (6)378

We only consider the case min(K, N) ≥ 2, since the case379

K = 1, a single node network, does not make sense in a D2D380

network and when N = 1 each user knows the demand of the381

other users. In addition, we only need to consider M ∈ [N
K , N

]
,382

since for M ≥ N each user can cache the whole library, thus no383

delivery is needed; and for KM < N there is not enough space384

in the overall network memory to store the whole library, thus385

the problem is not feasible.386

A. Uncoded Cache Placement387

If each user k ∈ [K] directly copies some bits of the files388

into Zk, the cache placement is said to be uncoded. The389

optimal load under the constraint of uncoded cache placement390

is denoted by R�
u(M), which is defined as in (5b) but with391

the additional constraints that the cache placement phase is392

uncoded. Clearly, R�(M) ≤ R�
u(M).393

B. Colluding Users394

We say that the users in the system collude if they exchange395

the index of their demanded file and their cached content.396

Collusion is a natural consideration to increase the privacy397

level and is one of the most widely studied variants in the PIR398

problem [23], [32]–[34]. Privacy constraint against colluding399

users is a stronger notion than (4) and is defined as follows400

I
(
d[K]\S ; (Zk, Pk : k ∈ S),dS , �1, . . . , �K, X1, . . . , XK

)
= 0,401

∀S ⊆ [K],S �= ∅. (7)402

The optimal load under uncoded cache placement and the403

privacy constraint in (7) is denoted by R�
u,c(M). Clearly,404

R�
u,c(M) ≥ R�

u(M) ≥ R�(M).405

Remark 3: For K = 2, the privacy constraints in (4) and (7)406

are equivalent, and thus we have R�
u,c(M) = R�

u(M) ≥ R�(M).407

�408

5The privacy constraint in (4) corresponds to perfect secrecy in an informa-
tion theoretic sense (see [27, Chapter 22]).

III. MAIN RESULTS 409

In this section, we summarize all the new results in this 410

paper and provide the main ingredients on how the bounds 411

are derived. 412

A. Results for General (N, K) by Non-Trivial Extensions of 413

Known Schemes 414

Inspired by the virtual-user strategy in [7], we propose a 415

private coded caching scheme (referred to as Scheme A in 416

the following) with a cache placement inspired by the D2D 417

strategy [20]. More precisely, our scheme effectively divides 418

the D2D network into K independent shared-link models, each 419

of which serves U := (K − 1)N effective users, where (K − 420

1)(N − 1) users are virtual. The achieved load is given in 421

the following theorem; an example that highlights the main 422

ingredients in Scheme A can be found in Section IV-A and 423

the detailed general description on Scheme A can be found in 424

Section IV-B. 425

Theorem 1 (Scheme A): For the (K, N) D2D private caching 426

system, R�
u,c is upper bounded by the lower convex envelope 427

of the following points 428

(M, RA) =

(
N + t − 1

K
,

(
U
t

)− (U−N
t

)(
U

t−1

)
)

, ∀t ∈ [U + 1]. (8) 429

� 430

Note that Scheme A satisfies the robust privacy constraint 431

in (7) against colluding users. By comparing Scheme A 432

in Theorem 1 and the converse bound for the shared-link 433

caching problem without privacy constraint in [9], we have the 434

following order optimality results, whose proof can be found 435

in Appendix D. 436

Theorem 2 (Order Optimality of Scheme A): For the (K, N) 437

D2D private caching system, Scheme A in Theorem 1 is order 438

optimal to within a factor of 6 if N ≥ K and M ≥ 2N/K, and 439

12 if N ≤ K. � 440

Remark 4 (Reduction of Subpacketization for Scheme A): 441

Scheme A in Theorem 1 divides each file into K
(

U
t−1

)
442

equal-length subfiles, thus the subpacketization is K
(

U
t−1

) ≈ 443

K2UH( t−1
U ), where H(p) = −p log2(p)−(1−p) log2(1−p) is 444

the binary entropy function. Hence, the maximal subpacketiza- 445

tion of the virtual-user scheme (when t−1
U = 1

2 ) is exponential 446

in U, which is much higher than the maximal subpacketi- 447

zation of the K-user MAN coded caching scheme (which is 448

exponential in K). Very recently, after the original submission 449

of this paper, the authors in [16] proposed a shared-link 450

private coded caching scheme based on the cache-aided linear 451

function retrieval [35], which can significantly reduce the 452

subpacketization of the shared-link virtual-user private caching 453

schemes in [6], [7]. In addition to the cached content by the 454

MAN placement, the authors let each user privately cache 455

some linear combinations of uncached subfiles in the MAN 456

placement which are regarded as keys. In such way, the 457

effective demand of each user in the delivery phase becomes 458

the sum of these linear combinations and the subfiles of its 459

desired file, such that the real remand is concealed. We can 460

directly use the extension strategy in [20] to extend this 461

shared-link private caching scheme to our D2D setting to 462
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obtain Scheme C, which achieves the lower convex envelope463

of
(

K
N , N

)
and the following points464

(M, RC) =

(
t(N − 1)

K
+ 1,

(
K−1

t

)− (K−1−N
t

)(
K−1
t−1

)
)

, ∀t ∈ [K].465

(9)466

The subpacketization of the scheme in (9) is K
(
K
t

) ≈467

K2KH(t/K), which is the same as the K-user non-private D2D468

coded caching scheme in [20]. As the shared-link private469

caching scheme in [16], Scheme C also satisfies the robust470

privacy constraint in (7) against colluding users. �471

B. Results for K = 2: New Converse Bound to Truly Account472

for Privacy Constraints473

The order optimality results in Theorem 2 is derived from an474

existing converse bound without privacy constraint and does475

not cover the regime N > K and M ∈ [N/K, 2N/K). Hence,476

we are motivated to derive a new converse bound by fully477

incorporating the privacy constraint for the simplest open case,478

that is, for a two-user system.479

When K = 2, we observe that in Scheme A some cached480

content is redundant. By removing those redundancies we481

derive a new scheme (referred to as Scheme B in the follow-482

ing) whose achieved load is given in the following theorem; an483

example that highlights the main ingredients in Scheme B can484

be found in Section IV-C and the detailed general description485

on Scheme B can be found in Section IV-D.486

Theorem 3 (Scheme B): For the (K, N) = (2, N) D2D487

private caching system, R�
u = R�

u,c is upper bounded by the488

lower convex envelope of (M, RB) = (N, 0) and the following489

points490

(M, RB) =
(

N

2
+

Nt′

2(N + t′ − 1)
,

N(N − 1)
(t′ + 1)(N + t′ − 1)

)
,491

∀t′ ∈ [0 : N − 1]. (10)492

�493

In Appendix F we prove the following corollary.494

Corollary 1: By comparing Scheme A in Theorem 1 for495

K = 2 and Scheme B in Theorem 3, we find RB ≤ RA. �496

Next we turn our attention to converse bounds that truly497

incorporate the privacy constraint. The following converse498

bound is one of the key novelties of this paper. It truly accounts499

for the privacy constraint in the general setting N ≥ 2. The500

main idea is to derive several bounds that contain a “tricky”501

entropy term that needs to be bounded in a non-trivial way;502

in some bounds this entropy term appears with a positive sign503

and in others with a negative sign; by linearly combining the504

bounds, the “tricky” entropy term cancels out. Different from505

the converse bound in [19] for the shared-link caching with506

private demands for N = K = 2, our converse bound focuses507

on uncoded cache placement and works for any N ≥ K = 2.508

Theorem 4 is proved in full generality in Section V-B. For the509

sake of clarity, an example of the key steps in the proof is510

provided Section V-A for the case of N = 2 files.511

Theorem 4 (New Converse Bound for the Two-User System):512

For the (K, N) = (2, N) D2D private caching system where513

N ≥ K = 2, assuming M = N
2 + y where y ∈ [0, N

2

]
, we have 514

the following bounds 515

R�
u ≥ N − 2y − 4y + (N − K/2)h

h + 2
516

+
h2(N − K/2)− N(2N/K − 3) + h(N + K/2)

(h + 1)(h + 2)
2y

N
, 517

∀h ∈ [0 : N − 3], only active for N ≥ 3, (11) 518

R�
u ≥ K

(
1 − 3y

N

)
, (12) 519

R�
u ≥ K

(
1
2
− y

N

)
. (13) 520

� 521

By comparing the new converse bound in Theorem 4 and 522

Scheme B in Theorem 3, we have the following optimality 523

result under the constraint of uncoded cache placement (the 524

proof can be found in Appendix G). 525

Theorem 5 (Optimality for the Two-User System): For the 526

(K, N) = (2, N) D2D private caching system where N ≥ 527

K = 2, Scheme B in Theorem 3 is exactly optimal under the 528

constraint of uncoded cache placement when N
2 ≤ M ≤ N+1

2 529

or N(3N−5)
2(2N−3) ≤ M ≤ N. Otherwise, Scheme B is order optimal 530

to within a factor of 3 (numerical simulations suggest 4/3). 531

� 532

From Theorem 5, we can directly derive the following 533

corollary. 534

Corollary 2: For the (K, N) = (2, N) D2D private caching 535

system Scheme B in Theorem 3 is exactly optimal under the 536

constraint of uncoded cache placement in all memory regimes 537

when N ∈ {2, 3}. � 538

C. Order Optimality Results for Any System Parameter When 539

Users May Collude 540

In Section V-C we extend Theorem 4 to any K ≥ 2 with the 541

consideration of the privacy constraint against colluding users 542

in (7). The main idea is to divide the users into two groups 543

in a cut-set-like fashion and generate a powerful aggregate 544

user whose cache contains the caches of all users in each 545

group (implying collusion). The derived converse bound is as 546

follows. 547

Theorem 6 (New Converse Bound for the K-User System): 548

For the (K, N) D2D private caching system where N ≥ K ≥ 3, 549

assuming M = N
K + 2y

K where y ∈ [0, N
2

]
, we have 550

R�
u,c ≥

�K/2�

K/2�

�2N/K�
2N/K

× RHS eq(11), 551

∀h ∈ [0 : �2N/K − 3�] , only active for N/K ≥ 3/2, (14) 552

R�
u,c ≥

�K/2�

K/2� × RHS eq(12), (15) 553

R�
u,c ≥

�K/2�

K/2� × RHS eq(13). (16) 554

� 555

By comparing Scheme A in Theorem 1 and the combination 556

of the new converse bound in Theorem 6 and the converse 557

bound for shared-link caching without privacy in [11], we can 558

characterize the order optimality of Scheme A under the 559
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constraint of uncoded cache placement and user collusion in560

all parameter regimes (the proof can be found in Appendix H).561

Theorem 7 (Order Optimality for the K-User System):562

For the (K, N) D2D private caching system where N ≥ K,563

Scheme A in Theorem 1 is order optimal to within a factor of564

18 (numerical simulations suggest 27/2) under the constraint565

of uncoded cache placement and user collusion.566

�567

Note that when N < K, Theorem 2 shows that Scheme A568

is generally order optimal to within a factor of 12. Hence,569

from Theorems 2 and 7, we can directly have the following570

conclusion.571

Corollary 3: For the (K, N) D2D private caching system,572

Scheme A in Theorem 1 is order optimal to within a factor of573

18 under the constraint of uncoded cache placement and user574

collusion. �575

Remark 5 (Coded vs Uncoded Cache Placement): For576

the non-private shared-link coded caching problem in [4],577

by comparing the optimal coded caching scheme with uncoded578

cache placement in [5] and the general converse bound in [9],579

it was proved that the gain of coded cache placement is at most580

2. Similarly, for the non-private D2D coded caching problem581

in [20], by comparing the coded caching scheme with uncoded582

cache placement in [8] and the general converse bound in [9],583

it was proved that the gain of coded cache placement is at most584

4. However, for the considered D2D private coded caching585

problem, by comparing the proposed converse bounds under586

uncoded cache placement and Scheme C (which is with coded587

cache placement), it is interesting to find that the gain of coded588

cache placement is not always within a constant gap. More589

precisely, let us focus on the two-user system and consider590

M = N+1
2 . By letting y = 1

2 and h = 0 in (11), we have591

R�
u ≥ N−1

2 . By letting t = 2 in (9), Scheme C achieves592

the memory-load pair (M, RC) =
(

N+1
2 , 1

)
. Hence, we have593

R�
u

RC
≥ N−1

2 , which can be unbounded (in the sense that it can594

be made larger than any constant by choosing a sufficiently595

large N). �596

D. Numerical Evaluations597

We conclude the overview of our main results with some598

numerical evaluations. For the achievable schemes, we plot599

Scheme A in Theorem 1, Scheme B in Theorem 3 (for the two-600

user system), and Scheme C in Remark 4 (with coded cache601

placement). We also plot the converse bound under uncoded602

cache placement in Theorem 4 for K = 2 and the converse603

bound under uncoded cache placement and user collusion in604

Theorem 6 for K ≥ 3. For sake of comparison, we also plot605

the converse bound in [9] and the converse bound under the606

constraint of uncoded cache placement in [11] for shared-link607

caching without privacy.608

In Fig. 1, we consider the case where K = 2 and N = 8.609

Here the converse bounds in [11] and [9] are the same. It can610

be seen in Fig. 1 that, Scheme B and the proposed converse611

bound meet for all memories except 4.5 ≤ M ≤ 6. When 4 <612

M ≤ 5.8, Scheme C, with coded cache placement, achieves613

a lower load than the converse bound under uncoded cache614

placement in Theorem 4.615

Fig. 1. The memory-load tradeoff for the D2D private caching system, where
K = 2 and N = 8.

In Fig. 2, we consider the case where K = 10 and N = 40. 616

It can be seen in Fig. 2 that compared to the converse bound 617

in [11], the proposed converse bound is tighter when M is 618

small. This is mainly because in the proposed converse bound 619

we treat K/2 = 5 users as a powerful super-user, which 620

loosens the converse bound when M grows. However, for 621

the low memory size regime, this strategy performs well and 622

gives the order optimality result of Scheme A, while the gap 623

between the converse bound in [11] and Scheme A is not a 624

constant. Hence, combining the proposed converse bound and 625

the converse bound in [11], we can obtain the order optimality 626

results of Scheme A for any memory size. 627

In Fig. 3, we consider the case where K = 40 and N = 10. 628

It can be seen that the multiplicative gap between Scheme A 629

and the converse bounds for non-private shared-link coded 630

caching problem is to within a constant. In addition, Scheme 631

A outperforms Scheme C for any M ∈ [0, N]. 632

IV. ACHIEVABLE SCHEMES 633

In this section we provide the details of the achievable 634

schemes together with illustrative examples. 635

A. Example of Scheme A 636

Before introducing Scheme A in full generality, we present 637

an example to illustrate the main idea for the D2D private 638

system with K = 2 users, N = 3 files, and t = 2 639

(corresponding to cache size M = 5
2 ). 640

At a high level, we aim to create a “virtual users”-system 641

with a total KN = 6 effective (i.e., real or virtual) users. 642

We then effectively divide the “virtual users”-system into K = 643

2 independent shared-link models, in each of which a real user 644

broadcasts coded multicast packets to (K − 1)N = 3 effective 645

users (including K − 1 = 1 real users and (K − 1)(N − 1) = 646

2 virtual users). The demand vector of the effective users 647

served on each independent shared-link model is such that 648

each file is requested exactly K − 1 = 1 times, thereby 649

guaranteeing privacy. 650

1) File Partitioning: Each file is partitioned into 6 equal- 651

length subfiles as 652

Fi = {F 1
i,{4,5}, F

1
i,{4,6}, F

1
i,{5,6}, F 2

i,{1,2}, F
2
i,{1,3}, F

2
i,{2,3}}, 653

(17) 654
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Fig. 2. The memory-load tradeoff for the D2D private caching system, where
K = 10 and N = 40.

Fig. 3. The memory-load tradeoff for the D2D private caching system, where
K = 40 and N = 10.

where i ∈ [3]. Each subfile contains B/6 bits. The subfiles655

(F 1
i,{4,5}, F

1
i,{4,6}, F

1
i,{5,6} : i ∈ [3]) are to be delivered in656

the first independent shared-link model by real user 1 to the657

effective users indexed by [N+1 : 2N] = [4 : 6]. Similarly, the658

subfiles (F 2
i,{1,2}, F

2
i,{1,3}, F

2
i,{2,3} : i ∈ [3]) are to be delivered659

in the second independent shared-link model by real user 2 to660

the effective users indexed by [N] = [3].661

2) Placement Phase: Real user 1 stores all the subfiles with662

superscript 1 (which it is charged to deliver in the delivery663

phase), and similarly, real user 2 must store all subfiles with664

superscript 2. In addition, each real user also stores other665

sub-files as follows. Real user k ∈ [2] selects Pk uniformly666

i.i.d. over [3]. The realization of P1 is unknown to real user 2,667

and similarly P2 is unknown to real user 1. Real user k ∈ [2]668

impersonates effective user θk = 3(k − 1) + Pk. Thus, the669

actual cache content of each real user k ∈ [2] is670

Zk = {F k
i,V : i ∈ [3], ∀V}

⋃
j∈[K]\{k}

{F j
i,V : i ∈ [3], θk ∈ V}.671

(18)672

For example, if we assume P1 = 1 (real user 1 impersonates673

effective user 1) and P2 = 1 (real user 2 impersonates effective674

user 4), then real users’ cached contents are 675

Z1 = (F 1
i,{4,5}, F

1
i,{4,6}, F

1
i,{5,6}, F 2

i,{1,2}, F
2
i,{1,3} : i ∈ [3]), 676

(19) 677

Z2 = (F 1
i,{4,5}, F

1
i,{4,6}, F 2

i,{1,2}, F
2
i,{1,3}, F

2
i,{2,3} : i ∈ [3]), 678

(20) 679

each of M = 3 5
6 files. 680

Thus in the first shared-link model served by real 681

user 1 with the library (F 1
i,{4,5}, F

1
i,{4,6}, F

1
i,{5,6} : i ∈ 682

[3]), each effective user k ∈ [4 : 6] caches (F 1
i,V : 683

V ∈ {{4, 5}, {4, 6}, {5, 6}}, k ∈ V). In the second 684

shared-link model served by real user 2 with the library 685

(F 2
i,{1,2}, F

2
i,{1,3}, F

2
i,{2,3} : i ∈ [3]), each effective user 686

k ∈ [3] caches (F 2
i,V : V ∈ {{1, 2}, {1, 3}, {2, 3}}, k ∈ V). 687

3) Delivery Phase: In order to guarantee privacy, we want 688

that each file is demanded the same number of times by the 689

effective users served in each independent shared-link model. 690

Therefore, we let real user k ∈ [K], who wants to retrieve 691

the file indexed by dk, choose uniformly i.i.d. at random one 692

permutation among all permutations of [N] with Pk-th entry 693

equal to dk. 694

Assume that the demand vector is (d1, d2) = (1, 1). Denote 695

the demand of effective user k by qk. Real user 1, who 696

impersonates effective user 1 with demand q1 = 1, randomly 697

chooses (q2, q3) to be either (2, 3) or (3, 2), with equal 698

probability. Real user 1 sends �1 = (q1, q2, q3) as a query to 699

real user 2. Similarly, real user 2, who impersonates effective 700

user 4 with demand q4 = 1, randomly chooses (q5, q6) to be 701

either (2, 3) or (3, 2), with equal probability. Real user 2 sends 702

�2 = (q4, q5, q6) as a query to real user 1. It can be seen that 703

in each independent shared-link model each file is demanded 704

exactly once. 705

Real user 1 then sends 706

X1 = F 1
q4,{5,6} ⊕ F 1

q5,{4,6} ⊕ F 1
q6,{4,5}; (21) 707

thus real user 2, who has cached F 1
q5,{4,6}, F

1
q6,{4,5}, can 708

recover F 1
q4,{5,6}. Similarity, real user 2 then sends 709

X2 = F 2
q1,{2,3} ⊕ F 2

q2,{1,3} ⊕ F 2
q3,{1,2}; (22) 710

thus real user 1, who has cached F 2
q2,{1,3} and F 2

q3,{1,2}, can 711

recover F 2
q1,{2,3}. 712

4) Performance: In the delivery phase, the load is 2 1
6 , 713

which coincides with (8). Privacy is guaranteed as, from the 714

viewpoint of real user 1, who does not know the realization 715

of P2, all the effective users in [4 : 6] are equivalent; similarly 716

for real user 2. The information theoretic proof on the privacy 717

will be provided later for the general case. Note that |Pk|, |�k| 718

where k ∈ [2] do not scale with B, satisfying our assumption 719

in Section II. In conclusion, the proposed scheme is decodable 720

and secure. 721

B. Proof of Theorem 1: Description of Scheme A 722

We are now ready to generalize the example in 723

Section IV-A. 724

Recall that U = (K − 1)N denotes the number of virtual 725

users. Let t ∈ [U + 1]. Similar to the “virtual users” scheme 726
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for the shared-link model in [7], we aim to contact a D2D727

system with K(N − 1) virtual users (in addition the K real728

users) and divide it into K independent shared-link models,729

each of which serves U effective users, where (K− 1)(N− 1)730

are virtual users.731

1) File Partitioning: Each file is partitioned into K
(

U
t−1

)
732

equal-length subfiles as733

Fi ={F k
i,V : k ∈ [K],V ⊆ [KN] \ [(k − 1)N + 1 : kN],734

|V| = t − 1}, ∀i ∈ [N], (23)735

where each subfile contains B

K( U
t−1)

bits. Note that, for each736

k ∈ [K], in (23) we have eliminated the index interval [(k −737

1)N + 1 : kN], which is associated with real user k, from the738

set of all effective users [KN].739

2) Placement Phase: Each real user k ∈ [K] selects740

Pk ∈ [N] uniformly at random and independently across741

users. We let real user k ∈ [K] impersonate effective user742

θk := (k − 1)N + Pk among the KN effective users. The743

realization of Pk, k ∈ [K], is unknown to all the other real744

users, that is, the other real users do not know the realization745

of θk ∈ [(k − 1)N + 1 : kN].746

Each real user k ∈ [K] caches all sub-files F j
i,V for which747

either k = j or θk ∈ V , for all files i ∈ [N], requiring748

M = N

(
U

t−1

)
+ (K − 1)

(
U−1
t−2

)
K
(

U
t−1

) = N
1 + (t − 1)/N

K
. (24)749

3) Delivery Phase: In the first step, each real user k ∈ [K]750

who demands dk ∈ [N], uniformly and independently selects751

a vector �k = (q(k−1)N+1, . . . , qkN) among all permutations752

of [N] whose Pk-th element equals dk. Then real user k ∈753

[K] broadcasts �k to all the other real users. Thus, from the754

viewpoint of each of the other real users, the union of the755

demands of the effective users in [(k−1)N+1 : kN] is always756

[N], which is key to guarantee privacy.757

In the second step of the delivery phase, each real user758

k ∈ [K] performs a YMA delivery on the k-th shared-link759

model with sub-files760

(F k
i,V : i ∈ [N],V ⊆ [KN] \ [(k − 1)N + 1 : kN], |V| = t − 1),761

(25)762

for effective users [KN] \ [(k− 1)N + 1 : kN]. More precisely,763

for each i ∈ [N ], the effective user with the smallest index764

in [KN] \ [(k − 1)N + 1 : kN] which requires Fi is chosen a765

leader for Fi. The leader set for the k-th shared-link model766

is denoted by Lk. For each S ⊆ [KN] \ [(k − 1)N + 1 : kN]767

where |S| = t, we let768

W k
S = ⊕

j∈S
F k

qj ,S\{qj}. (26)769

Then real user k broadcasts770

Xk =
(
W k

S : S ⊆ [KN] \ [(k − 1)N + 1 : kN],771

|S| = t,S ∩ Lk �= ∅). (27)772

4) Decodability: We focus on real user k ∈ [K]. From Xj 773

where j ∈ [K] \ {k}, it was shown in [5, Lemma 1], real user 774

k can reconstruct each multicast message W j
S where S ⊆ 775

([KN] \ [(j− 1)N+1 : jN]) and |S| = t. Then real user k can 776

recover each F j
dk,V where V ⊆ ([KN] \ [(j − 1)N + 1 : jN]), 777

|V| = t − 1, and θk /∈ V from W j
V∪{θk}, since real user k 778

caches all the subfiles in W j
V∪{θk} except F j

dk,V . In conclusion, 779

real user k can recover all the uncached subfiles of Fdk
from 780

(Xj : j ∈ [K] \ {k}). 781

5) Privacy: We will prove that the privacy constraint in (4) 782

holds.6 By our construction, the cached content of each 783

effective user is fixed. Hence, (X1, . . . , XK) only depends 784

on the demands of the effective users. Since Pj , j ∈ [K], 785

is chosen uniformly i.i.d over [N], θj is uniformly i.i.d. over 786

[(j−1)N+1 : jN]. Hence, for any permutation of [N] denoted 787

by u, any i ∈ [N], and any (j, k) ∈ [K]2 where j �= k, (assume 788

that the p-th element of u is i) 789

Pr{(q(j−1)N+1, . . . , qjN) = u|dj = i, dk, Zk} 790

= Pr{(q(j−1)N+1, . . . , qjN) = u|dj = i} (28a) 791

= Pr{Pj = p|dj = i}Pr{(q(j−1)N+1, . . . , qp−1, 792

qp+1, . . . , qjN|Pj = p, dj = i} (28b) 793

=
1
N

Pr{(q(j−1)N+1, . . . , qp−1, qp+1, . . . , qjN|Pj = p, dj = i} 794

(28c) 795

=
1
N

1
(N − 1)!

, (28d) 796

where (28a) follows since, given dj , the demands of the 797

effective users in [KN] \ [(j − 1)N + 1 : jN] are independent 798

of the cached content, queries, and demands of other effective 799

users; (28c) follows since Pj is chosen uniformly over [N] 800

independent of dj ; and (28d) follows since, given Pj and 801

dj , the demand vector of the effective users in [(j − 1)N + 802

1 : jN] is chosen uniformly among all permutations of [N] 803

where the Sj-th element is dj . From (28d), it can be seen 804

that Pr{(q(j−1)N+1, . . . , qjN)|dj , dk, Zk} does not depend on 805

(dj , dk, Zk); thus 806

I(q(j−1)N+1, . . . , qjN; dj |dk, Zk) = 0. (29) 807

Hence, from (29) and the fact that given dj , the demands of 808

the effective users in [KN]\[(j−1)N+1 : jN] are independent 809

of the cached content, queries, and demands of other effective 810

users, we have 811

I(q1, . . . , qKN;d|dk, Zk) = 0. (30) 812

Recall that (X1, . . . , XK) only depends on the demands of the 813

effective users; thus we can prove (4). Similarly, we can also 814

prove the privacy constraint against colluding users in (7). 815

6) Performance: Each real user k ∈ [K] broadcasts
(
U
t

) − 816(
U−N

t

)
multicast messages, each of which contains B

K( U
t−1)

bits. 817

Hence, the achieved load is given by (8). Note that |Pk|, |�k| 818

where k ∈ [K] do not scale with B, satisfying our assumption 819

in Section II. 820

6Note that the privacy proof in [7] needs the constraint that the demand of
each real user is uniformly i.i.d. over [N]. In the following, we will show that
this condition is not necessary.

Authorized licensed use limited to: University of North Texas. Downloaded on August 29,2022 at 15:22:41 UTC from IEEE Xplore.  Restrictions apply. 



5710 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 9, SEPTEMBER 2022

C. Example of Scheme B821

We now focus on the case of K = 2 user and propose a822

scheme that does not introduce virtual users and removes the823

redundancy in the placement phase of Scheme A. Let us return824

to the example in Section IV-A but with M = 9
4 to illustrate825

the key insights.826

Let us first go back to Scheme A. Recall that in Scheme A,827

each file is split as in (17), the cached contents of the real828

users are given by (19) and (20). and the transmitted signals829

are given by (21) and (22). Assume that the demand vector is830

(d1, d2) = (1, 1) and the queries are �1 = �2 = (1, 2, 3). Thus831

the transmitted signals are832

X1 = F 1
1,{5,6} ⊕ F 1

2,{4,6} ⊕ F 1
3,{4,5}, (31)833

X2 = F 2
1,{2,3} ⊕ F 2

2,{1,3} ⊕ F 2
3,{1,2}. (32)834

Note that real user 2 caches (F 1
2,{4,5}, F

1
2,{4,6}) but only835

uses F 1
2,{4,6} in the decoding procedure. Similarly, real836

user 2 caches (F 1
3,{4,5}, F

1
3,{4,6}) but only uses F 1

3,{4,5} in837

the decoding procedure. In other words, the cached subfiles838

F 1
2,{4,5} and F 1

3,{4,6} are redundant for user 2. Similarly, the839

cached subfiles F 2
2,{1,2} and F 2

3,{1,3} are redundant for user 1.840

The same is true for any demand vector.841

We propose Scheme B to remove this cache redundancy as842

follows.843

1) File Partitioning: We partition each file into 4 subfiles844

as845

Fi = {F 1
i,1, F

1
i,2, F

2
i,1, F

2
i,2}, i ∈ [3], (33)846

where each subfile contains B/4 bits.847

2) Placement Phase: User 1 selects P1 = (p1,2, p2,2, p3,2)848

uniformly i.i.d. over [2]3; user 2 selects P2 = (p1,1, p2,1, p3,1)849

uniformly i.i.d. over [2]3. Then user 1 caches Z1 =850

(F 1
i,1, F

1
i,2, F

2
i,pi,2

: i ∈ [3]), and user 2 caches Z2 =851

(F 1
i,pi,1

, F 2
i,1, F

2
i,2 : i ∈ [3]). Hence, M = 9

4 files.852

3) Delivery Phase: In the delivery phase, we assume that853

the demand vector is (d1, d2) = (1, 1). User 1 sends query854

�1 = (q, p2,2, p3,2) to user 2, where q ∈ [2] \ {p1,2}. After855

receiving �1, user 2 responds by transmitting856

X2 = F 2
1,q ⊕ F 2

2,p2,2
⊕ F 2

3,p3,2
. (34)857

User 2 sends query �2 = (q′, p2,1, p3,1) to user 1, where q′ ∈858

[2]\{p1,1}. After receiving �2, user 1 responds by transmitting859

X1 = F 1
1,q′ ⊕ F 1

2,p2,1
⊕ F 1

3,p3,1
. (35)860

The same can be done for any demand vector.861

4) Performance: Similar to the analysis of Scheme A,862

Scheme B is decodable and private. In this scheme, |Pk|, |�k|863

where k ∈ [2] do not scale with B neither. In this example,864

Scheme B achieves the memory-load pair
(

9
4 , 1

2

)
. Scheme A865

achieves the memory-load pairs (2, 1) for t = 1, and
(

5
2 , 1

3

)
for866

t = 2; hence, by memory-sharing Scheme A achieves the load867

2
3 when M = 9

4 . Therefore, Scheme B outperforms Scheme A.868

D. Proof of Theorem 3: Description of Scheme B869

We now ready to provide the general description of870

Scheme B.871

1) Placement Phase: Each file Fi, where i ∈ [N], 872

is partitioned in two equal-length parts, denoted as Fi = 873

{F 1
i , F 2

i } where |F 1
i | = |F 2

i | = B/2. For each k ∈ 874

[2], we further partition F k
i into

(
N−1

t′
)

+
(
N−2
t′−1

)
equal- 875

length subfiles, denoted by F k
i,1, . . . , F

k
i,(N−1

t′ )+(N−2
t′−1)

, where 876

each subfile has B

2((N−1
t′ )+(N−2

t′−1))
bits. We randomly gener- 877

ate a permutation of
[(

N−1
t′
)

+
(
N−2
t′−1

)]
, denoted by pi,k = 878(

pi,k[1], . . . , pi,k

[(
N−1

t′
)

+
(
N−2
t′−1

)])
, independently and uni- 879

formly over the set of all possible permutations. 880

We let P1 = (pi,2 : i ∈ [N]) and P2 = (pi,1 : i ∈ [N]). 881

Then, we let user k cache all subfiles of F k
i . In addition, 882

we let the other user (i.e., the user in [2] \ {k}) cache 883

F k
i,pi,k[1], . . . , F

k
i,pi,k[(N−2

t′−1)]
. 884

Considering all the files, each user in total caches 885((
N−1

t′
)

+ 2
(
N−2
t′−1

))
N subfiles, requiring memory 886

M =

((
N−1

t′
)

+ 2
(
N−2
t′−1

))
N

2
((

N−1
t′
)

+
(
N−2
t′−1

)) =
N

2
+

Nt′

2(N + t′ − 1)
. (36) 887

2) Delivery Phase: We first focus on the transmission by 888

user 1, in charge of delivery the subfiles with superscirpt 1. 889

For each subset S ⊆ [N] where |S| = t′ + 1, we generate an 890

XOR message containing exactly one subfile of each file in S. 891

More precisely, for each subset S ⊆ [N] where |S| = t′ + 1, 892

• If d2 ∈ S, we pick a non-picked subfile among 893

F 1
d2,pd2,1[(N−2

t′−1)+1], . . . , F
1
d2,pd2,1[(N−1

t′ )+(N−2
t′−1)]

. In addi- 894

tion, for each i ∈ S \ {d2}, we pick a non-picked subfile 895

among F 1
i,pi,1[1], . . . , F

1
i,pi,1[(N−2

t′−1)]
. 896

• If d2 /∈ S, for each i ∈ S, we pick a non-picked subfile 897

among F 1
i,pi,1[(N−2

t′−1)+1], . . . , F
1
i,pi,1[(N−1

t′ )+(N−2
t′−1)]

. 898

We let W 1
S be the XOR of the picked t′ + 1 subfiles, where 899

|W 1
S | = B

2((N−1
t′ )+(N−2

t′−1))
. 900

We proceed similarly for user 2. We let W 2
S be the 901

binary sum of the picked t′ + 1 subfiles, where |W 2
S | = 902

B

2((N−1
t′ )+(N−2

t′−1))
. 903

Finally, user 1 asks user 2 to transmit X1 = (W 1
S : S ⊆ 904

[N], |S| = t′ + 1), and user 2 asks user 1 to transmit X2 = 905

(W 2
S : S ⊆ [N], |S| = t′ + 1).7 906

3) Decodability: We focus on user 1. In each message W 2
S 907

where S ⊆ [N], |S| = t′ + 1, and d1 ∈ S, user 1 caches all 908

subfiles except one subfile from Fd1 , so user 1 can recover 909

this subfile. Hence, user 1 in total recovers
(
N−1

t′
)

uncached 910

subfiles of Fd1 , and thus can recover Fd1 . Similarly, user 2 can 911

also recover Fd2 . 912

4) Privacy: Let us focus on user 1. Since user 1 does not 913

know the random permutations generated in the placement 914

phase, from its viewpoint, all subfiles in F 1
i where i ∈ [N] 915

are equivalent.8 X1 contains
(
N
t′
)

messages, each of which 916

7In other words, the query �k , k ∈ [2], represents the indices of the subfiles
in W k

S , where S ⊆ [N] and |S| = t′ + 1.
8In our paper, the statement that from the viewpoint of a user A and B are

equivalent, means that given the known information of this user, A and B
are identically distributed.
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corresponds to a different (t′ + 1)-subset of [N] and contains917

exactly one subfile of each file in the subset. Hence, the918

compositions of X1 for different demands of user 2 are919

equivalent from the viewpoint of user 1. In addition, X2 is920

generated independent of d2, and thus X2 cannot reveal any921

information of d2. As a result, the demand of user 2 is private922

against user 1. Similarly, the demand of user 1 is private923

against user 2.924

5) Performance: Each user broadcasts
(

N
t′+1

)
messages,925

each of which contains B

2((N−1
t′ )+(N−2

t′−1))
bits. Hence, the926

achieved load is927

R =
2
(

N
t′+1

)
2
((

N−1
t′
)

+
(
N−2
t′−1

)) =
N(N − 1)

(t′ + 1)(N + t′ − 1)
. (37)928

Note that |Pk|, |�k| where k ∈ [2] do not scale with B,929

satisfying our assumption in Section II.930

V. NEW CONVERSE BOUNDS UNDER THE CONSTRAINT OF931

UNCODED CACHE PLACEMENT AND USER COLLUSION932

In this section, we provide the proofs of our new converse933

bounds in Theorems 4 and 6. We first introduce the proposed934

converse bound for the two-user system and then extend it935

to the K-user system. We start by introducing an example to936

illustrate in the simplest possible case the new ideas needed937

to derive our new converse bound.938

A. Example of Converse939

We consider the D2D private system with (K, N) = (2, 2)940

and M = 6/5, for which the achieved load by both Scheme A941

and Scheme B is R = 7/5. The converse bound under the942

constraint of uncoded cache placement and one-shot delivery943

for D2D caching without privacy in [8] gives R�
u(6/5) ≥ 4/5.9944

In the following, we prove that R�
u(6/5) = 7/5.945

Assume we have a working system, that is, a system946

where all encoding, decoding and privacy constraints listed947

in Section II are met. In the following, in order not to clutter948

the derivation with unnecessary “epsilons”, we shall neglect949

the terms Pk, �k where k ∈ [K] that contribute εB = o(B)950

when B → ∞ to bounds like the one in (40). Finally, without951

loss of generality (see Remark 7), each user caches a fraction952

M/N = 3/5 of each file and each bit in the library is cached953

by at least one user.954

Assume that the cache configurations of the two users are955

Z1
1 and Z1

2 , where Z1
1 ∪ Z1

2 = {F1, F2}. For the demand956

vector (d1, d2) = (1, 1), any working scheme must produce957

transmitted signals (X1, X2) such that the demand vector958

(d1, d2) = (1, 1) can be satisfied. The following observation is959

critical: because of the privacy constraint, from the viewpoint960

of user 1, there must exist a cache configuration of user 2,961

denoted by Z2
2 , such that Z1

1∪Z2
2 = {F1, F2}, H(X2|Z2

2 ) = 0,962

and F2 can be decoded from (X1, Z
2
2). If such a cache963

configuration Z2
2 did not exist, then user 1 would know that964

the demand of user 2 is F1 from (Z1
1 , X1, X2, d1), which is965

impossible in a working private system. Similarly, from the966

9For K = 2, any D2D caching scheme is one-shot.

viewpoint of user 2, there must exist a cache configuration 967

of user 1, denoted by Z2
1 , such that Z2

1 ∪ Z1
2 = {F1, F2}, 968

H(X1|Z2
1 ) = 0, and F2 can be decoded from (X2, Z

2
1 ). 969

From (Z1
1 , Z1

2 ), because of Remark 7, for each file Fi, i ∈ 970

[2], we have10
971

|Fi ∩ Z1
1 | =

BM

N
=

3B

5
, (38a) 972

|Fi \ Z1
1 | = |Fi \ Z1

2 | = B − 3B

5
=

2B

5
, (38b) 973

|Fi ∩ Z1
1 ∩ Z1

2 | =
B

5
. (38c) 974

Similarly, since Z1
1 ∪Z1

2 = Z1
1 ∪Z2

2 = {F1, F2}, we also must 975

have 976

|Fi ∩ Z1
1 ∩ Z2

2 | =
B

5
, (38d) 977

Fi \ Z1
1 ⊆ Fi ∩ Z1

2 ∩ Z2
2 . (38e) 978

Inspired by the genie-aided converse bound for shared-link 979

caching networks without privacy in [5], [11], we construct a 980

genie-aided super-user with cached content 981

Z ′ =
(
Z1

2 , Z2
2 \ (F1 ∪ Z1

2 )
)
, (39) 982

who is able to recover the whole library from (X1, Z
′). Indeed, 983

after file F1 is reconstructed from (X1, Z
1
2 ), the combination 984

of (F1 ∪ Z1
2 ) and Z2

2 \ (F1 ∪ Z1
2 ) gives Z2

2 ; now, file F2 can 985

be reconstructed from (X1, Z
2
2 ). Therefore, we have 986

2B = H(F1, F2) ≤ H
(
X1, Z

′) (40a) 987

= H
(
X1, Z

1
2 , Z2

2 \ (F1 ∪ Z1
2)
)

(40b) 988

= H
(
X1, Z

1
2

)
+ H

(
Z2

2 \ (F1 ∪ Z1
2 )|X1, Z

1
2 , F1

)
(40c) 989

≤ H(X1) + H(Z1
2 ) + H

(
Z2

2 |Z1
2 , F1

)
(40d) 990

= H(X1) + H(Z1
2 ) + H(F2 ∩ Z2

2 ∩ Z1
1 |Z1

2 ) (40e) 991

= H(X1) + H(Z1
2 )︸ ︷︷ ︸

≤MB

+ H(F2 ∩ Z2
2 ∩ Z1

1 )︸ ︷︷ ︸
≤B/5

992

−H(F2 ∩ Z2
2 ∩ Z1

1 ∩ Z1
2︸ ︷︷ ︸

:=Q

), (40f) 993

where (40e) follows since, from (40d), only the bits in F2 are 994

left, and Z2
2 \ Z1

2 = (Z2
2 ∩ Z1

1 ) \ Z1
2 following the reasoning 995

leading to (38e); the last step in (40f) follows since the bits 996

in a file are independent. 997

At this point, we need a bound that can be combined with 998

the one in (40) such that it contains on the right hand side 999

the term H(X2), so that H(X1) + H(X2) can be bounded 1000

by BRu, and a term that allows one to get rid of the negative 1001

entropy of the random variable 1002

Q := F2 ∩ Z1
1 ∩ Z1

2 ∩ Z2
2 , (41) 1003

which is illustrated in Fig. 4. 1004

10Intuitively, with uncoded cache placement, each file is split into disjoint
pieces as Fi = (Fi,{1}, Fi,{2}, Fi,{1,2}), i ∈ [2], and the users cache
Z1 = ∪2

i=1(Fi,{1}, Fi,{1,2}), Z2 = ∪2
i=1(Fi,{2}, Fi,{1,2}); by symmetry,

let x ∈ [0, 1] with |Fi,{1}| = |Fi,{2}| = Bx/2 and |Fi,{1,2}| = B(1 − x)
such that x/2 + 1 − x = M/N = 3/5 → x = 2(1 − M/N) = 4/5. In
the proof, one can think of different cache configurations as different ways
to split the files.
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Fig. 4. Illustration of the composition of Q := F2 ∩ Z1
1 ∩ Z1

2 ∩ Z2
2 .

In the next step, we will introduce another approach to1005

construct a genie-aided super-user, in order to derive an1006

inequality eliminating Q in (40f). We then focus on the cache1007

configurations Z1
1 and Z2

1 , and the transmitted packets X2.1008

Recall that F1 can be reconstructed from (Z1
1 , X2), and F2 can1009

be reconstructed from (Z2
1 , X2). Furthermore, by recalling1010

the definition of Q in (41), it can be seen that the bits1011

in (F2 ∩ Z1
1) \ Q are independent of X2. Thus F1 can be1012

reconstructed from (Z1
1 ∩F1,Q, X2). Hence, we can construct1013

a super-user with cached content1014

Z ′′ = (Z1
1 ∩ F1, Z

2
1 ∩ F2,Q), (42)1015

who can decode both files. Thus1016

2B = H(F1, F2) ≤ H(X2, Z
′′) (43a)1017

≤ H(X2) + H(Z1
1 ∩ F1)︸ ︷︷ ︸

≤3B/5

+ H(Z2
1 ∩ F2)︸ ︷︷ ︸

≤3B/5

+H(Q). (43b)1018

Finally, by summing (40f) and (43b), we have that any1019

achievable rate under uncoded cache placement must satisfy1020

Ru ≥ H(X1) + H(X2)
B

≥ 7
5
. (44)1021

The bound in (44) shows that Scheme A and Scheme B are1022

indeed optimal for the considered memory point.1023

Remark 6 (A high-level explanation of the converse1024

technique): The key take-away points in the example in1025

Section V-A are as follows.1026

• By exploiting the privacy constraints, we note that from1027

the viewpoint of each user k (i.e., given cache Zk and1028

transmitted packets (X1, X2)), any demand of the other1029

user is equally possible. Hence, there must exist a cache1030

configuration of the other user that allow for the decoding1031

of any file using the same (X1, X2).1032

• We introduce an auxiliary random variable Q to repre-1033

sents the set of bits F2 ∩Z1
1 ∩Z1

2 ∩Z2
2 . We then use two1034

different approaches to construct genie-aided super-users1035

to decode the whole library, in such a way that we can1036

get rid of “tricky” entropy term when the various bounds1037

are summed together:1038

1) In the first approach, we focus on (X1, Z
1
2 , Z2

2 ) and1039

construct a genie-aided super-user who can reconstruct1040

the whole library by receiving X1. The bits in Q1041

belong to the overlap of Z1
2 and Z2

2 . Hence, the size 1042

of the genie-aided super-user’s cache decreases when 1043

|Q| increases. In other words, the needed transmitted 1044

load increases when |Q| increases (see (40f)). 1045

2) In the second approach, we focus on (X2, Z
1
1 , Z2

1 ) and 1046

construct a genie-aided super-user who can reconstruct 1047

the whole library by receiving X2. Now the bits in Q 1048

are in the cache of the super-user. Hence, the size of 1049

the genie-aided super-user’s cache increases when |Q| 1050

increases. In other words, the needed transmitted load 1051

decreases when |Q| increases (see (43b)). 1052

Finally, by summing (40f) and (43b), the effect of Q is 1053

fully cancelled, such that we derive (44). 1054

� 1055

Remark 7 (On Optimality of Symmetric Placement): To 1056

derive the converse bound under the constraint of uncoded 1057

cache placement in the above example, we assumed that every 1058

user caches a fraction M/N of each file. This assumption 1059

is without loss of generality. Assume that there exists a 1060

caching scheme where users cache different fraction of the 1061

files. By taking a permutation of [N] and by using the same 1062

strategy to fill the users’ caches, we can get another caching 1063

scheme. By symmetry, these two caching schemes have the 1064

same load. Hence, by considering all possible permutations 1065

and taking memory-sharing among all such cache schemes, 1066

we have constructed a scheme where every user caches the 1067

same fraction of each file, with the same achieved load as the 1068

original caching scheme. 1069

In addition, in the example, we also assumed the total 1070

number of cached bits by each user is exactly MB, i.e., the 1071

cache of each user is full. Assume that the total number of 1072

cached bits by user k is MkB. By reasoning as above, we can 1073

prove that for any caching scheme, there must exist a caching 1074

scheme where M1 = · · · = MK and with the same load 1075

as the above scheme. Furthermore, the converse bounds in 1076

Theorem 4 and Theorem 6 derived under the assumption that 1077

M1 = · · · = MK = M, are non-increasing with the increase 1078

of M. Hence, the assumption that the total number of cached 1079

bits by each user is exactly MB bits, is also without loss of 1080

generality. 1081

Hence, in the proof of our new converse bounds, without 1082

loss of generality, we can assume each uses caches a fraction 1083

M
N of each file. � 1084

B. Proof of Theorem 4: Two-User System 1085

We focus on uncoded cache placement. Without loss of 1086

generality, each uses caches a fraction M
N of each file (as 1087

explained in Remark 7). Let 1088

M =
N

2
+ y, (45) 1089

where y ∈ [0, N
2

]
. 1090

Assume the cache configurations of the two users are 1091

(Z1
1 , Z1

2 ), where Z1
1 ∪ Z1

2 = {F1, . . . , FN}. For the demand 1092

vector (d1, d2) = (1, 1), any achievable scheme must produce 1093

transmitted packets (X1, X2), such that the demand vector 1094

(d1, d2) = (1, 1) can be satisfied. By the privacy constraint 1095
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Fig. 5. Construction of cache configurations in Lemmas 1 and 2.

in (4), from the viewpoint of user 1 with cache configu-1096

ration Z1
1 , there must exist some cache configuration Zj

21097

such that Z1
1 ∪ Zj

2 = {F1, . . . , FN}, H(X2|Zj
2) = 0, and1098

H(Fj |X1, Z
j
2) = 0, for any j ∈ [N]; otherwise, user 1 will1099

know that the demand of user 2 is not Fj . Similarly, we have1100

the following lemmas.1101

Lemma 1: For any i ∈ [N] and j ∈ [N], there must exist1102

some cache configurations Zi
1 and Zj

2 , such that1103

Zi
1 ∪ Z1

2 = Z1
1 ∪ Zj

2 = {F1, . . . , FN}; (46a)1104

H(X1|Zi
1) = H(X2|Zj

2) = 0; (46b)1105

H(Fi|X2, Z
i
1) = H(Fj |X1, Z

j
2) = 0. (46c)1106

Lemma 2: From Zi
1 and Zj

2 where i, j ∈ [N] as in Lemma 1,1107

it must hold1108

• consider Zi
1 where i ∈ [N]. For any j′ ∈ [N], there must1109

exist a cache configuration denoted by Z
(i,j′)
2 such that1110

Zi
1 ∪ Z

(i,j′)
2 = {F1, . . . , FN}, H(X2|Z(i,j′)

2 ) = 0, and1111

H(Fj′ |X1, Z
(i,j′)
2 ) = 0; and1112

• consider Zj
2 where j ∈ [N]. For any i′ ∈ [N], there must1113

exist a cache configuration denoted by Z
(i′,j)
1 such that1114

Z
(i′,j)
1 ∪ Zj

2 = {F1, . . . , FN}, H(X1|Z(i′,j)
1 ) = 0, and1115

H(Fi′ |X2, Z
(i′,j)
1 ) = 0.1116

In addition, by definition of Lemma 1,1117

• when i = 1, we have Z
(1,j′)
2 = Zj′

2 for each j′ ∈ [N];1118

when j = 1, we have Z
(i′,1)
1 = Zi′

1 for each i′ ∈ [N]; and1119

• when j′ = 1, we have Z
(i,1)
2 = Z1

2 for each i ∈ [N];1120

when i′ = 1, we have Z
(1,j)
1 = Z1

1 for each j ∈ [N].1121

We can represent the construction of the cache configura-1122

tions in Lemmas 1 and 2 by an N-ary tree, as illustrated in1123

Fig. 5.1124

• Two vertices (assumed to be represented by cache1125

configurations Z ′
1 and Z ′

2) are connected by an edge1126

with superscript (i, j), if Z ′
1 ∪ Z ′

2 = {F1, . . . , FN},1127

H(X1|Z ′
1) = H(X2|Z ′

2) = 0, and H(Fi|X2, Z
′
1) =1128

H(Fj |X1, Z
′
2) = 0.1129

• For each i ∈ [N], Zi
1 is connected to exactly N vertices,1130

which are Z
(i,j′)
2 where j′ ∈ [N].1131

• For each j ∈ [N], Zj
2 is connected to exactly N vertices,1132

which are Z
(i′,j)
1 where i′ ∈ [N].1133

Consider Zi
1 where i ∈ [N]. Recall that M = N/2 + y, and 1134

that for each j′ ∈ [N], we have Zi
1 ∪ Z

(i,j′)
2 = {F1, . . . , FN}. 1135

For each file Fp where p ∈ [N], by defining 1136

Zi
1,p := Zi

1 ∩ Fp, Z
(i,j′)
2,p := Z

(i,j′)
2 ∩ Fp, ∀j′ ∈ [N], (47a) 1137

we have 1138

|Fp \ Zi
1,p| = |Fp \ Z

(i,1)
2,p | = · · · = |Fp \ Z

(i,N)
2,p | =

B

2
− yB

N
; 1139

(47b) 1140

|Zi
1,p ∩ Z

(i,j′)
2,p | =

2yB

N
, ∀j′ ∈ [N]; (47c) 1141

(Fp \ Zi
1,p) ⊆ Z

(i,j′)
2,p , ∀j′ ∈ [N]. (47d) 1142

For each file p ∈ [N], we define that 1143

Qi
1,p = Zi

1,p ∩ Z
(i,1)
2,p ∩ · · · ∩ Z

(i,N)
2,p , (48) 1144

and that qi
1,p = |Qi

1,p|. 1145

Similarly, focus on Zj
2 where j ∈ [N], and we have 1146

Zj
2,p := Zj

2 ∩ Fp, Z
(i′,j)
1,p := Z

(i′,j)
1 ∩ Fp, ∀i′ ∈ [N]; (49a) 1147

|Fp \ Zj
2,p| = |Fp \ Z

(1,j)
1,p | = · · · = |Fp \ Z

(N,j)
1,p | 1148

=
B

2
− yB

N
; (49b) 1149

|Zj
2,p ∩ Z

(i′,j)
1,p | =

2yB

N
, ∀i′ ∈ [N]; (49c) 1150

(Fp \ Zj
2,p) ⊆ Z

(i′,j)
1,p , ∀i′ ∈ [N]. (49d) 1151

For each file p ∈ [N], we define that 1152

Qj
2,p = Zj

2,p ∩ Z
(1,j)
2,p ∩ · · · ∩ Z

(N,j)
2,p , (50) 1153

and that qj
2,p = |Qj

2,p|. 1154

After the above definitions, we are ready to prove Theo- 1155

rem 4. As illustrated in the example in Section V-A, we will 1156

use two different approaches to construct powerful super-users. 1157

First approach: Consider Zi
1 where i ∈ [N]. We then 1158

focus the connected vertices of Zi
1 in Fig. 5, i.e., Z

(i,j′)
2 1159

where j′ ∈ [N]. By the construction, from (X1, Z
(i,j′)
2 ), 1160

we can reconstruct Fj′ . The first approach is inspired by 1161

the acyclic index coding converse bound in [5], [11] for 1162

shared-link caching without privacy. We pick a permutation of 1163

[N], assumed to be u = (u1, . . . , uN), where u1 = i. We can 1164

construct a genie-aided super-user with the cache 1165

∪p∈[N]Z
(i,up)
2 \(Fu1 ∪ · · · ∪ Fup−1 ∪ Z

(i,u1)
2 ∪ 1166

· · · ∪ Z
(i,up−1)
2

)
. (51) 1167

The genie-aided super-user can successively decode the 1168

whole library from its cache and X1. More precisely, 1169

it can first decode Fu1 from (X1, Z
(i,u1)
2 ). From 1170

(X1, Fu1 , Z
(i,u1)
2 , Z

(i,u2)
2 \ (Fu1 ∪ Z

(i,u1)
2 ), then it can 1171

decode Fu2 . By this way, the genie-aided super-user can 1172
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decode the whole library. Hence, we have1173

H(F1, . . . , FN)1174

≤ H(X1) + H
(
∪p∈[N] Z

(i,up)
2 \ (Fu1 ∪ · · · ∪ Fup−11175

∪ Z
(i,u1)
2 ∪ · · · ∪ Z

(i,up−1)
2

))
(52a)1176

≤ H(X1) + H(Z(i,u1)
2 ) + H(Z(i,u2)

2 |Fu1 , Z
(i,u1)
2 ) + · · ·1177

+ H(Z(i,uN)
2 |Fu1 , . . . , FuN−1 , Z

(i,u1)
2 , . . . , Z

(i,uN−1)
2 ) (52b)1178

= H(X1) + H(Z(i,i)
2 ) + H(Z(i,u2)

2 |Fi, Z
(i,i)
2 ) + · · ·+1179

H(Z(i,uN)
2 |Fi, Fu2 , . . . , FuN−1 , Z

(i,i)
2 , Z

(i,u2)
2 , . . . , Z

(i,uN−1)
2 )1180

(52c)1181

= H(X1) + H(Z(i,i)
2 )1182

+
(
H(Z(i,u2)

2,u2
|Z(i,i)

2,u2
) + · · · + H(Z(i,uN)

2,uN
|Z(i,i)

2,uN
)
)

+ · · ·1183

+
(
H(Z(i,uN)

2,uN
|Z(i,i)

2,uN
, Z

(i,u2)
2,uN

, . . . , Z
(i,uN−1)
2,uN

)
)

(52d)1184

= H(X1) + H(Z(i,i)
2 ) + H(Z(i,u2)

2,u2
|Z(i,i)

2,u2
) + H(Z(i,u2)

2,u3
,1185

Z
(i,u3)
2,u3

|Z(i,i)
2,u3

) + · · · + H(Z(i,u2)
2,uN

, . . . , Z
(i,uN)
2,uN

|Z(i,i)
2,uN

), (52e)1186

where (52c) follows since u1 = i, (52d) follows since all bits1187

in the library are independent, (52e) comes from the chain rule1188

of the entropy.1189

From (52e), it will be proved in Appendix A-A and Appen-1190

dix A-B that (recall y = M − N/2),1191

H(X1) ≥ B

2
− yB

N
; (53)1192

H(X1) ≥ B − 4yB

N
+ qi

1,u2
. (54)1193

In addition, by considering all permutations of [N] where the1194

first element is i, we can list all (N−1)! inequalities as in (52e).1195

By summing all these (N−1)! inequalities, we can obtain the1196

following inequality, which will be proved in Appendix A-C,1197

H(X1) ≥ NB

2
−yB − 4(N − 1)yB

(h + 2)N
+

2
h + 2

∑
p∈[N]\{i}

qi
1,p1198

−
∑

p∈[N]\{i}

{
N − 2

(h + 1)(h + 2)

(
2yB

N
− qi

1,p

)
1199

+
h

h + 2

(
B

2
− yB

N

)}
, ∀h ∈ [0 : N − 3]. (55)1200

By considering all i ∈ [N], we can list all N inequalities as1201

in (55). By summing all these N inequalities, we obtain1202

H(X1) ≥ NB

2
−yB − 4(N − 1)yB

(h + 2)N
1203

+
2

(h + 2)N

∑
i∈[N]

∑
p∈[N]\{i}

qi
1,p1204

−
∑
i∈[N]

∑
p∈[N]\{i}

{
N − 2

(h + 1)(h + 2)N

(
2yB

N
− qi

1,p

)
1205

+
h

(h + 2)N

(
B

2
− yB

N

)}
, ∀h ∈ [0 : N − 3]. (56a)1206

We now consider Zj
2 where j ∈ [N]. By the similar step as 1207

above to derive (56a), we obtain 1208

H(X2) ≥ NB

2
−yB − 4(N − 1)yB

(h + 2)N
+ 1209

2
(h + 2)N

∑
j∈[N]

∑
p∈[N]\{j}

qj
2,p 1210

−
∑
j∈[N]

∑
p∈[N]\{j}

{
N − 2

(h + 1)(h + 2)N

(
2yB

N
− qj

2,p

)
1211

+
h

(h + 2)N

(
B

2
− yB

N

)}
, ∀h ∈ [0 : N − 3]. (57) 1212

By summing (56a) and (57), we obtain 1213

R�
uB ≥ H(X1) + H(X2) (58a) 1214

≥NB− 2yB − 8(N − 1)yB

(h + 2)N
− N − 2

(h + 1)(h + 2)N
4y(N− 1)B 1215

− h(N − 1)
(h + 2)

(
B − 2yB

N

)
+
(

2
(h + 2)N

+
N − 2

(h + 1)(h + 2)N

)
1216⎛

⎝∑
i∈[N]

∑
p∈[N]\{i}

qi
1,p +

∑
j∈[N]

∑
p∈[N]\{j}

qj
2,p

⎞
⎠ , ∀h ∈ [0 : N − 3]. 1217

(58b) 1218

Second approach: We then use the second approach to 1219

construct genie-aided super-users. We first consider X2. By the 1220

construction, from (X2, Z
i
1) where i ∈ [N], we can reconstruct 1221

Fi. 1222

Now we fix an integer i ∈ [N]. We pick a permutation of 1223

[N], assumed to be u = (u1, . . . , uN), where u1 = i. We can 1224

construct a genie-aided super-user with the cache 1225

∪p∈[N]

(
Z

up

1,up
∪Qu1

1,up
∪ · · · ∪ Qup−1

1,up

)
. (59) 1226

Now we prove that the genie-aided super-user can successively 1227

decode the whole library from its cache and X2. Note that 1228

from (Zu1
1 , X2), we can reconstruct Fu1 . Furthermore, for 1229

each file Fp1 where p1 ∈ [N]\{u1}, by recalling the definition 1230

of Qu1
1,p1

in (48), it can be seen that the bits in Zu1
1,p1

\ Qu1
1,p1

1231

are independent of X2. Hence, it is enough to reconstruct Fu1 1232

from (X2, Z
u1
1,u1

,Qu1
1,u2

, . . . ,Qu1
1,uN

), and thus the super-user 1233

can reconstruct Fu1 . After recovering Fu1 , the super-user 1234

can reconstruct Fu2 from (X2, Fu1 , Z
u2
1,u2

,Qu2
1,u3

, . . . ,Qu2
1,uN

). 1235

By this way, the genie-aided super-user can decode the whole 1236

library. Hence, we have 1237

H(X2) ≥ H(F1, . . . , FN) 1238

− H
(
∪p∈[N]

(
Z

up

1,up
∪ Qu1

1,up
∪ · · · ∪ Qup−1

1,up

))
(60a) 1239

≥ (H(Fu1 ) − H(Zu1
1,u1

)
)

1240

+
(
H(Fu2) − H(Zu2

1,u2
,Qu1

1,u2
)
)

+ · · · 1241

+
(
H(FuN

) − H(ZuN
1,uN

,Qu1
1,uN

, . . . ,QuN−1
1,uN

)
)
. (60b) 1242

From (60b), it will be proved in Appendix B-A and Appen- 1243

dix B-B that, 1244

H(X2) ≥ B

2
− yB

N
; (61) 1245

H(X2) ≥ B − 2yB

N
− qi

1,u2
. (62) 1246
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By letting the two permutations to derive (52e) and (60b)1247

be the same, we now sum (53) and (61) to obtain1248

R�
uB ≥ H(X1) + H(X2) ≥ B − 2yB

N
, (63)1249

which coincides with the proposed converse bound in (13).1250

Similarly, by summing (54) and (62), we obtain1251

R�
uB ≥ H(X1) + H(X2) ≥ 2B − 6yB

N
, (64)1252

which coincides with the proposed converse bound in (12).1253

In addition, by considering all permutations of [N] where1254

the first element is i, we can list all (N − 1)! inequalities as1255

in (60b). By summing all these (N − 1)! inequalities, we can1256

obtain the following inequalities, which will be proved in1257

Appendix B-C,1258

H(X2) ≥ NB

2
− yB − 2

h + 2

∑
p∈[N]\{i}

qi
1,p1259

−
∑

p∈[N]\{i}

{∑
n∈[N]\{i,p} qn

1,p

(h + 1)(h + 2)
+

h

h + 2

(
B

2
− yB

N

)}
,1260

∀h ∈ [0 : N − 3]. (65)1261

By considering all i ∈ [N], we can list all N inequalities as1262

in (65). By summing all these N inequalities, we obtain1263

H(X2) ≥ NB

2
− yB − 2

(h + 2)N

∑
i∈[N]

∑
p∈[N]\{i}

qi
1,p1264

−
∑
i∈[N]

∑
p∈[N]\{i}

{∑
n∈[N]\{i,p} qn

1,p

(h + 1)(h + 2)N
1265

+
h

(h + 2)N

(
B

2
− yB

N

)}
, ∀h ∈ [0 : N − 3]. (66)1266

We now consider X1. By the similar steps as above to1267

derive (66), we obtain1268

H(X1) ≥ NB

2
− yB − 2

(h + 2)N

∑
j∈[N]

∑
p∈[N]\{j}

qj
2,p1269

−
∑
j∈[N]

∑
p∈[N]\{j}

{∑
n∈[N]\{j,p} qn

2,p

(h + 1)(h + 2)N
1270

+
h

(h + 2)N

(
B

2
− yB

N

)}
, ∀h ∈ [0 : N − 3]. (67)1271

By summing (66) and (67), we obtain1272

R�
uB ≥ H(X1) + H(X2) (68a)1273

≥ NB − 2yB1274

− 2
(h + 2)N

⎛
⎝∑

j∈[N]

∑
p∈[N]\{j}

qj
2,p +

∑
i∈[N]

∑
p∈[N]\{i}

qi
1,p

⎞
⎠1275

− 1
(h + 1)(h + 2)N

⎛
⎝∑

j∈[N]

∑
p∈[N]\{j}

∑
n∈[N]\{j,p}

qn
2,p1276

+
∑
i∈[N]

∑
p∈[N]\{i}

∑
n∈[N]\{i,p}

qn
1,p

⎞
⎠− h(N − 1)

(h + 2)

(
B − 2yB

N

)
1277

(68b)1278

= NB − 2yB 1279

− 2
(h + 2)N

⎛
⎝∑

j∈[N]

∑
p∈[N]\{j}

qj
2,p +

∑
i∈[N]

∑
p∈[N]\{i}

qi
1,p

⎞
⎠ 1280

− 1
(h + 1)(h + 2)N

⎛
⎝(N − 2)

∑
j1∈[N]

∑
p1∈[N]\{j1}

qj1
2,p1

1281

+(N − 2)
∑

i2∈[N]

∑
p2∈[N]\{i2}

qi2
1,p2

⎞
⎠ 1282

− h(N − 1)
(h + 2)

(
B − 2yB

N

)
, ∀h ∈ [0 : N − 3], (68c) 1283

where (68c) follows since11
1284∑

j∈[N]

∑
p∈[N]\{j}

∑
n∈[N]\{j,p}

qn
2,p =

∑
j1∈[N]

∑
p1∈[N]\{j1}

qj1
2,p1

, 1285

and 1286∑
i∈[N]

∑
p∈[N]\{i}

∑
n∈[N]\{i,p}

qn
1,p = (N − 2)

∑
i2∈[N]

∑
p2∈[N]\{i2}

qi2
1,p2

. 1287

Finally, by summing (58b) and (68c), we obtain ∀h ∈ [0 : 1288

N − 3], 1289

R�
u ≥ 1

2

{
N − 2y − 8(N − 1)y

(h + 2)N
− (N − 2)(N − 1)4y

(h + 1)(h + 2)N
− 1290

h(N − 1)
(h + 2)

(
1 − 2y

N

)}
1291

+
1
2

{
N − 2yN − h(N − 1)

(h + 2)

(
1 − 2y

N

)}
(69a) 1292

= N − 2y − 4y + (N − 1)h
h + 2

1293

+
h2(n − 1) − N(N − 3) + h(N + 1)

(h + 1)(h + 2)
2y

N
, (69b) 1294

which coincides with the proposed converse bound in (11). 1295

C. Proof of Theorem 6: K-User System 1296

We extend the proposed converse bound for the two-user 1297

system to K-user system and consider the privacy constraint 1298

against colluding users in (7). In the following, we consider 1299

the case where K/2 is an integer and 2N/K is also an integer. 1300

In Appendix C we generalize the proof to any K and N. 1301

Let M = N
K + 2y

K , where y ∈ [0, N
2

]
. We use a genie-aided 1302

proof by generating two aggregate users, denoted by k1 and 1303

k2. We assume that the cache size of each aggregate user is 1304

MB× K
2 = NB

2 +yB, i.e., the cache size of each aggregate user 1305

is the total cache size of K/2 users. In addition, the demanded 1306

files of aggregate users k1 and k2 are the union sets of the 1307

demanded files of users in [K/2] and of users in [K/2 + 1 : 1308

K], respectively. The objective is to design a two-user D2D 1309

private caching scheme with minimum load R�
g, such that each 1310

11In the sum
�

j∈[N]

�
p∈[N]\{j}

�
n∈[N]\{j,p} qn

2,p, let us compute the

coefficient of term qj1
2,p1

where j1 �= p1. qj1
2,p1

appears in the sum when
p = p1 and n = j1. Hence, there are N − 2 possibilities of j, which are
[N] \ {p1, j1}. So the coefficient of qj1

2,p1
in the sum is N − 2.
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aggregate user can decode its demanded files without knowing1311

anything about the demand of the other aggregate user.1312

Obviously, for any K-user D2D private caching satisfying1313

the encoding (2), decoding (3), and privacy constraints (7),1314

it must be an achievable scheme for the above genie system.1315

In other words, R�
u,c ≥ R�

g. Hence, in the following we1316

characterize a converse bound for R�
g, which is also a converse1317

bound for R�
u,c.1318

We partition the N files into 2N/K equal-size groups, each1319

of which contains K/2 files. Each aggregate user demands one1320

group of files. Hence, it is equivalent to the two-user D2D1321

private caching problem with 2N/K files, each of which has1322

KB/2 bits, and each of the two users caches
(

NB
2 + yB

)
bits1323

in its cache and demands one file.1324

We assume the caches of aggregate users k1 and k2 are1325

A1
1 and A1

2. The transmitted packets by aggregate users k1 and1326

k2 are denoted by X ′
1 and X ′

2, such that from (X ′
2, A

1
1)1327

aggregate user k1 can decode the files in group 1 and from1328

(X ′
1, A

1
2) aggregate user k2 can also decode the files in group1329

1. We then also construct the cache configurations of aggregate1330

users k1 and k2 by a 2N/K-ary tree, as we did in Section V-B.1331

By the first approach of constructing converse bound1332

described in Section V-B, when we consider Ai
1 where i ∈1333 [

2N
K

]
(cache of aggregate user k1 from which and X ′

2, the files1334

in group i can be reconstructed), with a permutation of [2N/K]1335

denoted by u = (u1, . . . , u2N/K) where u1 = i, we obtain (by1336

the similar derivations of (53) and (54)),1337

H(X ′
1) ≥

(
B

2
− yB

N

)
K

2
; (70)1338

H(X ′
1) ≥

K

2
B − K

2
4yB

N
+ qi

1,u2
, (71)1339

where qi
1,u2

represent the number of bits in Ai
1∩A

(i,1)
2 ∩· · ·∩1340

A
(i,2N/K)
2 , which are from the files in group u2.1341

By considering all permutations of [2N/K] whose first1342

element is i, we obtain (by the similar derivation of (55)),1343

H(X ′
1) ≥

NB

2
−yB − 2

h + 2

{(
2N

K
− 1
)

2yB

N

K

2

}
1344

+
2

h + 2

∑
p∈[ 2N

K ]\{i}
qi
1,p1345

−
∑

p∈[ 2N
K ]\{i}

{
2N
K − 2

(h + 1)(h + 2)

(
2yB

N

K

2
− qi

1,p

)
1346

+
h

h + 2

(
B

2
− yB

N

)
K

2

}
, ∀h ∈

[
0 :

2N

K
− 3
]

.1347

(72)1348

By considering all i ∈ [2N
K

]
to bound H(X ′

1) and all j ∈1349 [
2N
K

]
to bound H(X ′

2), we sum all inequalities as in (72) to1350

obtain (by the similar derivation of (58b)),1351

R�
gB ≥ NB − 2yB − 4

h + 2

{(
2N

K
− 1
)

2yB

N

K

2

}
1352

−
2N
K − 2

(h + 1)(h + 2)
4y(2N

K − 1)B
N

K

2
1353

− h
(

2N
K − 1

)
(h + 2)

(
B − 2yB

N

)
K

2
1354

+

(
2

(h + 2)2N
K

+
2N
K − 2

(h + 1)(h + 2)(2N/K)

)
1355⎛

⎜⎝ ∑
i∈[ 2N

K ]

∑
p∈[ 2N

K ]\{i}
qi
1,p +

∑
j∈[ 2N

K ]

∑
p∈[ 2N

K ]\{j}
qj
2,p

⎞
⎟⎠ , 1356

∀h ∈
[
0 :

2N

K
− 3
]

. (73) 1357

Similarly, by the second approach of constructing converse 1358

bound described in Section V-B, when we consider X ′
2 and the 1359

same permutation as the one to derive (70) and (71), we obtain 1360

(by the similar derivations of (61) and (62)), 1361

H(X ′
2) ≥

(
B

2
− yB

N

)
K

2
; (74) 1362

H(X ′
2) ≥

K

2
B − K

2
2yB

N
− qi

1,u2
. (75) 1363

By summing (70) and (74), we prove (16). By summing (71) 1364

and (75), we prove (15). 1365

In addition, by the second approach of constructing con- 1366

verse bound described in Section V-B, after considering all 1367

permutations to bound H(X ′
1) and all permutations to bound 1368

H(X ′
2), we obtain (by the similar derivation of (68c)), 1369

R�
gB ≥ NB − 2yB − h

(
2N
K − 1

)
(h + 2)

(
B − 2yB

N

)
K

2
1370

−
(

2
(h + 2)2N

K

+
2N/K − 2

(h + 1)(h + 2)2N
K

)
1371⎛

⎜⎝ ∑
i∈[ 2N

K ]

∑
p∈[ 2N

K ]\{i}
qi
1,p +

∑
j∈[ 2N

K ]

∑
p∈[ 2N

K ]\{j}
qj
2,p

⎞
⎟⎠ , 1372

∀h ∈
[
0 :

2N

K
− 3
]

. (76) 1373

By summing (73) and (76), we prove (14). 1374

VI. CONCLUSION 1375

We introduced a new D2D private caching model, which 1376

aims to preserve the privacy of the users’ demands. We pro- 1377

posed new D2D private coded caching schemes, which were 1378

proved to be order optimal by matching a new converse bound 1379

under the constraint of uncoded cache placement and user 1380

collusion to within a constant gap. Further works include 1381

proving new converse bounds for any cache placement, and 1382

investigating the decentralized D2D private coded caching 1383

problem. 1384

APPENDIX A 1385

PROOFS OF (53), (54), AND (55) 1386

Recall that by considering a permutation of [N], assumed to 1387

be u = (u1, . . . , uN), where u1 = i, we can derive (52e), 1388

H(F1, . . . , FN) ≤ H(X1)+H(Z(i,i)
2 ) 1389

+
∑

p∈[2:N]

H
(
Z

(i,u2)
2,up

, . . . , Z
(i,up)
2,up

|Z(i,i)
2,up

)
. (77) 1390
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For each p ∈ [2 : N], since |Z(i,i)
2,up

| = B
2 + yB

N , we have1391

H
(
Z

(i,u2)
2,up

, . . . , Z
(i,up)
2,up

|Z(i,i)
2,up

)
≤ H(Fp|Z(i,i)

2,up
) =

B

2
− yB

N
.1392

(78)1393

A. Proof of (53)1394

Now we bound each term H
(
Z

(i,u2)
2,up

, . . . , Z
(i,up)
2,up

|Z(i,i)
2,up

)
1395

where p ∈ [2 : N] in (77) by B
2 − yB

N , to obtain1396

H(F1, . . . , FN) ≤ H(X1) + H(Z(i,i)
2 )1397

+
∑

p∈[2:N]

H
(
Z

(i,u2)
2,up

, . . . , Z
(i,up)
2,up

|Z(i,i)
2,up

)
(79a)1398

≤ H(X1) + H(Z(i,i)
2 ) + (N − 1)

(
B

2
− yB

N

)
(79b)1399

= H(X1) +
NB

2
+ yB + (N − 1)

(
B

2
− yB

N

)
. (79c)1400

Hence, we have1401

H(X1) ≥ B

2
− yB

N
, (80)1402

which proves (53).1403

B. Proof of (54)1404

We first prove for each i ∈ [N] and n, p ∈ [N]\{i}, we have1405

H
(
Z

(i,n)
2,p |Z(i,i)

2,p

)
= H

(
Z

(i,n)
2,p |Z(i,i)

2,p , Fp \ Zi
1,p

)
(81a)1406

= H
(
Z

(i,n)
2,p ∩ Zi

1,p|Z(i,i)
2,p , Fp \ Zi

1,p

)
(81b)1407

= H
(
Z

(i,n)
2,p ∩ Zi

1,p|Z(i,i)
2,p

)
(81c)1408

≤ H
(
Z

(i,n)
2,p ∩ Zi

1,p

)
− qi

1,p (81d)1409

=
2yB

N
− qi

1,p, (81e)1410

where (81a) follows since Z
(i,i)
2,p ∪ Zi

1,p = Z
(i,n)
2,p ∪ Zi

1,p =1411

Fp and thus (Fp \ Zi
1,p) ⊆ Z

(i,i)
2,p , (81b) and (81c) follow1412

since all bits in the library are independent, (81d) comes1413

from (48), (81e) comes from (47c).1414

Now we bound each term H
(
Z

(i,u2)
2,up

, . . . , Z
(i,up)
2,up

|Z(i,i)
2,up

)
1415

where p ∈ [3 : N] in (77) by B
2 − yB

N , to obtain1416

H(F1, . . . , FN) ≤ H(X1) + H(Z(i,i)
2 )1417

+
∑

p∈[2:N]

H
(
Z

(i,u2)
2,up

, . . . , Z
(i,up)
2,up

|Z(i,i)
2,up

)
(82a)1418

≤ H(X1) +
NB

2
+ yB + H

(
Z

(i,u2)
2,u2

|Z(i,i)
2,u2

)
1419

+ (N − 2)
(

B

2
− yB

N

)
(82b)1420

≤ H(X1) +
NB

2
+ yB +

2yB

N
− qi

1,u2
1421

+ (N − 2)
(

B

2
− yB

N

)
, (82c)1422

where (82c) comes from (81e).1423

Hence, we have 1424

H(X1) ≥ NB

2
− yB − 2yB

N
+ qi

1,u2
− (N − 2)

(
B

2
− yB

N

)
1425

(83a) 1426

= B − 4yB

N
+ qi

1,u2
, (83b) 1427

which proves (54). 1428

C. Proof of (55) 1429

Note that when N = 2, (55) does not exist. Hence, in the 1430

following we consider N ≥ 3 to prove (55). 1431

From (77), we have 1432

H(F1, . . . , FN) ≤ H(X1) + H(Z(i,i)
2 ) 1433

+
∑

p∈[2:N]

H
(
Z

(i,u2)
2,up

, . . . , Z
(i,up)
2,up

|Z(i,i)
2,up

)
(84a) 1434

= H(X1) + H(Z(i,i)
2 ) +

∑
p∈[2:N]

{
H
(
Z

(i,up)
2,up

|Z(i,i)
2,up

)
1435

+H
(
Z

(i,u2)
2,up

, . . . , Z
(i,up−1)
2,up

|Z(i,i)
2,up

, Z
(i,up)
2,up

)}
(84b) 1436

= H(X1) +
NB

2
+ yB +

∑
p∈[2:N]

H
(
Z

(i,up)
2,up

|Z(i,i)
2,up

)
1437

+
∑

p∈[2:N]

H
(
Z

(i,u2)
2,up

, . . . , Z
(i,up−1)
2,up

|Z(i,i)
2,up

, Z
(i,up)
2,up

)
. (84c) 1438

By considering all permutations of [N] where the first element 1439

is i and summing all inequalities as (84c), we have 1440

H(X1) ≥ NB

2
− yB − 1

(N − 1)!

∑
u:u1=i

∑
p∈[2:N]

1441

H
(
Z

(i,up)
2,up

|Z(i,i)
2,up

)
− 1

(N − 1)!

∑
u:u1=i

∑
p∈[2:N]

1442

H
(
Z

(i,u2)
2,up

, . . . , Z
(i,up−1)
2,up

|Z(i,i)
2,up

, Z
(i,up)
2,up

)
(85a) 1443

=
NB

2
− yB −

∑
p∈[N]\{i}

H
(
Z

(i,p)
2,p |Z(i,i)

2,p

)
− 1

(N − 1)!

∑
p∈[N]\{i}

1444

∑
r∈[2:N]

∑
u:u1=i,ur=p

H
(
Z

(i,u2)
2,p , . . . , Z

(i,ur−1)
2,p |Z(i,i)

2,p , Z
(i,p)
2,p

)
, 1445

(85b) 1446

where (85b) comes from the re-arrangements on the summa- 1447

tions. 1448

To bound the last term in (85b), we now focus on one file 1449

Fp where p ∈ [N] \ {i} and bound the following term 1450∑
r∈[2:N]

∑
u:u1=i,ur=p

H
(
Z

(i,u2)
2,p , . . . , Z

(i,ur−1)
2,p |Z(i,i)

2,p , Z
(i,p)
2,p

)
. 1451

(86) 1452

Note that the conditional entropies in (86) are conditioned on 1453

the same term, which is Z
(i,i)
2,p ∪ Z

(i,p)
2,p . In addition, for any 1454

n ∈ [N] \ {i, p}, we have 1455

Z
(i,n)
2,p \ (Z(i,i)

2,p ∪ Z
(i,p)
2,p ) ⊆ Fp \ (Z(i,i)

2,p ∪ Z
(i,p)
2,p ). 1456
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Hence, we divide the bits in Fp \ (Z(i,i)
2,p ∪ Z

(i,p)
2,p ) into sub-1457

pieces, and denote (with a slight abuse of notation)1458

Fp \ (Z(i,i)
2,p ∪ Z

(i,p)
2,p ) = {Fp,S : S ⊆ ([N] \ {i, p})}, (87)1459

where1460

Fp,S =
(
Fp \ (Z(i,i)

2,p ∪ Z
(i,p)
2,p )

)
∩
(
∩n∈SZ

(i,n)
2,p

)
1461

\
(
∪n1 /∈SZ

(i,n1)
2,p

)
. (88)1462

In other words, Fp,S represents the bits in Fp\(Z(i,i)
2,p ∪Z

(i,p)
2,p )1463

which are exclusively in Z
(i,n)
2,p where n ∈ S.1464

We then define1465

ft :=
∑

S⊆([N]\{i,p}):|S|=t

|Fp,S |, ∀t ∈ [0 : N − 2], (89)1466

as the total length of sub-pieces Fp,S where |S| = t.1467

In (81e), we proved that for each n ∈ [N] \ {i, p},1468

we have H(Z(i,n)
2,p |Z(i,i)

2,p ) ≤ 2yB
N − qi

1,p. Hence, we also have1469

H(Z(i,n)
2,p |Z(i,i)

2,p , Z
(i,p)
2,p ) ≤ H(Z(i,n)

2,p |Z(i,i)
2,p ) ≤ 2yB

N − qi
1,p.1470

In other words,1471 ∑
S⊆[N]\{i,p}:n∈S

|Fp,S | ≤ 2yB

N
− qi

1,p. (90)1472

By summing (90) over all n ∈ [N] \ {i, p}, we have1473 ∑
t∈[0:N−2]

tft =
∑

n∈[N]\{i,p}

∑
S⊆[N]\{i,p}:n∈S

|Fp,S | (91a)1474

≤ (N − 2)
(

2yB

N
− qi

1,p

)
. (91b)1475

In addition, since Fp \ (Z(i,i)
2,p ∪ Z

(i,p)
2,p ) = (Fp \ Z

(i,i)
2,p ) \1476

(Z(i,p)
2,p \ Z

(i,i)
2,p ), we have1477

|Fp \ (Z(i,i)
2,p ∪ Z

(i,p)
2,p )| = |Fp \ Z

(i,i)
2,p | − |Z(i,p)

2,p \ Z
(i,i)
2,p |1478

(92a)1479

=
B

2
− yB

N
− H(Z(i,p)

2,p |Z(i,i)
2,p ).1480

(92b)1481

Hence, we have1482 ∑
t∈[0:N−2]

ft =
∑

S⊆[N]\{i,p}
|Fp,S | (93a)1483

=
B

2
− yB

N
− H(Z(i,p)

2,p |Z(i,i)
2,p ). (93b)1484

From the above definitions, we can re-write (86) as1485

follows,1486 ∑
r∈[2:N]

∑
u:

u1=i,ur=p

H
(
Z

(i,u2)
2,p , . . . , Z

(i,ur−1)
2,p |Z(i,i)

2,p , Z
(i,p)
2,p

)
1487

=
∑

r∈[2:N]

∑
u:

u1=i,ur=p

∑
S⊆([N]\{i,p}):

S∩{u2,...,ur−1}
=∅

|Fp,S |. (94)1488

In (94), for each r ∈ [2 : N], we can compute 1489∑
u:

u1=i,ur=p

∑
S⊆([N]\{i,p}):

S∩{u2,...,ur−1}
=∅

|Fp,S | 1490

=
∑

t∈[0:N−2]

(N − 2)!

(
N−2

t

)− (N−r−1
t

)(
N−2

t

) ft. (95) 1491

This is because in
∑

S⊆([N]\{i,p}):
S∩{u2,...,ur−1}
=∅

|Fp,S |, there are 1492(
N−2

t

) − (N−2−(r−1)
t

)
sub-pieces whose S has t elements. 1493

Considering all permutations u where u1 = i and ur = p, 1494

by the symmetry, the coefficient of each |Fp,S | where S = t 1495

should be the same. In addition, there are in total
(
N−2

t

)
sub- 1496

pieces whose S has t elements. Hence, we obtain (95). 1497

Considering all r ∈ [2 : N − 2], from (95) we have 1498∑
r∈[2:N]

∑
u:

u1=i,ur=p

H
(
Z

(i,u2)
2,p , . . . , Z

(i,ur−1)
2,p |Z(i,i)

2,p , Z
(i,p)
2,p

)
1499

=
∑

r∈[2:N]

∑
t∈[0:N−2]

(N − 2)!

(
N−2

t

)− (N−r−1
t

)(
N−2

t

) ft (96a) 1500

= (N − 2)!
∑

t∈[0:N−2]

∑
r∈[2:N]

(
N−2

t

)− (N−r−1
t

)(
N−2

t

) ft (96b) 1501

= (N − 2)!
∑

t∈[0:N−2]

(
(N − 2)

(
N−2

t

)− (N−2
t+1

)(
N−2

t

)
)

ft (96c) 1502

= (N − 1)!
∑

t∈[0:N−2]

t

t + 1
ft, (96d) 1503

where (96c) comes from the Pascal’s Triangle,
(
N−3

t

)
+ · · ·+ 1504(

t
t

)
=
(
N−2
t+1

)
. 1505

The next step is to use Fourier-Motzkin elimination on ft 1506

where t ∈ [0 : N−2] in (96d) (as we did in [11]) with the help 1507

of (91b) and (93b). More precisely, we fix one integer h ∈ [0 : 1508

N − 3]. We multiply (91b) by (N−1)!
(h+1)(h+2) and multiply (93b) 1509

by (N−1)!h
h+2 , and sum them to obtain 1510∑
t∈[0:N−2]

(
t

(N − 1)!
(h + 1)(h + 2)

+
(N − 1)!h

h + 2

)
ft 1511

≤ (N − 1)!(N − 2)
(h + 1)(h + 2)

(
2yB

N
− qi

1,p

)
1512

+
(N − 1)!h

h + 2

(
B

2
− yB

N
− H(Z(i,p)

2,p |Z(i,i)
2,p )

)
. (97) 1513

From (97), we have 1514

(N − 1)!h
h + 1

fh +
(N − 1)!(h + 1)

h + 2
fh+1 1515

≤ (N − 1)!(N − 2)
(h + 1)(h + 2)

(
2yB

N
− qi

p

)
1516

+
(N − 1)!h

h + 2

(
B

2
− yB

N
− H(Z(i,p)

2,p |Z(i,i)
2,p )

)
1517

−
∑

t∈[0:N−2]:t/∈{h,h+1}

(
t

(N − 1)!
(h + 1)(h + 2)

+
(N − 1)!h

h + 2

)
ft. 1518

(98) 1519
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We then take (98) into (96d) to obtain,1520 ∑
r∈[2:N]

∑
u:

u1=i,ur=p

H
(
Z

(i,u2)
2,p , . . . , Z

(i,ur−1)
2,p |Z(i,i)

2,p , Z
(i,p)
2,p

)
1521

≤ (N − 1)!(N − 2)
(h + 1)(h + 2)

(
2yB

N
− qi

1,p

)
1522

+
(N − 1)!h

h + 2

(
B

2
− yB

N
− H(Z(i,p)

2,p |Z(i,i)
2,p )

)
1523

−
∑

t∈[0:N−2]

(N − 1)!
(h − t)(h + 1 − t)

(h + 1)(h + 2)(t + 1)
ft (99a)1524

≤ (N − 1)!(N − 2)
(h + 1)(h + 2)

(
2yB

N
− qi

1,p

)
1525

+
(N − 1)!h

h + 2

(
B

2
− yB

N
− H(Z(i,p)

2,p |Z(i,i)
2,p )

)
. (99b)1526

Finally, we take (99b) into (85b) to obtain, for each h ∈1527

[0 : N − 3],1528

H(X1) ≥ NB

2
− yB −

∑
p∈[N]\{i}

H
(
Z

(i,p)
2,p |Z(i,i)

2,p

)
1529

− 1
(N − 1)!

∑
p∈[N]\{i}

∑
r∈[2:N]

∑
u:

u1=i,ur=p

1530

H
(
Z

(i,u2)
2,p , . . . , Z

(i,ur−1)
2,p |Z(i,i)

2,p , Z
(i,p)
2,p

)
(100a)1531

≥ NB

2
− yB −

∑
p∈[N]\{i}

H
(
Z

(i,p)
2,p |Z(i,i)

2,p

)
1532

− 1
(N − 1)!

∑
p∈[N]\{i}

{
(N − 1)!(N − 2)
(h + 1)(h + 2)

(
2yB

N
− qi

1,p

)
1533

+
(N − 1)!h

h + 2

(
B

2
− yB

N
− H(Z(i,p)

2,p |Z(i,i)
2,p )

)}
(100b)1534

=
NB

2
− yB − 2

h + 2

∑
p∈[N]\{i}

H
(
Z

(i,p)
2,p |Z(i,i)

2,p

)
−

∑
p∈[N]\{i}

1535

{
(N − 2)

(h + 1)(h + 2)

(
2yB

N
− qi

1,p

)
+

h

h + 2

(
B

2
− yB

N

)}
1536

(100c)1537

≥ NB

2
− yB − 2

h + 2

∑
p∈[N]\{i}

(
2yB

N
− qi

1,p

)
−

∑
p∈[N]\{i}

1538

{
(N − 2)

(h + 1)(h + 2)

(
2yB

N
− qi

1,p

)
+

h

h + 2

(
B

2
− yB

N

)}
,1539

(100d)1540

where (100d) comes from (81e). Hence, we prove (55).1541

APPENDIX B1542

PROOFS OF (61), (62), AND (65)1543

The proofs of (61) (62) (65) come from a similar strategy1544

used in Appendix A. Hence, in the following, we briefly1545

describe the proofs of (61) (62) (65).1546

Recall from (60b) that by considering a permutation of [N],1547

assumed to be u = (u1, . . . , uN), where u1 = i, we can1548

derive 1549

H(X2) ≥
(
H(Fi) − H(Zi

1,i)
)
+ 1550∑

p∈[2:N]

(
H(Fup) − H(Zup

1,up
,Qi

1,up
,Qu2

1,up
, . . . ,Qup−1

1,up
)
)

. 1551

(101) 1552

For each p ∈ [2 : N], we have 1553

H(Fup) − H(Zup

1,up
,Qi

1,up
,Qu2

1,up
, . . . ,Qup−1

1,up
) ≥ 0. (102) 1554

A. Proof of (61) 1555

Now we bound each term H(Fup) − 1556

H(Zup

1,up
,Qi

1,up
,Qu2

1,up
, . . . ,Qup−1

1,up
) where p ∈ [2 : N] 1557

in (101) by 0, to obtain 1558

H(X2) ≥ H(Fi) − H(Zi
1,i) =

B

2
− yB

N
, (103) 1559

which proves (61). 1560

B. Proof of (62) 1561

Now we bound each term H(Fup) − 1562

H(Zup

1,up
,Qi

1,up
,Qu2

1,up
, . . . ,Qup−1

1,up
) where p ∈ [3 : N] 1563

in (101) by 0, to obtain 1564

H(X2) ≥
(
H(Fi) − H(Zi

1,i)
)

1565

+
∑

p∈[2:N]

(
H(Fup) − H(Zup

1,up
,Qi

1,up
,Qu2

1,up
, . . . ,Qup−1

1,up
)
)

1566

(104a) 1567

≥ (H(Fi) − H(Zi
1,i)
)

+
(
H(Fu2) − H(Zu2

1,u2
,Qi

1,u2
)
)

1568

(104b) 1569

≥ H(Fi) − H(Zi
1,i + H(Fu2 ) − H(Zu2

1,u2
) − H(Qi

1,u2
) 1570

(104c) 1571

= B − 2yB

N
− qi

1,u2
. (104d) 1572

which proves (62). 1573

C. Proof of (65) 1574

Note that when N = 2, (65) does not exist. Hence, in the 1575

following we consider N ≥ 3 to prove (65). 1576

From (101), we have 1577

H(X2) ≥
(
H(Fi) − H(Zi

1,i)
)

1578

+
∑

p∈[2:N]

(
H(Fup) − H(Zup

1,up
,Qi

1,up
,Qu2

1,up
, . . . ,Qup−1

1,up
)
)

1579

(105a) 1580

=
(
H(Fi) − H(Zi

1,i)
)

+
∑

p∈[2:N]

(
H(Fup) − H(Zup

1,up
) 1581

−H(Qi
1,up

|Zup

1,up
) − H(Qu2

1,up
, . . . ,Qup−1

1,up
|Zup

1,up
,Qi

1,up
)
)

1582

(105b) 1583

= N

(
B

2
− yB

N

)
−
∑

p∈[2:N]

H(Qi
1,up

|Zup

1,up
) 1584

−
∑

p∈[2:N]

H(Qu2
1,up

, . . . ,Qup−1
1,up

|Zup

1,up
,Qi

1,up
). (105c) 1585
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By considering all permutations of [N] where the first ele-1586

ment is i and summing all inequalities as (105c), we can1587

obtain1588

H(X2) ≥ N

(
B

2
− yB

N

)
1589

− 1
(N − 1)!

∑
u:u1=i

∑
p∈[2:N]

H(Qi
1,up

|Zup

1,up
)1590

− 1
(N − 1)!

∑
u:u1=i

∑
p∈[2:N]

H(Qu2
1,up

, . . . ,Qup−1
1,up

|Zup

1,up
,Qi

1,up
)1591

(106a)1592

= N

(
B

2
− yB

N

)
−
∑

p∈[N]\{i}
H(Qi

1,p|Zp
1,p) −

1
(N − 1)!

1593

∑
p∈[N]\{i}

∑
r∈[2:N]

∑
u:u1=i,ur=p

H(Qu2
1,p, . . . ,Qur−1

1,p |Zp
1,p,Qi

1,p),1594

(106b)1595

where (106b) comes from the re-arrangements on the1596

summations.1597

To bound the last term in (106b), we now focus on one1598

file Fp where p ∈ [N] \ {i} and bound the following1599

term1600 ∑
r∈[2:N]

∑
u:u1=i,ur=p

H(Qu2
1,p, . . . ,Qur−1

1,p |Zp
1,p,Qi

1,p). (107)1601

We divide the bits in Fp \ (Zp
1,p ∪ Qi

1,p) into sub-pieces, and1602

denote1603

Fp \ (Zp
1,p ∪ Qi

1,p) = {Gp,S : S ⊆ ([N] \ {i, p})}, (108)1604

where1605

Gp,S =
(
Fp \ (Zp

1,p ∪ Qi
1,p)
) ∩ (∩n∈SQn

1,p

) \ (∪n1 /∈SQn1
1,p

)
.

(109)
1606

We then define1607

gt :=
∑

S⊆([N]\{i,p}):|S|=t

|Gp,S |, ∀t ∈ [0 : N − 2]. (110)1608

For each n ∈ [N] \ {i, p}, we have H(Qn
1,p|Zp

1,p,Qi
1,p) ≤1609

H(Qn
1,p). Hence, we have1610

∑
t∈[0:N−2]

tgt ≤
∑

n∈[N]\{i,p}
qn
1,p. (111)1611

In addition, since Fp \ (Zp
1,p ∪Qi

1,p) = (Fp \Zp
1,p)\ (Qi

1,p \1612

Zp
1,p), we have1613

∑
t∈[0:N−2]

gt =
∑

S⊆[N]\{i,p}
|Gp,S | =

B

2
− yB

N
− H(Qi

1,p|Zp
1,p).1614

(112)1615

From the above definitions, we can re-write (106b) (as we 1616

did to obtain (96d)), 1617∑
r∈[2:N]

∑
u:

u1=i,ur=p

H(Qu2
1,p, . . . ,Qur−1

1,p |Zp
1,p,Qi

1,p) 1618

=
∑

r∈[2:N]

∑
u:

u1=i,ur=p

∑
S⊆([N]\{i,p}):

S∩{u2,...,ur−1}
=∅

|Gp,S | (113a) 1619

=
∑

r∈[2:N]

∑
t∈[0:N−2]

(N − 2)!

(
N−2

t

)− (N−r−1
t

)(
N−2

t

) gt (113b) 1620

= (N − 1)!
∑

t∈[0:N−2]

t

t + 1
gt. (113c) 1621

By Fourier-Motzkin elimination on gt where t ∈ [0 : N−2] 1622

in (113c) with the help of (111) and (112), we obtain for each 1623

h ∈ [0 : N − 3], 1624∑
r∈[2:N]

∑
u:

u1=i,ur=p

H(Qu2
1,p, . . . ,Qur−1

1,p |Zp
1,p,Qi

1,p) 1625

≤ (N − 1)!
(h + 1)(h + 2)

∑
n∈[N]\{p,i}

qn
1,p 1626

+
(N − 1)!h

h + 2

(
B

2
− yB

N
− H(Qi

1,p|Zp
1,p)
)

. (114) 1627

Finally, by taking (114) into (106b), we obtain for each 1628

h ∈ [0 : N − 3], 1629

H(X2) ≥ N

(
B

2
− yB

N

)
− 2

h + 2

∑
p∈[N]\{i}

H(Qi
1,p|Zp

1,p) 1630

−
∑

p∈[N]\{i}

{∑
n∈[N]\{p,i} qn

1,p

(h + 1)(h + 2)
− h

h + 2

(
B

2
− yB

N

)}
1631

(115a) 1632

≥ N

(
B

2
− yB

N

)
− 2

h + 2

∑
p∈[N]\{i}

qi
1,p 1633

−
∑

p∈[N]\{i}

{∑
n∈[N]\{p,i} qn

1,p

(h + 1)(h + 2)
− h

h + 2

(
B

2
− yB

N

)}
, 1634

(115b) 1635

where (115b) follows since H(Qi
1,p|Zp

1,p) ≤ H(Qi
1,p) = qi

1,p. 1636

Hence, we prove (65). 1637

APPENDIX C 1638

GENERALIZATION OF THE PROOF IN SECTION V-C 1639

In Section V-C, we prove Theorem 6 for the case where 1640

K/2 is an integer and 2N/K is also an integer. In the following, 1641

we only consider the case where K/2 is not integer and N
�K/2
 1642

is not an integer neither. The proof for the case where K/2 is an 1643

integer and 2N/K is not an integer, or K/2 is not an integer and 1644

N
�K/2
 is an integer, can be directly derived from the following 1645

proof. 1646

Recall M = N
K + 2y

K , where y ∈ [0, N
2

]
. We first fix one user 1647

k ∈ [K] (assuming now k = K). We can divide the users in 1648

[K] \ {k} into two groups, and generate an aggregate user for 1649

each group. Denoted the two aggregate users by k1 and k2, 1650
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respectively. The cache size of each aggregate user is MB ×1651

K−1
2 . In addition, the demanded files of aggregate users k1 and1652

k2 are the union sets of the demanded files of users in [(K −1653

1)/2] and of users in [(K + 1)/2 : K − 1], respectively.1654

By denoting N1 := �2N/K� �K/2�, we divide files in [N1]1655

into �2N/K� non-overlapping groups, each of which contains1656

�K/2� files. Each aggregate user demands one group of files.1657

We assume that the caches of aggregate users k1 and k2 are1658

A1
1 and A1

2. The transmitted packets by aggregate users k1 and1659

k2 are denoted by X ′
1 and X ′

2, and the transmitted packets by1660

user k = K are denoted by Xk, such that from (X ′
2, Xk, A1

1)1661

aggregate user k1 can decode the files in group 1 and from1662

(X ′
1, Xk, A1

2) aggregate user k2 can also decode the files1663

in group 1. We then construct the cache configurations of1664

aggregate users k1 and k2 by a �2N/K�-ary tree, as we did in1665

Section V-B.1666

In the first approach, when we consider Ai
1 where1667

i ∈ [�2N/K�] (cache of aggregate user k1 where from1668

(X ′
2, Xk, Ai

1), the files in group i can be decoded), by con-1669

structing a genie-aided super-user as in (51) (the cache of this1670

super-user is denoted by A), by Fano’s inequality,1671

H(F1, . . . , FN|{F� : � ∈ [N1 + 1 : N]})1672

≤ H(X ′
1) + H(Xk) + H(A|{F� : � ∈ [N1 + 1 : N]}).1673

(116)1674

By considering one permutation of [�2N/K�], denoted by1675

u = (u1, . . . , u�2N/K
) where u1 = i, by the similar deriva-1676

tions of (70) and (71), we obtain1677

H(X ′
1) + H(Xk) ≥

(
B

2
− yB

N

)
�K/2� ; (117)1678

H(X ′
1) + H(Xk) ≥ �K/2�B − �K/2� 4yB

N
+ qi

1,u2
. (118)1679

By considering all permutations of [�2N/K�] where the first1680

element is i to develop (116) as we did in (52e), and by the1681

similar derivation of (72), we obtain1682

H(X ′
1) + H(Xk)1683

≥
(

B

2
− yB

N

)
N1 − 2

h + 2

(
(�2N/K� − 1)

2yB

N
�K/2�

)
1684

+
2

h + 2

∑
p∈[�2N/K
]\{i}

qi
1,p1685

− (�2N/K� − 1)(�2N/K� − 2)
(h + 1)(h + 2)

2yB

N
�K/2�1686

− (�2N/K� − 1)h
h + 2

(
B

2
− yB

N

)
�K/2�1687

+
�2N/K� − 2

(h + 1)(h + 2)

∑
p∈[�2N/K
]\{i}

qi
1,p1688

≥ N1

N

{(
B

2
− yB

N

)
N − 2

h + 2

(
(2N/K − 1)

2yB

N

K

2

)
1689

− (2N/K− 1)(2N/K − 2)
(h + 1)(h + 2)

2yB

N

K

2
− (2N/K − 1)h

h + 2
1690 (

B

2
− yB

N

)
K

2

}
+
(

2
h + 2

+
�2N/K� − 2

(h + 1)(h + 2)

)
1691

∑
p∈[�2N/K
]\{i}

qi
1,p, ∀h ∈ [0 : �2N/K� − 3] , (119a) 1692

where (119a) follows since 1693

N

N1
(�2N/K� − 1) �K/2� = N − N

�2N/K� ≤ (2N/K − 1)
K

2
. 1694

(120) 1695

By considering all i ∈ [�2N/K�] to bound H(X ′
1)+H(Xk), 1696

and all j ∈ [�2N/K�] to bound H(X ′
2) + H(Xk), we sum 1697

all inequalities as (119a) to obtain (by the similar derivation 1698

of (73)), 1699

R�
u,cB + H(Xk) ≥ N1

N

{(
B − 2yB

N

)
N − 4

h + 2
1700(

(2N/K − 1)
2yB

N

K

2

)
− (2N/K − 1)(2N/K − 2)

(h + 1)(h + 2)
4yB

N

K

2
1701

−h(2N/K − 1)
(h + 2)

(
B − 2yB

N

)
K

2

}
+
(

2
(h + 2) �2N/K� 1702

+
�2N/K� − 2

(�2N/K�)(h + 1)(h + 2)

)⎛⎝ ∑
i∈[�2N/K
]

∑
p∈[�2N/K
]\{i}

qi
1,p 1703

+
∑

j∈[�2N/K
]

∑
p∈[�2N/K
]\{j}

qj
2,p

⎞
⎠ , ∀h ∈ [0 : �2N/K� − 3] . 1704

(121) 1705

Similarly, in the second approach, when we consider 1706

(X ′
2, Xk) and the same permutation as the one to derive (117) 1707

and (118), by constructing a genie-aided super-user as in (59) 1708

(the cache of this super-user is denoted by A′), by Fano’s 1709

inequality, 1710

H(F1, . . . , FN|{F� : � ∈ [N1 + 1 : N]}) 1711

≤ H(X ′
2) + H(Xk) + H(A′|{F� : � ∈ [N1 + 1 : N]}). 1712

(122) 1713

By the similar derivations of (74) and (75), we obtain 1714

H(X ′
2) + H(Xk) ≥

(
B

2
− yB

N

)
�K/2� ; (123) 1715

H(X ′
2) + H(Xk) ≥ �K/2�B − �K/2� 2yB

N
− qi

1,u2
. (124) 1716

In addition, by considering all permutations to bound 1717

H(X ′
1) + H(Xk) and all permutations to bound H(X ′

2) + 1718

H(Xk), we sum all inequalities to obtain (by the similar 1719

derivation of (76)), 1720

R�
u,cB + H(Xk) 1721

≥ N1

N

{
NB − 2yB − h

(
2N
K − 1

)
(h + 2)

(
B − 2yB

N

)
K

2

}
1722

−
(

2
(h + 2) �2N/K� +

�2N/K� − 2
(h + 1)(h + 2) �2N/K�

)
1723⎛

⎜⎝ ∑
j∈[ 2N

K ]

∑
p∈[ 2N

K ]\{j}
qj
2,p +

∑
i∈[ 2N

K ]

∑
p∈[ 2N

K ]\{i}
qi
1,p

⎞
⎟⎠ , 1724

∀h ∈ [0 : �2N/K� − 3] . (125) 1725
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By summing (117) and (123), summing (118) and (124),1726

and summing (121) and (125), we obtain1727

R�
u,cB + H(Xk) ≥

(
B − 2yB

N

)
�K/2� ; (126a)1728

R�
u,cB + H(Xk) ≥

(
2B − 6yB

N

)
�K/2� ; (126b)1729

R�
u,cB + H(Xk)1730

≥ N1

N

{
NB − 2yB − 2

h + 2

(
(2N/K − 1)

2yB

N

K

2

)
1731

− (2N/K − 1)(2N/K − 2)
(h + 1)(h + 2)

2yB

N

K

2
1732

−h(2N/K − 1)
(h + 2)

(
B − 2yB

N

)
K

2

}
, ∀h ∈ [0 : �2N/K� − 3] .1733

(126c)1734

Finally we consider all k ∈ [K] and sum inequalities1735

as (126), to obtain (recall that R�
u,cB ≥∑k∈[K] H(Xk)),1736

R�
u,cB ≥ K

2 
K/2�
(

B − 2yB

N

)
�K/2�1737

=
�K/2�

K/2�

(
B − 2yB

N

)
K

2
; (127a)1738

R�
u,cB ≥ K

2 
K/2�
(

2B − 6yB

N

)
�K/2�1739

=
�K/2�

K/2�

(
2B − 6yB

N

)
K

2
; (127b)1740

R�
u,cB ≥ K

2 
K/2�
N1

N

{
NB − 2yB − 2

h + 2
1741 (

(2N/K − 1)
2yB

N

K

2

)
− (2N/K − 1)(2N/K − 2)

(h + 1)(h + 2)
2yB

N

K

2
1742

−h(2N/K − 1)
(h + 2)

(
B − 2yB

N

)
K

2

}
1743

=
�K/2�

K/2�

�2N/K�
2N/K

{
NB − 2yB − 2

h + 2
1744 (

(2N/K − 1)
2yB

N

K

2

)
− (2N/K − 1)(2N/K − 2)

(h + 1)(h + 2)
2yB

N

K

2
1745

−h(2N/K − 1)
(h + 2)

(
B − 2yB

N

)
K

2

}
, ∀h ∈ [0 : �2N/K� − 3] ,1746

(127c)1747

where (127c) comes from (recall that N1 := �2N/K� �K/2�),1748

K

2 
K/2�
N1

N
=

K

2 
K/2�
�2N/K� �K/2�

N
=

�K/2�

K/2�

�2N/K�
2N/K

.1749

(128)1750

Hence, we prove Theorem 6.1751

APPENDIX D1752

PROOF OF THEOREM 21753

We first provide a direct upper bound of the achieved load of1754

Scheme A in Theorem 1, since (U
t)−(U−N

t )
( U

t−1)
≤ (U

t)
( U

t−1)
= U−t+1

t .1755

Lemma 3: The achieved load of Scheme A in Theorem 1 1756

is upper bound by the lower convex envelop of (N/K, N) and 1757(
N + t − 1

K
,
U − t + 1

t

)
, ∀t ∈ [U + 1]. (129) 1758

We then introduce the following lemma, whose proof is in 1759

Appendix E. 1760

Lemma 4: The multiplicative gap between the lower con- 1761

vex envelop of the memory-load tradeoff
(

N+t1−1
K , U−t1+1

t1

)
1762

where t1 ∈ [U], and the lower convex envelop of the 1763

memory-load tradeoff
(

Nt
K , K−t

t+1

)
where t ∈ [2 : K], is at 1764

most 3 when M ≥ 2N
K . 1765

We then prove the two cases in Theorem 2, where N ≥ K 1766

and N < K. 1767

A. N ≥ K 1768

1) Converse: It was proved in [9] that for the shared-link 1769

caching model with N ≥ K, the lower convex envelope of 1770

the corner points
(

Nt
K , K−t

t+1

)
, where t ∈ [0 : K], achieved by 1771

the MAN caching scheme in [4] is order optimal to within a 1772

factor of 2. In addition, it was proved in [11] that these corner 1773

points are successively convex. Hence, when M ≥ 2N/K, the 1774

lower convex envelop of
(

Nt
K , K−t

t+1

)
, where t ∈ [2 : K] is order 1775

optimal to within a factor of 2. We will also use this converse 1776

in our model. Hence, for M ∈ [2N/K, N], R� is lower bounded 1777

by the lower convex envelope
(

Nt
K , K−t

2(t+1)

)
, where t ∈ [2 : K]. 1778

2) Achievability: From Lemma 4, it can be seen that from 1779

the proposed scheme in Theorem 1, we can achieve the lower 1780

convex envelop of the memory-load tradeoff
(

Nt
K , 3(K−t)

t+1

)
1781

where t ∈ [2 : K]. 1782

As a result, the proposed scheme in Theorem 1 is order 1783

optimal to within a factor of 6 when N ≥ K and M ≥ 2N
K . 1784

B. N < K 1785

1) Converse: It was proved in [36] that for the shared-link 1786

caching model with N < K, the lower convex envelope of the 1787

corner points (0, N) and
(

Nt
K , K−t

t+1

)
, where t ∈ [K], achieved 1788

by the MAN caching scheme in [4] is order optimal to within 1789

a factor of 4. 1790

Since the corner points
(

Nt
K , K−t

t+1

)
where t ∈ [K], are 1791

successively convex, the lower convex envelop of the MAN 1792

caching scheme for N < K is as follows. There exists one 1793

t2 ∈ [K], such that the lower convex envelop of the MAN 1794

caching scheme for M ∈ [0, Nt2/K] is the memory-sharing 1795

between (0, N) and
(

Nt2
K , K−t2

t2+1

)
, while the lower convex 1796

envelop for M ∈ [Nt2/K, N] is the lower convex envelop of 1797

the successive corner points
(

Nt
K , K−t

t+1

)
where t ∈ [t2 : K]. 1798

In addition, it is obvious that t2 is the maximum value among 1799

x ∈ [K] such that the memory-sharing between (0, N) and 1800(
Nx
K , K−x

x+1

)
at the memory M′ = N(x−1)

K leads to a lower 1801

load than K−x+1
x . More precisely, if we interpolate (0, N) 1802

and
(

Nx
K , K−x

x+1

)
where x ∈ [K] to match M′ = N(x−1)

K , the 1803

achieved load is 1804

−N− K−x
x+1

Nx
K

N(x − 1)
K

+ N =
(K − x)(x − 1)

x(x + 1)
+

N

x
. 1805
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Hence, we have1806

t2 := arg max
x∈[K]

{
(K−x)(x−1)

x(x+1)
+

N

x
≤ K − x + 1

x

}
(130a)1807

=
⌊

2K − N + 1
N + 1

⌋
. (130b)1808

We then interpolate (0, N) and
(

Nt2
K , K−t2

t2+1

)
to match M1 =1809

N/K, to get the memory-load tradeoff1810

(M1, R1) =

(
N

K
, N − N − K−t2

t2+1

t2

)
. (131)1811

Hence, it is equivalent to say that the lower convex envelop1812

of the achieved memory-load tradeoffs by the MAN caching1813

scheme for M ≥ N/K also has two regimes.1814

1) M ∈ [
N
K , Nt2

K

]
. The lower convex envelop is the1815

memory-sharing between (M1, R1) and
(

Nt2
K , K−t2

t2+1

)
.1816

2) M ∈ [Nt2
K , N

]
. The lower convex envelop of the MAN1817

scheme is the lower convex envelop of the corner points1818 (
Nt
K , K−t

t+1

)
, where t ∈ [t2 : K].1819

Since the MAN scheme is order optimal to within a factor of1820

4, R� is lower bounded by the lower convex envelope of the1821

corner points
(
M1,

R1
4

)
and

(
Nt
K , K−t

4(t+1)

)
, where t ∈ [t2 : K].1822

2) Achievability: Let us first focus on M = N/K. The1823

achieved load by the proposed scheme in Theorem 1 is N.1824

In the following, we will prove N ≤ 2R1. More precisely,1825

N − 2R1 = 2
N − K−t2

t2+1

t2
− N1826

=
2N(t2 + 1) − 2(K − t2) − Nt2(t2 + 1)

t2(t2 + 1)
1827

=
−Nt22 + (N + 2)t2 − 2(K − N)

t2(t2 + 1)
1828

=
−t2(Nt2 − N − 2) − 2(K − N)

t2(t2 + 1)
1829

=
−(Nt2 − N − 2) − 2(K−N)

t2

(t2 + 1)
. (132)1830

We consider the following two cases.1831

1) t2 = 1. From (132), we have1832

N − 2R1 =
2 − 2(K − N)

2
≤ 0, (133)1833

which follows K > N.1834

2) t2 > 1. From (132), we have1835

N − 2R1 ≤ −(2N − N − 2) − 2(K−N)
t2

t2 + 1
< 0, (134)1836

which follows N ≥ 2 and K > N.1837

Hence, from the proposed scheme in Theorem 1, we can1838

achieve (M1, 2R1). In addition, from Lemma 4, it can be1839

seen that from the proposed scheme in Theorem 1, we can1840

achieve the lower convex envelop of the memory-load tradeoff1841 (
Nt
K , 3(K−t)

t+1

)
where t ∈ [t2 : K].1842

As a result, the proposed scheme in Theorem 1 is order1843

optimal to within a factor of 12 when N < K.1844

APPENDIX E 1845

PROOF OF LEMMA 4 1846

It was proved in [11] that the corner points
(

Nt
K , K−t

t+1

)
1847

where t ∈ [0 : K] are successively convex, i.e., for each 1848

memory size M ∈
[

Nt
K , N(t+1)

K

]
where t ∈ [0 : K − 1], the 1849

lower convex envelop is obtained by memory-sharing between 1850(
Nt
K , K−t

t+1

)
and

(
N(t+1)

K , K−t−1
t+2

)
. Hence, in order to prove 1851

Lemma 4, in the following we prove from
(

N+t1−1
K , U−t1+1

t1

)
1852

where t1 ∈ [U], we can achieve
(

Nt
K , 3 K−t

(t+1)

)
for each 1853

t ∈ [2 : K]. 1854

We now focus on one t ∈ [2 : K]. We let t1 = N(t − 1) + 1855

1 such that the memory size is 1856

N + t1 − 1
K

=
N + N(t − 1) + 1 − 1

K
=

Nt

K
. (135) 1857

The achieved load is 1858

U − t1 + 1
t1

=
U − U(t−1)

K−1

U(t−1)
K−1 + 1

1859

=
U(K − 1) − U(t − 1)
U(t − 1) + (K − 1)

1860

=
K − t

t − 1 + K−1
N

1861

≤ K − t

t − 1
1862

≤ 3
K − t

t + 1
, (136) 1863

where (136) comes from t ≥ 2. Hence, we prove the proof of 1864

Lemma 4. 1865

APPENDIX F 1866

PROOF OF COROLLARY 1 1867

Recall that for the two-user system, the achieved cor- 1868

ner points of Scheme A are
(

N+t−1
2 , N−t+1

t

)
, where 1869

t ∈ [N + 1]. The achieved corner points of Scheme B 1870

are
(

N
2 + Nt′

2(N+t′−1) ,
N(N−1)

(t′+1)(N+t′−1)

)
and (N, 0), where 1871

t′ ∈ [0 : N − 1]. 1872

To prove Scheme B is better than Scheme A for the two-user 1873

system, we prove that for each t ∈ [N], by memory-sharing 1874

between
(

N
2 + Nt′

2(N+t′−1) ,
N(N−1)

(t′+1)(N+t′−1)

)
and (N, 0), where 1875

t′ = t − 1, we can obtain
(

N+t−1
2 , N−t+1

t

)
. More precisely, 1876

we let α = (N+t′−1)(N−t′)
N(N−1) . We have 1877

α

(
N

2
+

Nt′

2(N + t′ − 1)

)
+ (1 − α)N 1878

=
(N + t′ − 1)(N − t′)

N(N − 1)
N(N + 2t′ − 1)
2(N + t′ − 1)

+
t′(t′ − 1)
N(N − 1)

N 1879

=
(N + 2t′ − 1)(N − t′)

2(N − 1)
+

t′(t′ − 1)
N − 1

1880

=
(N − 1)(N − t′)

2(N − 1)
1881

=
N − t + 1

2
; (137) 1882

α
N(N − 1)

(t′ + 1)(N + t′ − 1)
+ (1 − α) × 0 =

N − t′

t′ + 1
=

N − t + 1
t

. 1883

(138) 1884
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APPENDIX G1885

PROOF OF THEOREM 51886

A. Optimality in Theorem 51887

When N = 2, it can be easily checked that the con-1888

verse bound in Theorem 4 is a piecewise curve with corner1889

points
(

N
2 , N
)
,
(

3N
4 , 1

2

)
, and (N, 0), which can be achieved1890

by Scheme B in (10). Hence, in the following, we focus on1891

N > 2.1892

Recall that M = N
2 + y. For 0 ≤ y ≤ 1

2 , from the converse1893

bound in (11) with h = 0, we have1894

R�
u ≥ N − 2y − 4y + (N − 1)h

h + 2
1895

+
h2(N − 1) − N(N − 3) + h(N + 1)

(h + 1)(h + 2)
2y

N
1896

= N − 2y − 2y − y(N − 3)1897

= N−y(N + 1). (139)1898

In other words, when N
2 ≤ M ≤ N+1

2 , the converse bound on1899

R�
u in (139) is a straight line between

(
N
2 , N
)

and
(

N+1
2 , N−1

2

)
.1900

In addition, Scheme B in (10) achieves
(

N
2 , N
)

with t′ = 0,1901

and
(

N+1
2 , N−1

2

)
with t′ = 1. Hence, we prove Scheme B1902

is optimal under the constraint of uncoded cache placement1903

when N
2 ≤ M ≤ N+1

2 .1904

For 2N
3 ≤ M ≤ 3N

4 (i.e., N
6 ≤ y ≤ N

4 ), from the converse1905

bound in (12)1906

R�
u ≥ 2 − 6y

N
= 5 − 6M

N
. (140)1907

By noticing that N(3N−5)
2(2N−3) ≥ 2N

3 when N ≥ 3, from (140), it can1908

be seen that when M = N(3N−5)
2(2N−3) , R�

u ≥ N
2N−3 , coinciding with1909

Scheme B in (10) with t′ = N − 2. When M = 3N
4 , R�

u ≥ 1
2 ,1910

coinciding with Scheme B in (10) with t′ = N − 1. Hence,1911

we prove that Scheme B is optimal under the constraint of1912

uncoded cache placement when N(3N−5)
2(2N−3) ≤ M ≤ 3N

4 .1913

Finally, for 3N
4 ≤ M ≤ N (i.e., N

4 ≤ y ≤ N
2 ), from the1914

converse bound in (13), we have1915

R�
u ≥ 1 − 2y

N
= 2 − 2M

N
. (141)1916

From (141), it can be seen that when M = 3N
4 , R�

u ≥ 1
2 ,1917

coinciding with Scheme B in (10) with t′ = N − 1. When1918

M = N, R�
u ≥ 0, which can be also achieved by Scheme B.1919

Hence, we prove that Scheme B is optimal under the constraint1920

of uncoded cache placement when 3N
4 ≤ M ≤ N.1921

B. Order Optimality in Theorem 51922

From Theorem 4, we can compute that the proposed1923

converse bound is a piecewise curve with the corner1924

points1925 (
N

2
+

Nh′

2(N + 2h′ − 2)
,
(h′ − 1)(N + h′) + (N − 1)N

(h′ + 1)(N + 2h′ − 2)

)
,1926

∀h′ ∈ [0 : N − 2], (142)1927

(
3N
4 , 1

2

)
, and (N, 0).12 Note that the proposed converse 1928

bound is a piecewise linear curve with the above cor- 1929

ner points, and that the straight line in the memory-load 1930

tradeoff between two achievable points is also achievable 1931

by memory-sharing. Hence, in the following, we focus on 1932

each corner point of the converse bound, and characterize 1933

the multiplicative gap between Scheme B and the converse 1934

bound. 1935

Note that in (142), when h′ = 0, we have
(

N
2 , N
)
; when 1936

h′ = 1, we have
(

N+1
2 , N−1

2

)
; when h′ = N − 2, we have 1937(

2N
3 , 1
)
. In addition, in Appendix G-A, we proved the opti- 1938

mality of Scheme B under the constraint of uncoded cache 1939

placement when M ≤ N+1
2 or when M ≥ 3N

4 . Hence, in the 1940

following, we only need to compare Scheme B and the corner 1941

points in (142) where h′ ∈ [2 : N − 2] and N ≥ 4. 1942

In Corollary 1, we show that Scheme B is better than 1943

Scheme A. We will prove the multiplicative gap between 1944

Scheme A and the corner points in (142) where h′ ∈ [2 : N−2] 1945

and N ≥ 4, is no more than 3. 1946

Recall that the achieved points of Scheme A for the two-user 1947

system are 1948(
N + t − 1

2
,
N − t + 1

t

)
, ∀t ∈ [N + 1]. (143) 1949

We want to interpolate the achieved points of Scheme A 1950

to match the converse bound at the memory size 1951

M = N
2 + Nh′

2(N+2h′−2) where h′ ∈ [2 : N − 2]. By computing 1952

N + t − 1
2

=
N

2
+

Nh′

2(N + 2h′ − 2)
1953

⇐⇒ t =
Nh′

N + 2 h′ − 2
+ 1, (144) 1954

and observing N−t+1
t is non-increasing with t, it can be seen 1955

that the achieved load of Scheme A at M = N
2 + Nh′

2(N+2h′−2) 1956

is lower than 1957

R′ =
N − Nh′

N+2h′−2 + 1
Nh

N+2h′−2

=
N2 + (N + 2)(h′ − 1)

Nh′ . (145) 1958

By comparing R′ and (h′−1)(N+h′)+(N−1)N
(h′+1)(N+2h′−2) , we have 1959

R′
(h′−1)(N+h′)+(N−1)N

(h′+1)(N+2h′−2)

1960

=

(
N2 + (N + 2)(h′ − 1)

)
(h′ + 1)(N + 2h′ − 2)

Nh′((h′ − 1)(N + h′) + (N − 1)N
) . (146) 1961

12The first corner point in (142) is
�

N
2
, N
�

with h′ = 0, and the last

corner point is (N, 0). For each h′ ∈ [N − 3], we obtain the corner point
in (142) by taking the intersection between the converse bounds in (11) with
h = h′ − 1 and h = h′. The corner point in (142) with h′ = N − 2,
is obtained by taking the intersection between the converse bounds in (11)
with h = N − 3 and the converse bound in (12). The corner point

�
3N
4

, 1
2

�

is obtained by taking the intersection between the converse bounds in (12)
and (13).
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In addition, we compute1962

3Nh′((h′ − 1)(N + h′) + (N − 1)N
)

1963

− (N2 + (N + 2)(h′ − 1)
)
(h′ + 1)(N + 2h′ − 2)1964

= 2N3h′ − N3 − 6N2h′ − 3Nh′2 + (N − 4)h′3
1965

+ 3N2 + 2Nh′ + 4h′(h′ + 1) − 4. (147)1966

Now we want to prove the RHS of (147) is larger than 0 for1967

N ≥ 4 and h′ ∈ [2 : N − 2]. More precisely, when N = 4 and1968

h′ = 2, we can compute the RHS of (147) is equal to 36;1969

when N = 5 and h′ = 2, the RHS of (147) is equal to 138;1970

when N = 5 and h′ = 3, the RHS of (147) is equal to 216.1971

Now we only need to consider N ≥ 6 and h′ ∈ [2 : N − 2].1972

When N ≥ 6 and h′ ∈ [2 : N − 2], we have1973

2N3h′ − N3 − 6N2h′ − 3Nh′2 + (N − 4)h′3 + 3N2
1974

+ 2Nh′ + 4h′(h′ + 1) − 41975

> 2N3h′ − N3 − 6N2h′ − 3Nh′2
1976

= (N3h′ − 6N2h′) + (0.5N3h′ − 3Nh′2) + (0.5N3h′ − N3)1977

≥ 0. (148)1978

Hence, we prove1979

3Nh′((h′ − 1)(N + h′) + (N − 1)N
)

1980

− (N2+(N+2)(h′−1)
)
(h′+1)(N + 2h′ − 2) > 0. (149)1981

By taking (149) into (146), we prove that the multiplicative1982

gap between Scheme A and the corner points in (142) where1983

h′ ∈ [2 : N − 2] and N ≥ 4, is no more than 3.1984

In conclusion, we prove that Scheme B is order optimal1985

under the constraint of uncoded cache placement to within a1986

factor of 3.1987

APPENDIX H1988

PROOF OF THEOREM 71989

In this proof, for the achievability, we consider the load in1990

Lemma 3, which is an upper bound of the achieved load of1991

Scheme A.1992

We first focus on the case where N ≤ 6K, and compare1993

Scheme A with the shared-link caching converse bound under1994

the constraint of uncoded cache placement (without privacy)1995

in [11]. Recall that when M ∈ [N
K , N

]
, the converse bound1996

in [11] is a piecewise curve with corner points
(

Nt
K , K−t

t+1

)
,1997

where t ∈ [K]. It was proved in Appendix D-A that Scheme A1998

can achieve the corner points
(

Nt
K , 3K−t

t+1

)
, where t ∈ [2 : K].1999

In addition, when M = N
K , the converse bound in [11] is R�

u ≥2000

K−1
2 , while the achieved load of Scheme A is2001

N ≤ 6K ≤ 9(K − 1), when K ≥ 3.2002

Hence, the multiplicative gap between Scheme A and the2003

converse bound in [11] at M = N
K is no more than 18. So we2004

prove that N ≤ 6K, Scheme A is order optimal under the2005

constraint of uncoded cache placement within a factor of 18.2006

In the rest of the proof, we focus on the case where N > 6K.2007

It was proved in Theorem 2 that when N ≥ K and M ≥ 2N
K ,2008

Scheme A is order optimal to within a factor of 6. Hence,2009

in the following we consider N
K ≤ M ≤ 2N

K , which is then2010

divided into three memory size regimes, and prove the order 2011

optimality of Scheme A separately, 2012

Regime 1 :
N

K
≤ M ≤ N

K
+

Nh1

2(N + Kh1 − K)
, 2013

where h1 :=
⌊

4(K − 2)(N − K)
K(N − 4K + 8)

⌋
; (150a) 2014

Regime 2 :
N

K
+

Nh1

2(N + Kh1 − K)
≤ M ≤ 2015

N

K
+

Nh2

2(N + Kh2 − K)
, where h2 :=

⌊
2N

K
− 2
⌋

; (150b) 2016

Regime 3 :
N

K
+

Nh2

2(N + Kh2 − K)
≤ M ≤ 2N

K
. (150c) 2017

Note that when N > 6K, we have h1 :=
⌊

4(K−2)(N−K)
K(N−4K+8)

⌋
< 2018

10 and h2 :=
⌊

2N
K − 2

⌋ ≥ 10. Thus we have h1 < h2. 2019

In addition, we have 2020

N

K
+

Nh2

2(N + Kh2 − K)
≤ N

K
+

N 2N
K − 2

2
(
N + K 2N

K − 2K − K
) 2021

=
4N

3K
. (151) 2022

Hence, the above memory regime division is possible. 2023

From the converse bound in (14), for each h ∈ 2024

[0 : �2N/K − 3�] we have, 2025

R�
u,c ≥

�K/2�

K/2�

�2N/K�
2N/K

{
N − 2y − 8y + h(2N − K)

2h + 4
2026

+
h2K(2N − K) − 2N(2N − 3K) + hK(K + 2N)

(h + 1)(h + 2)KN
y

}
2027

≥ 6
13

{
N − 2y − 8y + h(2N − K)

2h + 4
2028

+
h2K(2N − K) − 2N(2N − 3K) + hK(K + 2N)

(h + 1)(h + 2)KN
y

}
, (152) 2029

where (152) follows since K ≥ 3 and N > 6K. 2030

In Regimes 1 and 2, we will use (152) as the converse 2031

bound. In Regime 3, we use the shared-link caching con- 2032

verse bound under the constraint of uncoded cache placement 2033

in [11]. 2034

A. Regime 1 2035

It can be computed that the converse bound in (152) for 2036

N
K ≤ M ≤ N

K + Nh1
2(N+Kh1−K) is a piecewise curve with the 2037

corner points 2038(
N

K
+

Nh′

2(N + Kh′ − K)
, 2039

6
13

K(h′ − 1)(2N + Kh′) + 2N(2N − K)
4(h′ + 1)(N + Kh′ − K)

)
, ∀h′ ∈ [0 : h1], 2040

(153) 2041

where h′ = 0 represents the first corner point where M = N/2, 2042

and each corner point in (153) with h′ is obtained by taking 2043

the intersection of the converse bounds in (152) between h = 2044

h′ − 1 and h = h′. 2045
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For the achievability, we take the memory-sharing between2046 (
N
K , N

)
and

(
N+t3−1

K , U−t3+1
t3

)
, where t3 = 2K − 3. Notice2047

that2048

N + t3 − 1
K

=
N + 2K − 4

K
=

N

K
+

2K − 4
K

. (154)2049

In addition, we have2050

N

K
+

Nh1

2(N + Kh1 − K)
=

N

K
+

Nh1

2(N + Kh1 − K)
(155a)2051

≤ N

K
+

N 4(K−2)(N−K)
K(N−4K+8)

2(N + K 4(K−2)(N−K)
K(N−4K+8) − K)

(155b)2052

=
N

K
+

4N(K − 2)(N − K)
2
(
(N − K)K(N − 4K + 8) + 4K(K − 2)(N − K)

)
(155c)

2053

=
N

K
+

4N(K − 2)(N − K)
2KN(N− K)

(155d)2054

=
N

K
+

2K − 4
K

, (155e)2055

where (155b) comes from Nh1
2(N+Kh1−K) is increasing with2056

h1 and h1 ≤ 4(K−2)(N−K)
K(N−4K+8) . From (154) and (155e), we can2057

see that this memory-sharing can cover all memory sizes in2058

regime 1.2059

When h′ = 0, we have the corner point in (153) is
(

N
2 , 6N

13

)
,2060

while Scheme A achieves
(

N
2 , N
)
. Hence, the multiplicative2061

gap between Scheme A and the converse is 13
6 .2062

For each h′ ∈ [h1], we now interpolate Scheme A between2063

(M1, R1) =
(

N
K , N

)
and (M2, R2) =

(
N+t3−1

K , U−t3+1
t3

)
2064

to match the corner point in the converse bound (M3, R3) =2065 (
N
K + Nh′

2(N+Kh′−K) ,
6
13

K(h′−1)(2N+Kh′)+2N(2N−K)
4(h′+1)(N+Kh′−K)

)
. More pre-2066

cisely, by memory-sharing between (M1, R1) and (M2, R2)2067

with coefficient2068

α =
M2 − M3

M2 − M
=

N(4K − h′K − 8) + 4K(h′ − 1)(K − 2)
4(K − 2)(N + h′K − K)

2069

(156)2070

such that αM1 + (1 − α)M2 = M3, we get at M3 Scheme A2071

can achieve,2072

R′ = αR1 + (1 − α)R22073

= N
−12N + 8K2(h′ − 1) + K

(
N(8 − h′) − 14h′ + 12

)
4(2K − 3)(N + h′K − K)

.2074

(157)2075

In the following, we compare R′ and R3 to obtain2076

R′

R3
=

13N(h′ + 1)
6(2K − 3)

(
K(h′ − 1)(2N + Kh′) + 2N(2N− K)

)2077 (−12N + 8K2(h′ − 1) + K
(
N(8 − h′) − 14h′ + 12

))
.2078

(158)2079

Finally, we will prove2080

6R′

13R3
=

N(h′ + 1)
(2K − 3)

(
K(h′ − 1)(2N + Kh′) + 2N(2N − K)

)2081 (−12N + 8K2(h′ − 1) + K
(
N(8 − h′) − 14h′ + 12

))
2082

< 8. (159)2083

We can compute that 2084

8(2K−3)
(
K(h′ − 1)(2N+Kh′)+2N(2N− K)

)−N(h′ + 1) 2085(−12N+8K2(h′ − 1)+K
(
N(8 − h′) − 14h′ + 12

))
2086

≥ 8(2K−3)
(
K(h′ − 1)(2N+Kh′)+2N(2N − K)

)
2087

− N(h′ + 1)
(−12N + 8K2(h′ − 1) + KN(8 − h′)

)
(160a) 2088

=
(
32(2K − 3) + 12(h′ + 1) − K(8 − h′)(h′ + 1)

)
N2

2089

− (8K(h′ + 1)(h′ − 1) − 16(2K − 3)(h′ − 2)
)
KN 2090

+ 8(2K − 3)K2h′(h′ − 1) (160b) 2091

≥ (32(2K − 3) + 12(h′ + 1) − K(8 − h′)(h′ + 1)
)
N2

2092

− (8(h′ + 1)(h′ − 1) − 16(h′ − 2)
)
K2N 2093

+ 8(2K − 3)K2h′(h′ − 1), (160c) 2094

where (160a) comes from h′ ≥ 1 and (160b) comes from 2095

K ≥ 3. 2096

Recall that N > 6K, and that h′ ≤ h1 =
⌊

4(K−2)(N−K)
K(N−4K+8)

⌋
< 2097

10. 2098

We first focus on h′ = 9. If h′ = 9, it can be seen that 2099

6K < N < 32
5 K. Hence, we have 2100

8(2K − 3)K2h′(h′ − 1) >
5
4
(2K − 3)KNh′(h′ − 1) 2101

≥ 5
4
K2Nh′(h′ − 1) = 90K2N. (161) 2102

We take h′ = 9 and (161) into (160c) to obtain 2103

8(2K−3)
(
K(h′ − 1)(2N+Kh′)+2N(2N− K)

)−N(h′ + 1) 2104(−12N+8K2(h′ − 1)+K
(
N(8 − h′) − 14h′ + 12

))
2105

> (74K + 24)N2 − (640 − 112 − 90)K2N (162a) 2106

> 74KN2 − 438K2N (162b) 2107

> 0, (162c) 2108

where (162c) comes from N > 6K. 2109

We then focus on h′ = 8. If K = 3, from (160c), we have 2110

the RHS of (160c) becomes 204N(N− 18)+ 12096, which is 2111

larger than 0 since N > 6K ≥ 18. Now we consider K ≥ 4. 2112

From (160b), we have 2113

8(2K−3)
(
K(h′ − 1)(2N+Kh′)+2N(2N− K)

)−N(h′ + 1) 2114(−12N+8K2(h′ − 1)+K
(
N(8 − h′) − 14h′ + 12

))
2115

>
(
32(2K − 3) + 12(h′ + 1) − K(8 − h′)(h′ + 1)

)
N2

2116

− (8K(h′ + 1)(h′ − 1) − 16(2K − 3)(h′ − 2)
)
KN (163a) 2117

≥ (32(2K − 3) + 12(h′ + 1) − K(8 − h′)(h′ + 1)
)
N2

2118

− (8K(h′ + 1)(h′ − 1) − 20K(h′ − 2)
)
KN (163b) 2119

=
(
(56 + h′2 − 7h′)K + 12h′ − 84

)
N2

2120

− (32 + 8 h′2 − 20 h′)K2N (163c) 2121

≥ (56 + h′2 − 7h′)KN2 − (32 + 8 h′2 − 20 h′)K2N
(163d)

2122

> 6(56 + h′2 − 7h′)K2N − (32 + 8 h′2 − 20 h′)K2N
(163e)

2123

= 0, (163f) 2124

where (163b) comes from K ≥ 4 and thus 2K−3
K ≥ 5

4 , 2125

and (163e) comes from N > 6K. 2126

Authorized licensed use limited to: University of North Texas. Downloaded on August 29,2022 at 15:22:41 UTC from IEEE Xplore.  Restrictions apply. 



WAN et al.: ON FUNDAMENTAL LIMITS OF D2D PRIVATE CACHING 5727

Lastly, we consider h′ ∈ [7]. From (160c), we have2127

8(2K−3)
(
K(h′ − 1)(2N+Kh′)+2N(2N− K)

)−N(h′ + 1)2128 (−12N+8K2(h′ − 1)+K
(
N(8 − h′) − 14h′ + 12

))
2129

>
(
32(2K − 3) + 12(h′ + 1) − K(8 − h′)(h′ + 1)

)
N2

2130

− (8(h′ + 1)(h′ − 1) − 16(h′ − 2)
)
K2N (164a)2131

=
(
(56 + h′2 − 7h′)K + 12h′ − 84

)
N2

2132

− (24 + 8 h′2 − 16 h′)K2N (164b)2133

≥ (56 + h′2 − 7h′ + 4h′ − 28)KN2
2134

− (24 + 8 h′2 − 16 h′)K2N (164c)2135

> 6(28 + h′2 − 3h′)K2N − (24 + 8 h′2 − 16 h′)K2N
(164d)

2136

= (144 − 2h′2 − 2h′)K2N (164e)2137

> 0 (164f)2138

where (164c) comes from h′ ≤ 7 and K ≥ 3, which lead to2139

12h′ − 84 ≥ (4h′ − 28)K, and (164d) comes from N > 6K,2140

and (164f) comes from h′ ∈ [7].2141

In conclusion, we prove (159). In other words, under the2142

constraint of uncoded cache placement and user collusion,2143

Scheme A is order optimal to within a factor of 13
6 ×8 < 18 for2144

the memory size Regime 1.2145

B. Regime 22146

Similar to the converse bound for Regime 1, it can be com-2147

puted that the converse bound in (152) for N
K + Nh1

2(N+Kh1−K) ≤2148

M ≤ N
K + Nh2

2(N+Kh2−K) is a piecewise curve with the corner2149

points2150 (
N

K
+

Nh′

2(N + Kh′ − K)
,2151

6
13

K(h′ − 1)(2N + Kh′) + 2N(2N− K)
4(h′ + 1)(N + Kh′ − K)

)
, ∀h′ ∈ [h1 : h2].2152

(165)2153

For the achievability, we take the memory-sharing among2154

the achieved points in (129),
(

N+t−1
K , U−t+1

t

)
, where t ∈ [U+2155

1]. We want to interpolate the achieved points of Scheme A2156

to match the converse bound at the memory size M = N
K +2157

Nh′
2(N+Kh′−K) where h′ ∈ [h1 : h2]. By computing2158

N + t − 1
K

=
N

K
+

Nh′

2(N + Kh′ − K)
2159

⇐⇒ t =
Nh′K

2(N + Kh′ − K)
+ 1, (166)2160

and observing U−t+1
t is non-increasing with t, it can be seen2161

that the achieved load of Scheme A at M = N
K + Nh′

2(N+Kh′−K)2162

is lower than2163

R′ =
U − Nh′K

2(N+Kh′−K) + 1
Nh′K

2(N+Kh′−K)

. (167)2164

By comparing R′ and 6
13

K(h′−1)(2N+Kh′)+2N(2N−K)
4(h′+1)(N+Kh′−K) ,2165

we have (168), as shown at the top of the next page.2166

Since K ≥ 3, we have 2167

h′ ≥ h1 =
⌊

4(K − 2)(N − K)
K(N − 4K + 8)

⌋
≥
⌊

2(N − K)
N − 4K + 8

⌋
> 2;

(169a)

2168

h′ ≤ h2 =
⌊

2N

K
− 2
⌋

<
2N

K
. (169b) 2169

In the following, we will use (169) and N > 6K ≥ 18 to 2170

prove (170), as shown at the top of the next page. 2171

We can compute that 2172

8KNh′(K(h′ − 1)(2N + Kh′) + 2N(2N − K)
)

2173

− 4(N + Kh′ − K)(h′ + 1)
(
2K2N(h′ − 1) 2174

+ K(2N2 + 2N + 2 h′ − 3Nh′ − 2) − 2N(N − 1)
)

2175

≥ 8KNh′(K(h′ − 1)(2N + Kh′) + 2N(2N− K)
)

2176

− 4(N + Kh′ − K)(h′ + 1)
(
2K2N(h′ − 1) 2177

+ K(2N2 + 2N + 2 h′ − 3Nh′ − 2)
)

(171a) 2178

= 8K(N − K) + 8K3N(h′ − 1) + 4KN2(h′ − 2) 2179

+ 8KN(3N2h′ − 4KNh′ − N2) 2180

+ 4Kh′(3KNh′2 − 3KN − 2Kh′2)+4KNh′2(3N − 2K − 2) 2181

+ 8K2N + 16K2N2 + 8K2h′ + 8K2h′2 (171b) 2182

> 8K(N − K) + 8K3N(h′ − 1) + 4KN2(h′ − 2) 2183

+ 8KN(3N2h′ − 4KNh′ − N2) 2184

+ 4Kh′(3KNh′2 − 3KN − 2Kh′2) + 4KNh′2(3N−2K−2) 2185

(171c) 2186

> 8KN(3N2h′ − 4KNh′ − N2) 2187

+ 4Kh′(3KNh′2 − 3KN − 2Kh′2) (171d) 2188

= 8KN(N2h′ − N2) + 8KN(2N2h′ − 4KNh′) 2189

+ 4Kh′(KNh′2 − 3KN) + 4Kh′(2KNh′2 − 2Kh′2) (171e) 2190

> 0, (171f) 2191

where (171d) and (171f) come from N > 6K and h′ > 2. 2192

In conclusion, we prove (170). In other words, under the 2193

constraint of uncoded cache placement and user collusion, 2194

Scheme A is order optimal to within a factor of 13
6 ×8 < 18 for 2195

the memory size Regime 2. 2196

C. Regime 3 2197

When N
K ≤ M ≤ 2N

K , the converse bound in [11] is a straight 2198

line between
(

N
K , K−1

2

)
and

(
2N
K , K−2

3

)
, which is denoted by 2199

R [11](M). Hence, the converse bound in [11] for Regime 2200

3 where N
K + Nh2

2(N+Kh2−K) ≤ M ≤ 2N
K is a straight line. When 2201

M = 2N
K , we proved in Appendix D-A that the multiplicative 2202

gap between Scheme A and the converse bound in [11] is no 2203

more than 6. Hence, in the rest of this proof, we focus on the 2204

memory size M = N
K + Nh2

2(N+Kh2−K) ≤ M ≤ 2N
K . 2205

Recall that h2 :=
⌊

2N
K − 2

⌋ ≤ 2N
K − 2, we note that 2206

N

K
+

Nh2

2(N + Kh2 − K)
≤ N

K
+

N
(

2N
K − 2

)
2{N + K

(
2N
K − 2

)− K} 2207

=
4N

3K
. (172) 2208
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R′

R3
=

13
6

4(N + Kh′ − K)(h′ + 1)
(
2K2N(h′ − 1) + K(2N2 + 2N + 2 h′ − 3Nh′ − 2) − 2N(N− 1)

)
KNh′(K(h′ − 1)(2N + Kh′) + 2N(2N− K)

) . (168)

6R′

13R3
=

4(N + Kh′ − K)(h′ + 1)
(
2K2N(h′ − 1) + K(2N2 + 2N + 2 h′ − 3Nh′ − 2) − 2N(N − 1)

)
KNh′(K(h′ − 1)(2N + Kh′) + 2N(2N− K)

) < 8. (170)

Hence, the load of the converse bound in [11] at M =2209

N
K + Nh2

2(N+Kh2−K) is strictly higher than the one at M′ = 4N
3K .2210

By computing the converse bound in [11] at M′ = 4N
3K is2211

R [11](M′) =
2
3

K − 1
2

+
1
3

K − 2
3

=
4K − 5

9
, (173)2212

at M = N
K + Nh2

2(N+Kh2−K) , we have2213

R�
u,c ≥ R [11](M) > R [11](M′) =

4K − 5
9

. (174)2214

For the achievability, it was proved in (167) that the2215

achieved load of Scheme A at M = N
K + Nh2

2(N+Kh2−K) is lower2216

than2217

R′ =
U − Nh2K

2(N+Kh2−K) + 1
Nh2K

2(N+Kh2−K)

(175a)2218

≤
U − N(2N/K−3)K

2
(
N+K(2N/K−3)−K

) + 1

N(2N/K−3)K

2
(
N+K(2N/K−3)−K

) (175b)2219

=
(6K − 8)N2 − (8K − 11)KN + 6N− 8K

2N2 − 3KN
, (175c)2220

where (175b) comes that U−t+1
t is non-increasing with t, and2221

that h2 ≤ 2N/K − 3.2222

Finally, we compare R′ and 4K−5
9 to obtain,2223

R′
4K−5

9

= 9
(6K − 8)N2 − (8K − 11)KN + 6N − 8K

(2N2 − 3KN)(4K − 5)
. (176)2224

In addition, we compute2225

2(2N2 − 3KN)(4K − 5)2226

− ((6K − 8)N2 − (8K − 11)KN + 6N − 8K
)

2227

= 2N(5KN− 6N− 8K2) + (19KN− 6N) + 8K (177a)2228

> 2N(5KN− 6N− 8K2) (177b)2229

≥ 2N(3KN− 8K2) (177c)2230

> 0, (177d)2231

where (177b) and (177c) come from K ≥ 3, and (177d) comes2232

from N > 6K. By taking (177d) into (176), it can be seen that2233

the multiplicative gap between Scheme A and the converse2234

bound in [11] at M = N
K + Nh2

2(N+Kh2−K) is less than 18.2235

In conclusion, we prove that under the constraint of uncoded2236

cache placement and user collusion, Scheme A is order2237

optimal to within a factor of 18 for the memory size Regime 3.2238
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