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Abstract—In the coded caching problem, as originally for-
mulated by Maddah-Ali and Niesen, a server communicates
via a noiseless shared broadcast link to multiple users that
have local storage capability. In order for a user to decode
its demanded file from the coded multicast transmission, the
demands of all the users must be globally known, which may
violate the privacy of the users. To overcome this privacy
problem, Wan and Caire recently proposed several schemes that
attain coded multicasting gain while simultaneously guarantee
information theoretic privacy of the users’ demands. In Device-to-
Device (D2D) networks, the demand privacy problem is further
exacerbated by the fact that each user is also a transmitter,
which appears to be needing the knowledge of the files demanded
by the remaining users in order to form its coded multicast
transmission. This paper shows how to solve this seemingly
infeasible problem. The main contribution of this paper is the
development of new achievable and converse bounds for D2D
coded caching that are to within a constant factor of one another
when privacy of the users’ demands must be guaranteed even
in the presence of colluding users (i.e., when some users share
cached contents and demanded file indices). First, a D2D private
caching scheme is proposed, whose key feature is the addition of
virtual users in the system in order to ‘“hide” the demands of the
real users. By comparing the achievable D2D private load with
an existing converse bound for the shared-link model without
demand privacy constraint, the proposed scheme is shown to
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be order optimal, except for the very low memory size regime
with more files than users. Second, in order to shed light into
the open parameter regime, a new achievable scheme and a new
converse bound under the constraint of uncoded cache placement
(i.e., when each user stores directly a subset of the bits of the
library) are developed for the case of two users, and shown to
be to within a constant factor of one another for all system
parameters. Finally, the two-user converse bound is extended to
any number of users by a cut-set type argument. With this new
converse bound, the virtual users scheme is shown to be order
optimal in all parameter regimes under the constraint of uncoded
cache placement and user collusion.

Index Terms— Coded caching, device-to-device (D2D) commu-
nications, privacy.

I. INTRODUCTION

NTERNET data traffic has grown dramatically in the last

decade because of on-demand video streaming. The users’
demands concentrate on a relatively limited number of files
(e.g., latest films and shows) and that the price of memory
components in the devices is usually significantly less than
the price of bandwidth. On the above observation, caching
becomes an efficient and promising technique for future com-
munication systems [3], which leverages the device memory
to store data so that future demands can be served faster.

Coded caching was originally proposed by Maddah-Ali
and Niesen (MAN) for shared-link networks [4]. In the
MAN model, a server has access to a library of N equal-
length files and is connected to K users through an error-free
broadcast link. Each user can store up to M files in its
cache. A caching scheme includes placement and delivery
phases that are designed so as to minimize the load (i.e.,
the number of files sent on the shared link that suffices to
satisfy every possible demand vector). In the original MAN
model, no constraint is imposed in order to limit the amount
of information that the delivery phase leaks to a user about
the demands of the remaining users. Such a privacy constraint
is critical in modern broadcast services, such as peer-to-peer
networks, and is the focus of this paper.

In order to appreciate the main contributions of our work,
in the next sub-section we briefly review the various models
of coded caching studied in the literature, which will lead to
the new problem formulation in this paper.

A. Brief Review of Coded Caching Models

Table I shows relevant known results and new results for
various coded caching models. The complete memory-load
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TABLE I

ACHIEVABLE LOADS FOR VARIOUS CODED CACHING MODELS. NOTATION: d\ {5} DENOTES THE VECTOR OBTAINED FROM THE DEMAND VECTOR d
BY REMOVING THE k-TH ELEMENT, AND N, (d\{k}) GIVES THE NUMBER OF DISTINCT ELEMENTS IN d\ {3}

(M, R) No Privacy With Privacy
K \_ (K—min(N,K) KN\ _ (KN—N
Shared-link <tE, (8 =(* ™) e ) tr, 7(t+1)(K,S)t+l )
t t
t € [0: K], from [5] t € [KN], from [6], [7]
D2D N e (1) =k Srer (o)) nee (M0 -0
*7denk ("1 K ")
t € [K], from [8] t € [N(K—1) + 1], Scheme A in this paper

tradeoff is obtained as the lower convex envelope of the listed
points. These results are valid for any system parameters
(N, K); other results that may lead to better tradeoffs but only
apply to limited parameter regimes are not reported for sake
of space.

1) Shared-Link Networks Without Privacy Constraints: In
the MAN placement phase, letting ¢ = KM/N € [0 : K]
represent the number of times a file can be copied in the
network’s aggregate memory (excluding the server), each file
is partitioned into (}) equal-length subfiles, each of which is
cached by a different ¢-subset of users. In the MAN delivery
phase, each user demands one file. According to the users’
demands, the server sends (Hlfl) MAN multicast messages,
each of which has the size of a subfile and is useful to
t+1 users simultaneousKly. The load of the MAN coded caching

K=t 1 : :
=31 The MAN scheme is said

to achieve a global coded caching gain, also referred to as
multicasting gain, equal to t+1 because the load with uncoded
caching Ryncodzea = K — ¢t = K(1 — M/N) is reduced by a
factor t+ 1. This gain scales linearly with network’s aggregate
memory size. Yu, Maddah-Ali, and Avestimehr (YMA) in [5]
proved that (Kftﬁ\:j(d)) of the MAN multicast messages are
redundant when a file is requested simultaneously by multiple
users, where N.(d) € [min(N, K)] is the number of distinct
file requests in the demand vector d € [N]¥. The YMA scheme
is known to be exactly optimal under the constraint of uncoded
cache placement [5], and order optimal to within a factor of
2 otherwise [9], for both worst-case load and average load
when files are requested independently and equally likely.
The converse bound under the constraint of uncoded cache
placement for the worst-case load was first derived by a subset
of the authors in [10], [11] by exploiting the index coding
acyclic converse bound in [12]. For the case N > K = 2, the
exact optimality without constraints on the type of placement
was characterized in [13] by a non-trivial converse bound
leveraging the symmetries in the coded caching problem.

2) Shared-Link Networks With Privacy Constraints: For the
successful decoding of an MAN multicast message, the users
need to know the composition of this message (i.e., which
subfiles are coded together). As a consequence, users are

scheme is thus R = (ftl)

Tn the MAN caching scheme, in order to allow each user to decode its
demanded file, the composition of each coded multicast message sent by the
server must be broadcasted along with the multicast message itself. This is
akin to the “header” in linear network coding, that defines the structure of the
linear combination of the files to enable decoding. Such composition requires
to broadcast metadata along the coded multicast messages. Since the size of
the metadata does not scale with the file size, the metadata overhead does not
contribute to the load in the limit of large file size.

aware of the demands of other users. In practice, schemes
that leak information on the demand of a user to other users
are highly undesirable. For example, this may reveal critical
information on user behavior, and allow user profiling by
discovering what types of content the users’ request. Shared-
link coded caching with private demands, which aims to
preserve the privacy of the users’ demands from other users,
was originally discussed in [14] and formally analyzed in an
information-theoretical framework by Wan and Caire in [6].
In the private coded caching model, the information about the
cached content of each user is unknown to the other users
and the composition of each coded multicast message sent
by the server must be broadcasted along with the multicast
message itself. Following the private coded caching model
in [6], various private schemes were proposed in [6], [7],
[15]-[18]. Relevant to this paper is the private coded caching
scheme based on virtual user proposed in [6], which operates
a MAN scheme as if there were KN users in total, i.e., NK —K
virtual users in addition to the K real users, and the demands
of the virtual users as set such that each of the N files is
demanded exactly K times. This choice of demands for the
virtual users is such that any real user “appears” to have
requested equally likely any of the files from the viewpoint of
any other user, which guarantees the privacy of the demands.
An improved private caching scheme based on virtual user
strategy was proposed in [7], which used the YMA delivery
instead of the MAN delivery. Compared to converse bounds
for the shared-link model without privacy constraint, it can be
shown that this scheme based on virtual users is order optimal
in all regimes, except for K < N and M < % [6].2

To the best of our knowledge, the only converse bound that
truly accounts for privacy constraints in the system model
of [6] was proposed in [19] for the case K = N = 2.
By combining the novel converse bound in [19] with existing
bounds without privacy constraint, the exact optimality was
fully characterized in [19] for K =N = 2.

3) D2D Networks Without Privacy Constraints: In practice,
the content of the library may have been already distributed
across the users’ local memories and thus can be delivered
through peer-to-peer or Device-to-Device (D2D) communica-
tions. The shared-link coded caching model was extended to
D2D networks in [20]. In the D2D delivery phase, each user
broadcasts packets to all other users as functions of its cached
content and the users’ demands. The D2D load is the sum of
the bits sent by all users normalized by the file length.

2The problem in this regime can be intuitively understood as follows:
for M = 0 the achievable load in [6] is N while the converse bound is
min(K, N) = K; the ratio of this two numbers can be unbounded.
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With the MAN cache placement where each file can be
copied ¢t € [0 : K] times in the aggregate network memory,
the D2D coded caching scheme in [20] further partitions each
MAN subfile into ¢ equal-length sub-subfiles. Each user then
acts as a shared-link server to convey its assigned sub-subfiles
to the remaining users either with the MAN delivery [20] or
the YMA delivery [8]. This scheme effectively splits the D2D
network into K parallel shared-link models, each having N
files and serving K — 1 users with memory parameter ¢t — 1.
Yapar et al. [8] proved that this scheme is order optimal to
within a factor of 4, and exactly optimal under the constraint
of uncoded cache placement and one-shot delivery (i.e., in a
one-shot delivery, any user can recover any requested bit from
the content of its own cache and the transmitted messages by
at most one other user).

B. New D2D Networks With Privacy Constraints

In D2D networks, the demand privacy problem is further
exacerbated by the fact that each user is also a transmitter,
which broadcasts coded multicast transmissions based on
its cached content. Based on the intuition developed from
the shared-link model, one is tempted to conclude that it
is impossible to guarantee privacy in D2D networks as the
demand vector knowledge appears to be necessary to design
the coded multicast messages. Rather surprisingly, in this
paper we show that it is possible to guarantee privacy of the
users’ demands against the other users also in a D2D setting.
In our new D2D private caching model, the placement phase
is similar to the shared-link private coded caching model.
The delivery phase contains two steps. In the first step, each
user broadcasts a query to the other users based on its local
cached content and its demand; since the query size does
not scale with the file size, this step does not contribute to
the load in the limit for large file size. In the second step,
after collecting all the queries from all the users, each user
broadcasts coded multicast messages as a function of the
queries and its cached content. In the large file size regime,
the load of the system is defined as the load in the second
step of D2D communication. The objective of this paper is to
design a D2D private coded caching scheme for K users, N
files and memory size M > N/K (so that the aggregate cache
in the entire network suffices to store the entire library) with
minimum transmitted load by all users in the delivery phase,
while preserving the privacy of the users’ demands against the
other users.

In the Private Information Retrieval (PIR) problem [21] the
privacy of the user’s demand against the servers has been
considered. In the PIR setting, a user wants to retrieve a
desired file from some distributed non-colluding databases
(servers), and the objective is to prevent any server from
retrieving any information about the index of the user’s
demanded file. Recently, the authors in [22] characterized
the information-theoretic capacity of the PIR problem by
proposing a novel converse bound and a coded PIR scheme
based on interference alignment. The T'-privacy PIR problem
with colluding servers were originally considered in [23],
where it is imposed that any 7T'-subset of queries sent from
the user cannot reveal any information about the demand.
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The T-privacy PIR problem with at most 7" colluding servers
where each server has a local coded storage was considered in
[24], [25]. Since D2D communications have not been con-
sidered in the PIR literature, the D2D caching problem with
private demands treated in this paper is not a special case of
any existing PIR problem.

C. Contributions

We start by giving the first known information-theoretic
formulation of the D2D coded caching problem with demand
privacy. Then we organize the main contributions of this paper
as follows.

a) Results for general (N, K) from non-trivial extensions
of past works: we prove a constant gap result for all
parameter regimes except for N > K and M < 2N/K (i.e.,
the small memory regime with more files than users).
More precisely, we propose:

(a.1) Coded Scheme A (Theorem 1): This scheme carefully
combines the idea of introducing virtual users [7] with
that of splitting the D2D network into multiple parallel
shared links [8].

(a.2) Optimality (Theorem 2): By comparing Scheme A with
a converse bound for the shared-link model without the
privacy constraint in [9], we prove that Scheme A is
order optimal to within a factor of 6 when N > K and
MK/N > 2, and of 12 when N < K and MK/N > 1.

b) Results specifically for the case K = 2 under uncoded
cache placement: at this point the regime N > K and
MK/N € [1,2) is open, which motivates the in-depth
study of the simplest open case, namely the two-user
case. We prove the first known general converse bound
under uncoded cache placement that accounts for privacy
constraints and leads to a constant gap result for any
number of files and any memory regime. In particular,
we propose:

(b.1) Coded Scheme B (Theorem 3): This scheme outper-

forms Scheme A for the two-user case.

(b.2) New Converse (Theorem 4): Inspired by the converse
bounds for non-private shared-link caching models
under uncoded cache placement from [11] and for
PIR systems from [22], we propose a new con-
verse bound under uncoded cache placement for
the two-user case by fully considering the privacy
constraint.’

(b.3) Optimality (Theorem 5): With the new converse bound,
under the constraint of uncoded cache placement and
N > K = 2, we show that Scheme B is exactly optimal

when M € [N/2,(N+1)/2] or M € i%, N},
and is order optimal to within a factor of 3 (numerical
simulations suggest 4/3) for the remaining memory

size regime.
¢) Results for general (N, K) under uncoded cache place-
ment and user collusion: we leverage the new converse

30ur bound is not a generalization of the one for the shared-link private
caching model with N = K = 2 in [19], because the proposed converse
bound heavily depends on the fact that the transmission of each user is a
function of the queries and cached content of this user.
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bound for the two-user case in a cut-set type bound and
prove a constant gap result for all parameter regime, while
at the same time considering a stronger notion of privacy
that allows for colluding users. We propose:

(c.1) New Converse (Theorem 6): We extend the proposed
two-user converse bound to the K-user system by
dividing the K users into two groups, and derive a
converse bound under uncoded cache placement and
user collusion.

Optimality (Theorem 7): Under the constraint
of uncoded cache placement and user collusion,
Scheme A is shown to be order optimal to within
a factor of 18 (numerical simulations suggest 27/2)
when N > K and MK/N € [1,2). This proves that
Scheme A is order optimal in all memory regimes
(that is, also in the regime that was open under the
converse bound for the non-private shared-link model)
and it is robust to colluding users.

(c.2)

Remark 1 (The powerfulness of the two-user converse
bound): Tt is rather surprising and quite remarkable to see
that, in the considered D2D private coded caching problem,
the converse for the case of K = 2 users combined with a
cut-set extension yields the order optimality for any system
parameters under the constraint of uncoded cache placement
and user collusion. This is in stark contrast to plenty of
well-known multiuser information theory problems where the
optimality results for the K = 2 case do not generalize, and
give in fact little or no hint to the K > 2 case. Paramount
examples include the general broadcast channel with degraded
message sets [26], [27], the K-user Gaussian interference
channel [28], [29], and the non-private shared-link coded
caching [13]. U

Remark 2 (Cost of D2D): By using the result in [30], one
can immediately infer that, under the constraint of uncoded
cache placement and without privacy constraint, the gap
between the achieved loads in the shared-link and D2D
scenarios is at most 2. This is no longer the case when privacy
is introduced, where the gap between the loads in private
shared-link and private D2D scenarios can be arbitrarily large
(i.e., the gap is larger than N/ min(N, K) when M = N/K,
which can be unbounded). Similar observations were made in
the context of secure shared-link pliable index coding [31],
where the authors showed that problems that are feasible
without security constraints became infeasible when security
is considered (i.e., there is no constant gap factor independent
of the system parameters). (]

D. Paper Organization

The rest of this paper is organized as follows. Section II
formulates the D2D private caching model. Section III pro-
vides an overview of all our technical results, and provides
some numerical evaluations. Sections IV and V provide proofs
of the proposed achievable schemes and converse bounds,
respectively. Section VI concludes the paper. Some proofs (i.e.,
more technical lemmas and tedious gap derivations) may be
found in the Appendices.
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E. Notation Convention

Calligraphic symbols denote sets, bold symbols denote
vectors, and sans-serif symbols denote system parameters.
We use | - | to represent the cardinality of a set or the
length of a vector. Sets of consecutive integers are denoted
as [a:b] :={a,a+1,...,b} and [n] := [1 : n]. The symbol
@ represents bit-wise XOR. a! = ax (a—1) x- - -x 1 represents
the factorial of a. We use the convention (’yc) =0ifx<0or
y<0orz<uy.

II. SYSTEM MODEL

A (K,N) D2D private caching system comprises the fol-
lowing elements.

o A library with N independently generated files, where
each file is composed of B i.i.d. bits. The files are denoted
by (P’l7 FQ, e ,FN).

o K users, each equipped with a local cache.

o An error-free broadcast link from each user to all other
users (e.g., a shared medium).*

The system operates in two phases.

o Placement Phase. Note that the placement phase is done
without knowledge of later demand. Each user k£ €
[K] first generates some local randomness Py, which is
independent of the library Fi,..., Fy and independent
across users, and is only known at user k£ € [K]. Then
user k stores 7, in its cache, where

H(Zy|Py, Fi,...,Fn) =0 (placement constraint),

(1

The vector of all caches is Z := (Z1, Zo, .. ., Zk).

o Delivery Phase. User k € [K] demands the file indexed
by dj, € [N]. The demand vector is d := (dy,da, . .., dk).
The delivery phase contains the following two steps.

— Step 1: user k € [K], given its randomness Py, cached
content Zj, and demand dj, broadcasts the query ¢, to
the other users.

— Step 2: after having received all the queries, user k €
[K] broadcasts the signal X, to the other users, where

H(Xk|Zk, Py, l, ... ,£K) = 0, (encoding constraint).

)

Note that, the queries /1, ...,¢k act as the metadata
explained in Footnote 1, implying the composition of
each coded multicast message.

Successful decoding is guaranteed if

H(de|Zk;Pk’7dk; 617"'7€K7 X17'"
VEk € [K], (decoding constraint). 3)

4D2D networks may be implemented at the physical/MAC layer, such that
the nodes are physical devices sharing a common transmission medium, or at
the logical or “application” layer, as for example in current peer-to-peer file
sharing systems such as BitTorrent, Gnutella, Kazaa and several others. We do
not make such distinction here and just compute the load as the sum of all
nodes (or “peers”) transmissions expressed in bits, necessary to satisfy the
users demands. This load notion is compliant with the previously defined
coded caching models for D2D and shared link systems.
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Demand privacy’ is guaranteed if

I(dkp\qy; Zi Prydie, L1, 0, X1, .0, Xk) =0,

(privacy constraint), (4)

where ds denotes the vector obtained from d by retaining
only the elements indexed by S.

Assume that the length of (Py,{;), k € [K], does not
scale with B. By the constraint of privacy, the number of
transmissions in Step 2 of the delivery for different demand
vectors should be the same. Thus a pair (M, R) is said to be
achievable if all the above constraints are satisfied with

H(Z,
lim sup (Z) <M, Vk € [K], (cache size), (5a)
B—oo B
H(X
lim supM <R, (load). (5b)
B—oo B

Our objective is to determine
R*(M) := inf{R : (M, R) is achievable as in (5)}. (6)

We only consider the case min(K,N) > 2, since the case
K =1, a single node network, does not make sense in a D2D
network and when N = 1 each user knows the demand of the
other users. In addition, we only need to consider M € [%, N},
since for M > N each user can cache the whole library, thus no
delivery is needed; and for KM < N there is not enough space
in the overall network memory to store the whole library, thus

the problem is not feasible.

A. Uncoded Cache Placement

If each user k € [K] directly copies some bits of the files
into Zj, the cache placement is said to be uncoded. The
optimal load under the constraint of uncoded cache placement
is denoted by R%(M), which is defined as in (5b) but with
the additional constraints that the cache placement phase is
uncoded. Clearly, R*(M) < R%(M).

B. Colluding Users

We say that the users in the system collude if they exchange
the index of their demanded file and their cached content.
Collusion is a natural consideration to increase the privacy
level and is one of the most widely studied variants in the PIR
problem [23], [32]-[34]. Privacy constraint against colluding
users is a stronger notion than (4) and is defined as follows

I(dips; (Zx, Py - k € 8),ds, 1, ..., bk, X1, ..., Xk) =0,
VS C [K],S # 0. 7

The optimal load under uncoded cache placement and the
privacy constraint in (7) is denoted by Ry .(M). Clearly,

RS (M) > R3(M) > R*(M).
Remark 3: For K = 2, the privacy constraints in (4) and (7)
are equivalent, and thus we have R} .(M) = R;(M) > R*(M).
O

5The privacy constraint in (4) corresponds to perfect secrecy in an informa-
tion theoretic sense (see [27, Chapter 22]).
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III. MAIN RESULTS

In this section, we summarize all the new results in this
paper and provide the main ingredients on how the bounds
are derived.

A. Results for General (N, K) by Non-Trivial Extensions of
Known Schemes

Inspired by the virtual-user strategy in [7], we propose a
private coded caching scheme (referred to as Scheme A in
the following) with a cache placement inspired by the D2D
strategy [20]. More precisely, our scheme effectively divides
the D2D network into K independent shared-link models, each
of which serves U := (K — 1)N effective users, where (K —
1)(N — 1) users are virtual. The achieved load is given in
the following theorem; an example that highlights the main
ingredients in Scheme A can be found in Section IV-A and
the detailed general description on Scheme A can be found in
Section IV-B.

Theorem I (Scheme A): For the (K, N) D2D private caching
system, RY . is upper bounded by the lower convex envelope
of the following points

N+e—1 () - ()
Ko (5

(M,RA)—< )>,Vt6[U+1]. ®)
O

Note that Scheme A satisfies the robust privacy constraint
in (7) against colluding users. By comparing Scheme A
in Theorem 1 and the converse bound for the shared-link
caching problem without privacy constraint in [9], we have the
following order optimality results, whose proof can be found
in Appendix D.

Theorem 2 (Order Optimality of Scheme A): For the (K, N)
D2D private caching system, Scheme A in Theorem 1 is order
optimal to within a factor of 6 if N > K and M > 2N/K, and
12 if N < K. O

Remark 4 (Reduction of Subpacketization for Scheme A):
Scheme A in Theorem 1 divides each file into K( tfl)
equal-length subfiles, thus the subpacketization is K(,”,) ~
K2V (7)., where H(p) = —plogy(p) — (1—p) log, (1~ p) is
the binary entropy function. Hence, the maximal subpacketiza-
tion of the virtual-user scheme (when % = %) is exponential
in U, which is much higher than the maximal subpacketi-
zation of the K-user MAN coded caching scheme (which is
exponential in K). Very recently, after the original submission
of this paper, the authors in [16] proposed a shared-link
private coded caching scheme based on the cache-aided linear
function retrieval [35], which can significantly reduce the
subpacketization of the shared-link virtual-user private caching
schemes in [6], [7]. In addition to the cached content by the
MAN placement, the authors let each user privately cache
some linear combinations of uncached subfiles in the MAN
placement which are regarded as keys. In such way, the
effective demand of each user in the delivery phase becomes
the sum of these linear combinations and the subfiles of its
desired file, such that the real remand is concealed. We can
directly use the extension strategy in [20] to extend this
shared-link private caching scheme to our D2D setting to
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obtain Scheme C, which achieves the lower convex envelope
of (&,N) and the following points

(M,R¢) = (“NK_” +1, D - (KllfN)), vt € [K].

=)

©)

The subpacketization of the scheme in (9) is K(f) ~
K2KM(t/K) which is the same as the K-user non-private D2D
coded caching scheme in [20]. As the shared-link private
caching scheme in [16], Scheme C also satisfies the robust
privacy constraint in (7) against colluding users. (]

B. Results for K = 2: New Converse Bound to Truly Account
for Privacy Constraints

The order optimality results in Theorem 2 is derived from an
existing converse bound without privacy constraint and does
not cover the regime N > K and M € [N/K, 2N/K). Hence,
we are motivated to derive a new converse bound by fully
incorporating the privacy constraint for the simplest open case,
that is, for a two-user system.

When K = 2, we observe that in Scheme A some cached
content is redundant. By removing those redundancies we
derive a new scheme (referred to as Scheme B in the follow-
ing) whose achieved load is given in the following theorem; an
example that highlights the main ingredients in Scheme B can
be found in Section IV-C and the detailed general description
on Scheme B can be found in Section IV-D.

Theorem 3 (Scheme B): For the (K,N) = (2,N) D2D
private caching system, R = R . is upper bounded by the
lower convex envelope of (M, Rg) = (N, 0) and the following
points

(N N/ N(N— 1)
(M,Rs) = (5+ 2N+t —1) (t’+1)(N+t’—1))’
V' e [0:N—1]. (10)
U

In Appendix F we prove the following corollary.

Corollary 1: By comparing Scheme A in Theorem 1 for
K = 2 and Scheme B in Theorem 3, we find Rg < Rp. O

Next we turn our attention to converse bounds that truly
incorporate the privacy constraint. The following converse
bound is one of the key novelties of this paper. It truly accounts
for the privacy constraint in the general setting N > 2. The
main idea is to derive several bounds that contain a “tricky”
entropy term that needs to be bounded in a non-trivial way;
in some bounds this entropy term appears with a positive sign
and in others with a negative sign; by linearly combining the
bounds, the “tricky” entropy term cancels out. Different from
the converse bound in [19] for the shared-link caching with
private demands for N = K = 2, our converse bound focuses
on uncoded cache placement and works for any N > K = 2.
Theorem 4 is proved in full generality in Section V-B. For the
sake of clarity, an example of the key steps in the proof is
provided Section V-A for the case of N = 2 files.

Theorem 4 (New Converse Bound for the Two-User System):
For the (K,N) = (2,N) D2D private caching system where
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N > K = 2, assuming M = ¥ + ¢ where y € [0, J], we have
the following bounds

dy+ (N —K/2)h

Ry =>N-—2y—
h+2
h2(N — K/2) — N(2N/K — 3) + A(N + K/2) 2y
* (h+1)(h+2) N’
Vh €[0: N —3], only active for N > 3, (11)
R§>K<1—@), (12)
N
R* > K (l - E) (13)
n="\2 TN
O

By comparing the new converse bound in Theorem 4 and
Scheme B in Theorem 3, we have the following optimality
result under the constraint of uncoded cache placement (the
proof can be found in Appendix G).

Theorem 5 (Optimality for the Two-User System): For the
(K,N) = (2,N) D2D private caching system where N >
K = 2, Scheme B in Theorem 3 is exactly optimal under the
constraint of uncoded cache placement when % <M< %
or % < M < N. Otherwise, Scheme B is order optimal
to within a factor of 3 (numerical simulations suggest 4/3).

O

From Theorem 5, we can directly derive the following
corollary.

Corollary 2: For the (K,N) = (2,N) D2D private caching
system Scheme B in Theorem 3 is exactly optimal under the
constraint of uncoded cache placement in all memory regimes
when N € {2,3}. O

C. Order Optimality Results for Any System Parameter When
Users May Collude

In Section V-C we extend Theorem 4 to any K > 2 with the
consideration of the privacy constraint against colluding users
in (7). The main idea is to divide the users into two groups
in a cut-set-like fashion and generate a powerful aggregate
user whose cache contains the caches of all users in each
group (implying collusion). The derived converse bound is as
follows.

Theorem 6 (New Converse Bound for the K-User System):
For the (K, N) D2D private caching system where N > K > 3,
assuming M = N + 2 where y € [0, ¥], we have

« o LK/2] [2N/K]
e [K/2] 2N/K
Vh € [0: [2N/K —3]], only active for N/K > 3/2, (14)

x RHS eq(11),

Ri > fgt * RHS eq(12) (s)
K/2

s> %KM x RHS eq(13). (16)

U

By comparing Scheme A in Theorem 1 and the combination
of the new converse bound in Theorem 6 and the converse
bound for shared-link caching without privacy in [11], we can
characterize the order optimality of Scheme A under the
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constraint of uncoded cache placement and user collusion in
all parameter regimes (the proof can be found in Appendix H).

Theorem 7 (Order Optimality for the K-User System):
For the (K,N) D2D private caching system where N > K,
Scheme A in Theorem 1 is order optimal to within a factor of
18 (numerical simulations suggest 27/2) under the constraint
of uncoded cache placement and user collusion.

O

Note that when N < K, Theorem 2 shows that Scheme A
is generally order optimal to within a factor of 12. Hence,
from Theorems 2 and 7, we can directly have the following
conclusion.

Corollary 3: For the (K,N) D2D private caching system,
Scheme A in Theorem 1 is order optimal to within a factor of
18 under the constraint of uncoded cache placement and user
collusion. (]

Remark 5 (Coded vs Uncoded Cache Placement): For
the non-private shared-link coded caching problem in [4],
by comparing the optimal coded caching scheme with uncoded
cache placement in [5] and the general converse bound in [9],
it was proved that the gain of coded cache placement is at most
2. Similarly, for the non-private D2D coded caching problem
in [20], by comparing the coded caching scheme with uncoded
cache placement in [8] and the general converse bound in [9],
it was proved that the gain of coded cache placement is at most
4. However, for the considered D2D private coded caching
problem, by comparing the proposed converse bounds under
uncoded cache placement and Scheme C (which is with coded
cache placement), it is interesting to find that the gain of coded
cache placement is not always within a constant gap. More
precisely, let us focus on the two-user system and consider
M = NtL By letting y = % and h = 0 in (11), we have
R; > 851, By letting t = 2 in (9), Scheme C achieves
the memory-load pair (M,R¢) = (%£2,1). Hence, we have
sg > %, which can be unbounded (in the sense that it can
be made larger than any constant by choosing a sufficiently
large N). (]

D. Numerical Evaluations

We conclude the overview of our main results with some
numerical evaluations. For the achievable schemes, we plot
Scheme A in Theorem 1, Scheme B in Theorem 3 (for the two-
user system), and Scheme C in Remark 4 (with coded cache
placement). We also plot the converse bound under uncoded
cache placement in Theorem 4 for K = 2 and the converse
bound under uncoded cache placement and user collusion in
Theorem 6 for K > 3. For sake of comparison, we also plot
the converse bound in [9] and the converse bound under the
constraint of uncoded cache placement in [11] for shared-link
caching without privacy.

In Fig. 1, we consider the case where K = 2 and N = 8.
Here the converse bounds in [11] and [9] are the same. It can
be seen in Fig. 1 that, Scheme B and the proposed converse
bound meet for all memories except 4.5 < M < 6. When 4 <
M < 5.8, Scheme C, with coded cache placement, achieves
a lower load than the converse bound under uncoded cache
placement in Theorem 4.
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84 —+— Scheme A in Theorem 1
—%— Scheme B in Theorem 3
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cache placement in Theorem 4
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Fig. 1. The memory-load tradeoff for the D2D private caching system, where
K=2and N =8.

In Fig. 2, we consider the case where K = 10 and N = 40.
It can be seen in Fig. 2 that compared to the converse bound
in [11], the proposed converse bound is tighter when M is
small. This is mainly because in the proposed converse bound
we treat K/2 = 5 users as a powerful super-user, which
loosens the converse bound when M grows. However, for
the low memory size regime, this strategy performs well and
gives the order optimality result of Scheme A, while the gap
between the converse bound in [11] and Scheme A is not a
constant. Hence, combining the proposed converse bound and
the converse bound in [11], we can obtain the order optimality
results of Scheme A for any memory size.

In Fig. 3, we consider the case where K = 40 and N = 10.
It can be seen that the multiplicative gap between Scheme A
and the converse bounds for non-private shared-link coded
caching problem is to within a constant. In addition, Scheme
A outperforms Scheme C for any M € [0, N].

IV. ACHIEVABLE SCHEMES

In this section we provide the details of the achievable
schemes together with illustrative examples.

A. Example of Scheme A

Before introducing Scheme A in full generality, we present
an example to illustrate the main idea for the D2D private
system with K = 2 users, N = 3 files, and t = 2
(corresponding to cache size M = g).

At a high level, we aim to create a “virtual users”-system
with a total KN = 6 effective (i.e., real or virtual) users.
We then effectively divide the “virtual users”-system into K =
2 independent shared-link models, in each of which a real user
broadcasts coded multicast packets to (K — 1)N = 3 effective
users (including K — 1 = 1 real users and (K — 1)(N —1) =
2 virtual users). The demand vector of the effective users
served on each independent shared-link model is such that
each file is requested exactly K — 1 = 1 times, thereby
guaranteeing privacy.

1) File Partitioning: Each file is partitioned into 6 equal-
length subfiles as

Fi = {Fil,{4,5}’ Fil,{4,6}a Fil,{5,6}7 Fi2,{1,2}’ Fi2,{1,3}7 Fi2,{2,3}}7
(17)
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35 -0

Fig. 2. The memory-load tradeoff for the D2D private caching system, where
K =10 and N = 40.
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Fig. 3. The memory-load tradeoff for the D2D private caching system, where
K =40 and N = 10.

where ¢ € [3]. Each subfile contains B/6 bits. The subfiles

(Fliasy Filiaey Fisey @ € [3]) are to be delivered in
the first independent shared-link model by real user 1 to the

effective users indexed by [N+1 : 2N] = [4 : 6]. Similarly, the
subfiles (Ff{m}, Ff{m}, FZ.Q’{Z?,} : 1 € [3]) are to be delivered
in the second independent shared-link model by real user 2 to
the effective users indexed by [N] = [3].

2) Placement Phase: Real user 1 stores all the subfiles with
superscript 1 (which it is charged to deliver in the delivery
phase), and similarly, real user 2 must store all subfiles with
superscript 2. In addition, each real user also stores other
sub-files as follows. Real user k € [2] selects Py uniformly
i.i.d. over [3]. The realization of P; is unknown to real user 2,
and similarly P, is unknown to real user 1. Real user k € [2]
impersonates effective user 6, = 3(k — 1) + Pj. Thus, the
actual cache content of each real user k € [2] is

U {(Fy:ieBloxiev)
JEIKIN\{k}

Ze ={F}y, i€ [3],vV}

(18)

For example, if we assume P, = 1 (real user 1 impersonates
effective user 1) and P» = 1 (real user 2 impersonates effective
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user 4), then real users’ cached contents are

Z1 = (Fasy Flaey Fiseyr Frpey Fiqs o1 € 3)),

(19)
Zy = (Fiasy Fiqaey Fipiop Frpsy Fiqes o1 € 8)),
(20)

each of M = 3% files.

Thus in the first shared-link model served by real
user 1 with the library (Fil7{475}7 Fi%{476}, }71,17{576} © 1 €
[3]), each effective user k& € [4 6] caches (F), :
V e {{4,5},{4,6},{5,6}},k € V). In the second
shared-link model served by real user 2 with the library
(Fi%{lﬂ}’ FiQ,{LZi}’ Fi27{273} i € [3]), each effective user
k € [3] caches (F?), : V € {{1,2},{1,3},{2,3}},ke V).

3) Delivery Phase: In order to guarantee privacy, we want
that each file is demanded the same number of times by the
effective users served in each independent shared-link model.
Therefore, we let real user & € [K], who wants to retrieve
the file indexed by dj, choose uniformly i.i.d. at random one
permutation among all permutations of [N] with Py-th entry
equal to dj.

Assume that the demand vector is (dy,dz) = (1,1). Denote
the demand of effective user k£ by ¢x. Real user 1, who
impersonates effective user 1 with demand ¢; = 1, randomly
chooses (¢2,q3) to be either (2,3) or (3,2), with equal
probability. Real user 1 sends ¢1 = (q1,¢2,¢3) as a query to
real user 2. Similarly, real user 2, who impersonates effective
user 4 with demand ¢4 = 1, randomly chooses (g5, gs) to be
either (2, 3) or (3, 2), with equal probability. Real user 2 sends
¢ = (q4,q5,96) as a query to real user 1. It can be seen that
in each independent shared-link model each file is demanded
exactly once.

Real user 1 then sends

X1=F}, 560 ®Fp (26} ® Fps 15 1)

1 1
thus real user 2, who has cached Fq5,{4,6}qu6,{4,5}7 can

1 . . .
recover F% (5,6} Similarity, real user 2 then sends

Xy = F§17{273} ® F(1227{173} D F;?{LQ}; (22)

thus real user 1, who has cached quz,{l,B} and F¢123,{1,2}’ can
recover F§17{273}.

4) Performance: In the delivery phase, the load is 2%,
which coincides with (8). Privacy is guaranteed as, from the
viewpoint of real user 1, who does not know the realization
of P, all the effective users in [4 : 6] are equivalent; similarly
for real user 2. The information theoretic proof on the privacy
will be provided later for the general case. Note that | Py, |¢|
where k € [2] do not scale with B, satisfying our assumption
in Section II. In conclusion, the proposed scheme is decodable
and secure.

B. Proof of Theorem 1: Description of Scheme A
We are now

Section IV-A.
Recall that U = (K — 1)N denotes the number of virtual

users. Let ¢ € [U + 1]. Similar to the “virtual users” scheme

ready to generalize the example in
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for the shared-link model in [7], we aim to contact a D2D
system with K(N — 1) virtual users (in addition the K real
users) and divide it into K independent shared-link models,
each of which serves U effective users, where (K —1)(N —1)
are virtual users.

1) File Partitioning: Each file is partitioned into K(tgl)
equal-length subfiles as

F; ={F}, 1k € [K],V C [KN]\ [(k — )N + 1 : kN],
V| =t—1}, Vi€ [N], (23)

LU bits. Note that, for each

k € [K], in (23) we have eliminated the index interval [(k —
1)N + 1 : kNJ, which is associated with real user k, from the
set of all effective users [KN].

2) Placement Phase: Each real user k € [K] selects
P, € [N] uniformly at random and independently across
users. We let real user & € [K] impersonate effective user
0r = (k — 1)N + P, among the KN effective users. The
realization of P,k € [K], is unknown to all the other real
users, that is, the other real users do not know the realization
of O € [(k—1)N+1: kN]J. '

Each real user k € [K] caches all sub-files F},, for which
either k = j or 0, € V, for all files ¢ € [N], requiring

() +(K-DED) 1
<% K

t—1

where each subfile contains

M=N 1)/N.

(24)

3) Delivery Phase: In the first step, each real user k € [K]
who demands dj, € [N], uniformly and independently selects
a vector £ = (q(k—1)N+1,---,qkN) among all permutations
of [N] whose Pj-th element equals dj. Then real user k €
[K] broadcasts ¢y to all the other real users. Thus, from the
viewpoint of each of the other real users, the union of the
demands of the effective users in [(k—1)N+1: kN] is always
[N], which is key to guarantee privacy.

In the second step of the delivery phase, each real user
k € [K] performs a YMA delivery on the k-th shared-link
model with sub-files

(Fly i € INLV CKNJ\ [(k — DN+ 1 kNJ, [V = £ — 1),
(25)

for effective users [KN]\ [(k — 1)N + 1 : kN]. More precisely,
for each i € [N], the effective user with the smallest index
in [KN] \ [(k — 1)N + 1 : kN] which requires F; is chosen a
leader for F;. The leader set for the k-th shared-link model
is denoted by L. For each S C [KN]\ [(k — 1)N + 1 : kN]
where |S| = t, we let

k _ k
Ws = & Fgs\ay (26)

Then real user & broadcasts

Xp, =(W&: S C[KN]\ [(k — )N + 1 : kN],

[
S| =18 N Ly, £0). @7

5709

4) Decodability: We focus on real user k € [K]. From X
where j € [K]\ {k}, it was shown in [5, Lemma 1], real user
k can reconstruct each multicast message Wé where § C
([KNJ\[(4 =1)N+1:jN]) and |S| = t. Then real user k can
recover each Fj ,, where V C ([KNJ\ [(j — 1)N + 1 : jN]),
[V| =t —1, and 0 ¢ V from ijzu{ak}’
caches all the subfiles in Wéu (04} except F' gk,V' In conclusion,
real user k can recover all the uncached subfiles of Fj;, from
(X : j € [K]\ {k}).

5) Privacy: We will prove that the privacy constraint in (4)
holds.® By our construction, the cached content of each
effective user is fixed. Hence, (X1,...,Xk) only depends
on the demands of the effective users. Since Pj, j € [K],
is chosen uniformly i.i.d over [N], #; is uniformly ii.d. over
[(j—1)N+1: jN]. Hence, for any permutation of [N] denoted
by u, any i € [N], and any (j, k) € [K]? where j # k, (assume
that the p-th element of u is 7)

7(]jN) = u|dj = i)dkHZk}

since real user k

Pr{(qg-1n+1s---

= Pr{(qG-1)N+1s-- > @n) = uld; =i} (28a)

= Pr{P; = pld; = i} Pr{(qG;—1)Nt1s- > Tp—1,

dp+1s---,qiN|Pj =p,d; = i} (28b)

= %Pr{(q(j—l)N+1a o Op=1, G- - ON| Py = pody = i}
(28¢)

= l;, (28d)

N(N-1)!
where (28a) follows since, given d;, the demands of the

effective users in [KN] \ [(j — 1)N + 1 : jN] are independent
of the cached content, queries, and demands of other effective
users; (28c) follows since P; is chosen uniformly over [N]
independent of d;; and (28d) follows since, given P; and
d;, the demand vector of the effective users in [(j — 1)N +
1 : jNJ is chosen uniformly among all permutations of [N]
where the S;-th element is d;. From (28d), it can be seen
that Pr{(qj—1)N+1,- - -, qin)|d;j, dr, Zr} does not depend on
(dj, di, Zy); thus

I(qG—1)N+1s - - - @GN djldr, Zi) = 0. (29)

Hence, from (29) and the fact that given d;, the demands of
the effective users in [KN]\ [(—1)N+1 : 7N] are independent
of the cached content, queries, and demands of other effective
users, we have

T,

Recall that (X1, ..., Xk) only depends on the demands of the
effective users; thus we can prove (4). Similarly, we can also
prove the privacy constraint against colluding users in (7).

6) Performance: Each real user k € [K] broadcasts (}) —

(U;N) multicast messages, each of which contains K(LU bits.

Hence, the achieved load is given by (8). Note that |Py], ||
where k € [K] do not scale with B, satisfying our assumption
in Section II.

7qKN;d|dkaZk’) =0. (30)

%Note that the privacy proof in [7] needs the constraint that the demand of
each real user is uniformly i.i.d. over [N]. In the following, we will show that
this condition is not necessary.

Authorized licensed use limited to: University of North Texas. Downloaded on August 29,2022 at 15:22:41 UTC from IEEE Xplore. Restrictions apply.



5710

C. Example of Scheme B

We now focus on the case of K = 2 user and propose a
scheme that does not introduce virtual users and removes the
redundancy in the placement phase of Scheme A. Let us return
to the example in Section IV-A but with M = % to illustrate
the key insights.

Let us first go back to Scheme A. Recall that in Scheme A,
each file is split as in (17), the cached contents of the real
users are given by (19) and (20). and the transmitted signals
are given by (21) and (22). Assume that the demand vector is
(d1,d2) = (1,1) and the queries are {; = {5 = (1,2,3). Thus
the transmitted signals are

€1V
(32)

X1 = Fll,{5,6} D le,{4,6} S F31,{4,5}v

X2 = F12’{273} @FQQ{I 3} SY F32{1 2}

Note that real user 2 caches (F) 5 (45} 2{4 6}) but only
uses F) (4,6} in the decoding procedure. Similarly, real
user 2 caches (F} 1, 5},F?,l{4 6) but only uses F} {453 in
the decoding procedure In other words, the cached subfiles

2 {45} and F(3 {46} are redundant for user 2. Similarly, the
cached subfiles F2 (1,2} and F(3 (1,3} are redundant for user 1.
The same is true for any demand vector.

We propose Scheme B to remove this cache redundancy as
follows.

1) File Partitioning: We partition each file into 4 subfiles
as

={F 1,F112,F F22} € [3], (33)

where each subfile contains B/4 bits.

2) Placement Phase: User 1 selects Py = (p1,2, 2.2, P3,2)
uniformly i.i.d. over [2]3; user 2 selects Py = (p1.1,P2.1,P3,1)
uniformly ii.d. over [2]2. Then user 1 caches Z; =
(Fl Flo  F2, . + i € [3]), and user 2 caches Zo =
(F}’pm,Ff’l,Ff’Q i € [3]). Hence, M = ¥ files.

3) Delivery Phase: In the delivery phase, we assume that
the demand vector is (di,d2) = (1,1). User 1 sends query
l = (¢, p2,2,p3,2) to user 2, where g € [2] \ {p1,2}. After
receiving /1, user 2 responds by transmitting

Xo = qu@F2p22@F3p32 (34)

User 2 sends query {5 = (¢',p2,1,p3,1) to user 1, where ¢’ €
[2]\{p1,1}. After receiving {2, user 1 responds by transmitting

X1 = F117(1’ ® F217p2,1 & F317I)3,1' (335)

The same can be done for any demand vector.

4) Performance: Similar to the analysis of Scheme A,
Scheme B is decodable and private. In this scheme,
where k € [2] do not scale with B neither. In this example,
Scheme B achieves the memory-load pair ( T 2) Scheme A
achieves the memory-load pairs (2, 1) for ¢ = 1, and (3, 1) for
t = 2; hence, by memory-sharing Scheme A achieves the load
2 when M = 9. Therefore, Scheme B outperforms Scheme A.

D. Proof of Theorem 3: Description of Scheme B

We now ready to provide the general description of
Scheme B.
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1) Placement Phase: Each file F;, where i € [N],
is partitioned in two equal-length parts, denoted as F; =
{F!, F?} where |F!| = |F?| = B/2. For each k €
[2], we further partition FF into (Nt_,l) + (NZQ) equal-
length subfiles, denoted by Fikl,...,F,k N_1N . /N_2vs

# bit %Eet’ra)l;égr_n? ener:
each subfile has 2] its. y g

t/ t/—1

ate a permutation of {(Nfl) + (Nfz)}, denoted by p; i =

t t—1

(p@k[l], e Dik {(Nt_,l) + (L\fj)D, independently and uni-
formly over the set of all possible permutations.

We let P, = (pag 11 € [N]) and P, = (Pi,l NS [N])

Then, we let user k cache all subfiles of Fik. In addition,

we let the other user (i.e., the user in [2] \ {k}) cache

FF ., FF
i,pi,k[1]7 ’ szk t/ 1

Considering all the
(( ) + 2(1&/ 1)) N subfiles, requiring memory

A 20D )N N N
" (2((“#)+(H3) a0

2) Delivery Phase: We first focus on the transmission by
user 1, in charge of delivery the subfiles with superscirpt 1.
For each subset S C [N] where |S| = ¢’ + 1, we generate an
XOR message containing exactly one subfile of each file in S.
More precisely, for each subset S C [N] where |S| =t + 1,

o If do € S, we pick a non-picked subfile among

1 hy
Fdzv%l[(?f D+ "’Fdz,pdz (M)« Inoaddi

tion, for each i € S\ {d2}, we pick a non-picked subfile

1
among F ipeall] ’Fi,pi,l[(f’:i)]

o If do ¢ S, for each i € S, we pick a non-picked subfile

1
among F o [(2) ] .,FLpin[(Nt—,l)J’_(i\jlizl)].

We let W4 be Ehe XOR of the picked ¢ + 1 subfiles, where
1 _
sl = sy

We proceed similarly for user 2. We let W2 be the

binary sum of the picked ¢ + 1 subfiles, where |[W3| =
B
2(()+(20)

Finally, user 1 asks user 2 to transmit X; = (W§ : S C
N],|S| = ¢ + 1), and user 2 asks user 1 to transmit Xy =
(W2:SCINL|S| =t +1)]

3) Decodability: We focus on user 1. In each message Wg
where S C [N], |S| =¢ + 1, and d; € S, user 1 caches all
subfiles except one subfile from Fj;,, so user 1 can recover
this subfile. Hence, user 1 in total recovers (N;,l) uncached
subfiles of Fy,, and thus can recover Fy, . Similarly, user 2 can
also recover Fy,.

4) Privacy: Let us focus on user 1. Since user 1 does not
know the random permutations generated in the placement
phase, from its viewpoint, all subfiles in Fi1 where i € [N]

are equivalent.8 X7 contains (?f) messages, each of which

ILles each wuser in total caches

7In other words, the query £, k € [2], represents the indices of the subfiles
in Wk, where S C [N] and |S| =t/ + 1.

8In our paper, the statement that from the viewpoint of a user A and B are
equivalent, means that given the known information of this user, A and B
are identically distributed.
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corresponds to a different (¢’ + 1)-subset of [N] and contains
exactly one subfile of each file in the subset. Hence, the
compositions of X; for different demands of user 2 are
equivalent from the viewpoint of user 1. In addition, X5 is
generated independent of do, and thus X, cannot reveal any
information of ds. As a result, the demand of user 2 is private
against user 1. Similarly, the demand of user 1 is private
against user 2.

5) Performance: Each user broadcasts (t,'il) messages,

each of which contains —m—~2v—s— bits. Hence, the
, , 2(("7)+(07)
achieved load is
2( N N(N —1
o M) ween

N—1 N—2 t'+1)(N+t —1
2+ (o) @HDNEE-D
Note that |Py|, |¢;| where k& € [2] do not scale with B,
satisfying our assumption in Section II.

V. NEW CONVERSE BOUNDS UNDER THE CONSTRAINT OF
UNCODED CACHE PLACEMENT AND USER COLLUSION

In this section, we provide the proofs of our new converse
bounds in Theorems 4 and 6. We first introduce the proposed
converse bound for the two-user system and then extend it
to the K-user system. We start by introducing an example to
illustrate in the simplest possible case the new ideas needed
to derive our new converse bound.

A. Example of Converse

We consider the D2D private system with (K,N) = (2,2)
and M = 6/5, for which the achieved load by both Scheme A
and Scheme B is R = 7/5. The converse bound under the
constraint of uncoded cache placement and one-shot delivery
for D2D caching without privacy in [8] gives R%(6/5) > 4/5.°
In the following, we prove that R?(6/5) = 7/5.

Assume we have a working system, that is, a system
where all encoding, decoding and privacy constraints listed
in Section II are met. In the following, in order not to clutter
the derivation with unnecessary “epsilons”, we shall neglect
the terms Py, ¢, where k € [K] that contribute eg = o(B)
when B — oo to bounds like the one in (40). Finally, without
loss of generality (see Remark 7), each user caches a fraction
M/N = 3/5 of each file and each bit in the library is cached
by at least one user.

Assume that the cache configurations of the two users are
Z} and Z3, where Z{ U Z} = {F, F,}. For the demand
vector (di,d2) = (1,1), any working scheme must produce
transmitted signals (X7, X2) such that the demand vector
(d1,ds) = (1,1) can be satisfied. The following observation is
critical: because of the privacy constraint, from the viewpoint
of user 1, there must exist a cache configuration of user 2,
denoted by Z2, such that Z]UZ2 = {Fy, F»}, H(X2|Z3) = 0,
and Fy can be decoded from (Xi,Z2). If such a cache
configuration 222 did not exist, then user 1 would know that
the demand of user 2 is Fy from (Z], X1, X2, d;), which is
impossible in a working private system. Similarly, from the

9For K = 2, any D2D caching scheme is one-shot.
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viewpoint of user 2, there must exist a cache configuration
of user 1, denoted by Z%, such that Z? U Z3 = {F, F»},
H(X1]|Z%) =0, and F» can be decoded from (X, Z%).

From (Z1, Z}), because of Remark 7, for each file F}, i €
[2], we have!”

BM 3B
) L _ 2=
|Fi N Z3 | N 5 (38a)
3B 2B
|F\Z1|*|F\Z2|_B——:?a (38b)
B
Fnzinz =< (38¢)

Similarly, since Z{ UZ3 = Z1UZ3 = {F1, F»}, we also must

have
1 2 B
|F;NZyNZy| = 7 (38d)
F\Z{ CFNZyNZ;. (38¢)

Inspired by the genie-aided converse bound for shared-link
caching networks without privacy in [5], [11], we construct a
genie-aided super-user with cached content

7' =(Zy, Z3 \ (F1 U Zy)), (39)

who is able to recover the whole library from (X7, Z’). Indeed,
after file Fy is reconstructed from (X7, Z1), the combination
of (F1UZ3) and Z3 \ (Fy U Z3) gives Z3; now, file F> can
be reconstructed from (Xi, Z3). Therefore, we have

2B = H(F, F») < H(X1,2') (40a)
= H(X1,7Z3, 23\ (F1 U Z3)) (40b)
= H(X1,23) + H(Z3\ (F1 U Z})|X1,Z3, F1)  (40c)
< H(Xy)+H(Zy)+ H(Z3|Z3, Fy) (40d)
= H(X,)+H(Z) + HF,NZ:N Z}|Z3) (40e)
= H(X1) + H(Zy) + H(Fa N Z3 N Zy)
~_—— —
<MB <B/5
~H(F,NZiNZiNZy), (40f)

=0

where (40e) follows since, from (40d), only the bits in F5 are

left, and Z3 \ Z3 = (Z3 N Z}) \ Z3 following the reasoning
leading to (38e); the last step in (40f) follows since the bits
in a file are independent.

At this point, we need a bound that can be combined with
the one in (40) such that it contains on the right hand side
the term H(X3), so that H(X;) + H(X32) can be bounded
by BRy, and a term that allows one to get rid of the negative
entropy of the random variable

Q:=FRNZiNZyNZ3, (41)

which is illustrated in Fig. 4.

10ntuitively, with uncoded cache placement, each file is split into disjoint
pieces as F; = (Fi,{l},Fi,{Q},Fi,{l,Q}),Z’ S [2}, and the users cache
Z1 = Ul (F; 13, Fiq1,23)s Z2 = Ui (F; 123, Fi (1,2} ); by symmetry,
let x € [0 1] Wlth |F; {1}‘ = |F; {2}‘ = BI/Q and |F 1,2 | =B(1—=x)
suchthatx/2+1fx_M/N /5%1_2(17M N) = 4/5. In
the proof, one can think of different cache configurations as different ways
to split the files.
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File F, File F,
2B/5 bits  B/5bits  2B/5 bits 2B/5 bits  B/5 bits  2B/5 bits
F\Z) Fnzinzl F\Z! F\Z} Knzinz
After
- - considzering i B o -
—_—
ZInF, ZInF,
ZNF, ZInF,

Fig. 4. Tllustration of the composition of Q := F» N le al Z21 N Z22.

In the next step, we will introduce another approach to
construct a genie-aided super-user, in order to derive an
inequality eliminating Q in (40f). We then focus on the cache
configurations Z{ and Z%, and the transmitted packets Xo.
Recall that Fy can be reconstructed from (Z1, X»), and F; can
be reconstructed from (Z%, X5). Furthermore, by recalling
the definition of Q in (41), it can be seen that the bits
in (F, N Z$)\ Q are independent of X5. Thus F; can be
reconstructed from (Z{ N Fy, Q, X»). Hence, we can construct
a super-user with cached content

7" =(ZI Nk, Z}NFy, Q), (42)
who can decode both files. Thus
2B = H(Fl,FQ) § H(XQ,Z”) (433)

<H(Xo)+ H(ZINF)+H(ZE N Fy) +H(Q). (43b)

<3B/5

<3B/5

Finally, by summing (40f) and (43b), we have that any
achievable rate under uncoded cache placement must satisfy
HX) + H(X) T

B ~ 5

The bound in (44) shows that Scheme A and Scheme B are
indeed optimal for the considered memory point.

Remark 6 (A high-level explanation of the converse

technique): The key take-away points in the example in
Section V-A are as follows.

Ru 2 (44)

o By exploiting the privacy constraints, we note that from
the viewpoint of each user k£ (i.e., given cache Z; and
transmitted packets (X1, X2)), any demand of the other
user is equally possible. Hence, there must exist a cache
configuration of the other user that allow for the decoding
of any file using the same (X7, X3).

o We introduce an auxiliary random variable Q to repre-
sents the set of bits F> N Z1 N Z2 N Z3. We then use two
different approaches to construct genie-aided super-users
to decode the whole library, in such a way that we can
get rid of “tricky” entropy term when the various bounds
are summed together:

1) In the first approach, we focus on (X7, Z3, Z3) and
construct a genie-aided super-user who can reconstruct
the whole library by receiving X;. The bits in Q

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 9, SEPTEMBER 2022

belong to the overlap of Z3 and Z3. Hence, the size
of the genie-aided super-user’s cache decreases when
|Q| increases. In other words, the needed transmitted
load increases when | Q)| increases (see (40f)).

2) In the second approach, we focus on (X», Z{, Z?) and
construct a genie-aided super-user who can reconstruct
the whole library by receiving Xo. Now the bits in Q
are in the cache of the super-user. Hence, the size of
the genie-aided super-user’s cache increases when |Q)|
increases. In other words, the needed transmitted load
decreases when | Q)| increases (see (43b)).

Finally, by summing (40f) and (43b), the effect of Q is
fully cancelled, such that we derive (44).

O

Remark 7 (On Optimality of Symmetric Placement): To
derive the converse bound under the constraint of uncoded
cache placement in the above example, we assumed that every
user caches a fraction M/N of each file. This assumption
is without loss of generality. Assume that there exists a
caching scheme where users cache different fraction of the
files. By taking a permutation of [N] and by using the same
strategy to fill the users’ caches, we can get another caching
scheme. By symmetry, these two caching schemes have the
same load. Hence, by considering all possible permutations
and taking memory-sharing among all such cache schemes,
we have constructed a scheme where every user caches the
same fraction of each file, with the same achieved load as the
original caching scheme.

In addition, in the example, we also assumed the total
number of cached bits by each user is exactly MB, i.e., the
cache of each user is full. Assume that the total number of
cached bits by user k£ is MyB. By reasoning as above, we can
prove that for any caching scheme, there must exist a caching
scheme where M; = --- = Mg and with the same load
as the above scheme. Furthermore, the converse bounds in
Theorem 4 and Theorem 6 derived under the assumption that
M; = --- = Mk = M, are non-increasing with the increase
of M. Hence, the assumption that the total number of cached
bits by each user is exactly MB bits, is also without loss of
generality.

Hence, in the proof of our new converse bounds, without
loss of generality, we can assume each uses caches a fraction
% of each file. O

B. Proof of Theorem 4: Two-User System

We focus on uncoded cache placement. Without loss of
generality, each uses caches a fraction % of each file (as
explained in Remark 7). Let

N
M:_+ya

. (45)

where y € [0, %}

Assume the cache configurations of the two users are
(Z1,73), where Z1 U Z3 = {F,...,Fy}. For the demand
vector (di,d2) = (1,1), any achievable scheme must produce
transmitted packets (X7, X53), such that the demand vector
(d1,d2) = (1,1) can be satisfied. By the privacy constraint
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(2,2) )
) a2
e

@N
' _en {7
<
y -
Sub-trees of Z{ and Z3

2

Fig. 5. Construction of cache configurations in Lemmas 1 and 2.

in (4), from the viewpoint of user 1 with cache configu-
ration Z{, there must exist some cache configuration Z}
such that Z{ U Z3 = {F,...,Fn}, H(X2|Z]) = 0, and
H(F;|X1,Z3) = 0, for any j € [N]; otherwise, user 1 will
know that the demand of user 2 is not F};. Similarly, we have
the following lemmas.

Lemma 1: For any i € [N] and j € [N], there must exist
some cache configurations Z% and Z3, such that

ZiUZi=2Z 0z ={F,...,Fn}; (46a)
H(X,|Z}) = H(X,|Z3) = 0 (46b)
H(Fy| X2, Z}) = H(F}| X1, Z}) = 0. (46¢)

Lemma 2: From Zi and Z where i, j € [N] as in Lemma 1,
it must hold

« consider Z} where i € [N]. For any j € [N], there must
exist a cache configuration denoted by Zg(i’j " such that
Ziu zZ) = (B, Fy), H(Xo|289)) = 0, and
H(Fy|Xy, 287)) = 0; and

« consider Z3 where j € [N]. For any i’ € [N], there must
exist a cache configuration denoted by Z (9 such that
209G 78 = (Fy,... PN} H(X129) = 0, and
H(Fy| Xy, 29y = 0.

In addition, by definition of Lemma 1,

e« when 7 = 1, we have Z(l’jl) = Zgl for each j/ € [N];
when j = 1, we have Zfi D= 7 for each i’ € [N]; and

o when j' = 1, we have Z{"") = ZI for each i € [NJ;
when i’ = 1, we have Z\""”) = Z} for each j € [N].

We can represent the construction of the cache configura-
tions in Lemmas 1 and 2 by an N-ary tree, as illustrated in
Fig. 5.

o Two vertices (assumed to be represented by cache
configurations Z] and Z}) are connected by an edge
with superscript (,7), if Z} U Z, = {Fy,...,En},
H(X\|Z}) = H(X2Z5) = 0. and H(F|X2,Z}) =
H(F;|X1,25) = 0.

o For each i € [N], Z} is connected to exactly N vertices,
which are ZQ(i’j/) where j' € [N].

« For each j € [N], ZJ is connected to exactly N vertices,
which are Z{i 7) where i’ € [N].

5713

Consider Z{ where i € [N]. Recall that M = N/2 + y, and
that for each j/ € [N], we have Zi U Z\"7) = {Fy,..., Fy}.
For each file F,, where p € [N], by defining

7, = ZinFy, 2870 = 789 N F,, Vi e N], 47a)

we have
i i1 i\N B B
B2l =15\ 2 | = = 1B\ 235 | = 5 =
(47b)
. ), 2yB
12i, 0 25501 = =5, i € IN; (“7¢)
(Fp\Z1,) € 2557, v € N (47d)
For each file p € [N], we define that
=i,z 0z, (48)

and that ¢f , = Q] |.
Similarly, focus on Z3 where j € [N], and we have

By i= B0 F, 207 =20 0 F,, vi' € N @9)

. - .
1\ 23| = [l \ 250 | = - = [F, \ 27
B B
=5 -5 (49b)
j (. _ 2yB . .
|Z%[) N ZLp | = W, Vl' S [N]7 (49C)
(Fp\2},) € 2{), wi' € N]. (49d)
For each file p € [N], we define that
1o =25,0 280 00 zZ87, (50)

and that qip = |Q§p|
After the above definitions, we are ready to prove Theo-
rem 4. As illustrated in the example in Section V-A, we will
use two different approaches to construct powerful super-users.
First approach: Consider Z} where i € [N]. We then
focus the connected vertices of Zi in Fig. 5, i.e., Zél/’j)
where j' € [N]. By the construction, from (Xl,ZQ(m )),
we can reconstruct F}. The first approach is inspired by
the acyclic index coding converse bound in [5], [11] for
shared-link caching without privacy. We pick a permutation of
[N], assumed to be u = (uq,...,un), where u; = i. We can
construct a genie-aided super-user with the cache

UPE[N]ZQ(i’up)\(Ful J---uy Etp_l U Z§i71L1)U

The genie-aided super-user can successively decode the
whole library from its cache and X;. More precisely,
it can first decode F,, from (Xl,Zél’“l)). From
(X1, Fy,, 2570 7§32\ (F,, U Zz8"")), then it can
decode F,,. By this way, the genie-aided super-user can
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decode the whole library. Hence, we have

H(F,...,Fy)

< H(X1) + H( Upe 257\ (P,

z" )

< H(X1) + H(Z")) + H(Z8"|Fy,, 257)) +

+ H(ZS™|F,, .. .,FuN_l,zy"ﬂ, Lz 1>) (52b)

— H(X)) + H(ZS) + H(ZS" |7y 207) + -+

H(ZS"™|Fy, Fuyy oy Fuy oy, 2870, 2579, Z“ w1y
(52¢)

—1

U---UR,

vz gy (52a)

= H(Xy) + H(Z§)

+ (HZSNZED0) + o+ HZG 12850 ) + -+
+ (B2, 2850 2 ))) (52d)

= H(Xl) + H(ZQ(M)) _‘_H(Z(i,uz)|Z(z z)) (Z(z Jug)

2,us 2,u2 2ug
ZEINZED) oo B, 2285, (520
where (52c¢) follows since u; = 7, (52d) follows since all bits
in the library are independent, (52e) comes from the chain rule
of the entropy.
From (52e), it will be proved in Appendix A-A and Appen-

dix A-B that (recall y = M — N/2),

B yB
H(Xq) > = — =; 53
( 1)— 2 N7 ( )
4yB ,
H(X1) > B = ==+, (54)

In addition, by considering all permutations of [N] where the
first element is ¢, we can list all (N—1)! inequalities as in (52¢).
By summing all these (N — 1)! inequalities, we can obtain the
following inequality, which will be proved in Appendix A-C,

NB AN-1)yB 2
>___ 4B —
HX) = 5B =GN Z gr
SORG!
h+D(h+2) \ N D

pe[N]\{4}

h (B yB
. A N —3].
+h+2( N)},Vhem 3]

By considering all ¢ € [N], we can list all N inequalities as
in (55). By summing all these N inequalities, we obtain

(55)

NB 4(N —1)yB
AXy) 2 =B = 59N
Z Z qu
zE[N P€E[N] \{ }
SESAL TR
- 1 L 1VvE LowvNn VTN Yip
i€[N] p€[N]\{i} (h+ 1)(h +2N N
h B yB .
+m <§_W>}’ Vh € [0: N —3]. (56a)
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We now consider Zg where j € [N]. By the similar step as
above to derive (56a), we obtain

NB . 4(N- 1)yB

Z Z q2,p

JE [N] pe[N\{s}

‘Z Z‘H?m%m@$”@

JEIN] pe[N\ {5}

h B yB
_— | = = == :N - 3.
+(h+2)N(2 N)},Vhe[o 3. (57)
By summing (56a) and (57), we obtain
RiB > H(X1) + H(X3) (58a)
8(N—1)yB N-—2
>NB—2yB — — 4y(N —1)B
= BN T arnnron N
h(N—1 2yB 2 N—2
(h+2) N (h+2)N  (h+1)(h+2)N
Yood diut Y. >, @, |.vhe0:N-3]
i€[N] pe[N]\{i} JEIN] pe[N\{5}
(58b)

Second approach: We then use the second approach to
construct genie-aided super-users. We first consider Xs. By the
construction, from (X2, Z1) where i € [N], we can reconstruct
F;.

Now we fix an integer ¢ € [N]. We pick a permutation of
[N], assumed to be u = (uq,...,un), where u; = i. We can
construct a genie-aided super-user with the cache

Upe[N] (Z L,; U quj‘,lup ‘U Qup 1)

Now we prove that the genie-aided super-user can successively
decode the whole library from its cache and X,. Note that
from (Z}",X5), we can reconstruct F,,. Furthermore, for
each file F},, where p; € [N]\{u1}, by recalling the definition
of prl in (48), it can be seen that the bits in Z" o \ Q"’pl
are independent of X5. Hence, it is enough to reconstruct F,,
from (X2, Zy",,,9Q1,,---, Q1% ), and thus the super-user
can reconstruct F,,. After recovering F,, the super-user
can reconstruct I, from (Xo, Fuy, 215, Q1%+, Q1%,)-
By this way, the genie-aided super-user can decode the whole

library. Hence, we have

H(X3) > H(F1,...,FN)
-H (Upe[N]( 1Zp UoTL,

(59)

UQn)) (60a)

> (H(F.,) - H(Z}4,))
+(H(Fu2) H(Ziuuzv 1;,1u2))+"'
+ (H(Fuy) = H(Z{%, Qs+ Q1)) - (60b)

From (60b), it will be proved in Appendix B-A and Appen-
dix B-B that,

B ¢B
H(X,) > = - 22, 1
( 2) 2 N7 (6)
-
H(X:)>B— % - (62)
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By letting the two permutations to derive (52e) and (60b)
be the same, we now sum (53) and (61) to obtain
2yB

RiB > H(X,) + H(X2) > B_T’

which coincides with the proposed converse bound in (13).
Similarly, by summing (54) and (62), we obtain

(63)

B
R'B > H(X)) + H(X,) > 2B — 6%

which coincides with the proposed converse bound in (12).

In addition, by considering all permutations of [N] where
the first element is ¢, we can list all (N — 1)! inequalities as
in (60b). By summing all these (N — 1)! inequalities, we can
obtain the following inequalities, which will be proved in
Appendix B-C,

(64)

NB
H(X3) > > - h Z (hp
? peinnis)
3 {Znem]\{i,p}qlm+ h <E_@)}
htD(h+2) hi2\2 N/)[’
penngal (PFDGR+D ot
Vheo:N—3]. (65)

By considering all ¢ € [N], we can list all N inequalities as
in (65). By summing all these N inequalities, we obtain
NB

7_9 Z Z qu

ZE [N] pe[NI\{4}

—ZZ{M

h+1)(h+2)N
Mg (B D0R+2)
h B B
+7 -
(h+2)N\2 N

We now consider X;. By the similar steps as above to

derive (66), we obtain
Z Z q2,p

JG[N PpE[N\{s}

Zne[N]\{j,p} ©p
i+ )(h+ 2N

H(X3) >

)} Vhe[0:N—3]. (66)

NB
H(X1)27—y -

EDIRDY

JEIN] pe[N\{j}

h B yB
—_— | = = = Vhe[0:N-3|. (67
TN (2 N)} €l . @7
By summing (66) and (67), we obtain
> NB — 2yB
2
N (h+2)N Z Z q27p+ Z Z ql,p
JeN] peIN\ {7} i€ [N] pe[N]\ {3}
1 n
_h1h2NZZ >,
(h+1)(h+2) JEIN] p€[N\{j} n€[N]\{j,p}
n h(N -1 2yB
15 DD SENED DI BRI
(h+2) N
i€[N] p€[N]\ {2} n€[N]\{7,p}
(68b)
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= NB - 2yB

2
T roN > D Bptd >

JEIN] pe[NI\{7} 1€[N] pe[N]\{i}

1
~ (h+1)(h+2)N N-2) >, D

J1€E[N] prE€[N\ {51}

J1
92,p,

N-2) > Y

i2€[N] p2 €[N]\{i2}
h(N —1) 2yB
" (B2 vh N —
(h+2) ( N>’ =10 )

11

qi?pz
(68¢)

where (68c) follows since
JEIN] pe[NN\{5} n€[N\{s,p}
and

IEDIENDS

i€[N] pe[N]\{i} ne[N]\{i,p}

DD

J1€[N] p1 €[N\ {41}

J1
q2,p .p,>

DD

i2€[N] p2€[N]\ {42}

qu = (N qf;’b :

Finally, by summing (58b) and (68c), we obtain Vh € [0
N — 3],

N .
T ()
=N-2y— M- DA +h(§; Lk
h2(n — 1)(;E(1N)(; i);; h(N+1) % 69b)

which coincides with the proposed converse bound in (11).

C. Proof of Theorem 6: K-User System

We extend the proposed converse bound for the two-user
system to K-user system and consider the privacy constraint
against colluding users in (7). In the following, we consider
the case where K/2 is an integer and 2N /K is also an integer.
In Appendix C we generalize the proof to any K and N.

Let M= N + 2¢ where y € [0,}]. We use a genie-aided
proof by generating two aggregate users, denoted by k; and
ko. We assume that the cache size of each aggregate user is
MB x % = % +yB, i.e., the cache size of each aggregate user
is the total cache size of K/2 users. In addition, the demanded
files of aggregate users ki and ko are the union sets of the
demanded files of users in [K/2] and of users in [K/2 + 1 :
K], respectively. The objective is to design a two-user D2D
private caching scheme with minimum load R, such that each

"n the sum EJE[N EpE[N]\{j} EHE[N]\{j’p} q% ,» let us compute the
coefficient of term q 2p, where j1 # pi1. q%}pl appears in the sum when
p = p1 and n = j1. Hence, there are N — 2 possibilities of j, which are
[N]\ {p1,71}- So the coefficient of q%}pl in the sum is N — 2.
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aggregate user can decode its demanded files without knowing
anything about the demand of the other aggregate user.

Obviously, for any K-user D2D private caching satisfying
the encoding (2), decoding (3), and privacy constraints (7),
it must be an achievable scheme for the above genie system.
In other words, Rj . > RZ. Hence, in the following we
characterize a converse bound for Rg, which is also a converse
bound for R} .

We partitioh the N files into 2N /K equal-size groups, each
of which contains K/2 files. Each aggregate user demands one
group of files. Hence, it is equivalent to the two-user D2D
private caching problem with 2N /K files, each of which has
KB/2 bits, and each of the two users caches ("2 + yB) bits
in its cache and demands one file.

We assume the caches of aggregate users k; and ko are
Al and A}. The transmitted packets by aggregate users k; and
ko are denoted by X, and X}, such that from (X}, A})
aggregate user ki can decode the files in group 1 and from
(X1, Al) aggregate user ky can also decode the files in group
1. We then also construct the cache configurations of aggregate
users kp and ko by a 2N /K-ary tree, as we did in Section V-B.

By the first approach of constructing converse bound
described in Section V-B, when we consider A?l where i €
[2] (cache of aggregate user k1 from which and X}, the files
in group i can be reconstructed), with a permutation of [2N /K]
denoted by u = (uy,...,usn/k) Where u; = 4, we obtain (by
the similar derivations of (53) and (54)),

B yB\ K
HX)>|=—->—)—=; 70
xnz(3-%) % (70)

K K4yB
H(X{) > 5B = 3= + @l (7D
where ¢j ,, represent the number of bits in A} nAfn...n

Ag’QN/ K), which are from the files in group us.
By considering all permutations of [2N/K] whose first
element is ¢, we obtain (by the similar derivation of (55)),

. _NB 2 2N 2yB K
H(X1) > 7_yB—h—+2{<?—l> N 2}
2 i
T2 Z L
PE[R\{i}
2N
-2 {(h +W1)(_h+2) <%g _qip>
pe[ R\ {4}

h (B yB\K N
+h—+2<5_W>5}’WL€[ ?‘3]
(72)

By considering all i € [2}] to bound H(X{) and all j €

[28] to bound H(X}), we sum all inequalities as in (72) to
obtain (by the similar derivation of (58b)),

L [(N ) 2BK
h+2 K N 2

R:B > NB — 2yB —

R -2 4y -1BK
h+D(h+2 N 2
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N 2

R (g

28 K
(h+2)

J
q27p ]

2> dpt X X

ie[R] pe[ R\ (@} je[3] pe[ )\ {5}

N
: -3

Similarly, by the second approach of constructing converse
bound described in Section V-B, when we consider X/ and the
same permutation as the one to derive (70) and (71), we obtain
(by the similar derivations of (61) and (62)),

2N
< ht2) ™ (h+1)(;+2)(2N/K)>

Vh € {0 (73)

B yB\ K
nNs (222
Hxp = (5-50) 5 74)
K. K2yB .
H(X}) > B 5% — gl (75)

By summing (70) and (74), we prove (16). By summing (71)
and (75), we prove (15).

In addition, by the second approach of constructing con-
verse bound described in Section V-B, after considering all
permutations to bound H(X7) and all permutations to bound
H (X)), we obtain (by the similar derivation of (68c)),

h(3—1) 2yB\ K

S (B R0)S
IN/K — 2

(h+1)(h+2)20

R:B > NB — 2yB —

B 2
(h+ 23

>y qi’,p+ DD D
ie[ 3] pe[ R\ e je[2] pe[ R\ {5}
Vhe[o:%—:a] (76)

By summing (73) and (76), we prove (14).

VI. CONCLUSION

We introduced a new D2D private caching model, which
aims to preserve the privacy of the users’ demands. We pro-
posed new D2D private coded caching schemes, which were
proved to be order optimal by matching a new converse bound
under the constraint of uncoded cache placement and user
collusion to within a constant gap. Further works include
proving new converse bounds for any cache placement, and
investigating the decentralized D2D private coded caching
problem.

APPENDIX A
PROOFS OF (53), (54), AND (55)

Recall that by considering a permutation of [N], assumed to
be u = (ui,...,un), where u; =i, we can derive (52e),

H(Fy,...,Fy) < H(X1)+H(Z(i’i))

3 a2
pE[2:N]

zh|1235)) . an
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For each p € [2: N], since |Z2(zulz| =54 %, we have
by iy Up B yB
(285, 280 12450) < HOR280) = 2 - 2,
(78)
A. Proof of (53)
Now we bound each term H (Z(i’“Q), . Qzuu:)| 512)
where p € [2: N] in (77) by £ — 22, (0 obtain
H(Fy,...,F\) < H(X)) + H(Z(”))
n Z I ( Z; uz)’ Z&Zf)l §u>) (79a)
pe[2:N]
i, B B
< H(X1) + H(Z8) + (N - 1) (5 - %) (79b)
NB B B
—HX) 4+ —+yB+(N=1) (=L (79¢)
2 2 N
Hence, we have
B B
H(Xy) > —=——=—
(X1) > 5 TN’ (80)

which proves (53).

B. Proof of (54)
We first prove for each 7 € [N] and n, p € [N]\ {i}, we have

o (z; ;>|z;;;>) —H (zg 1780 F Z{"p) (81a)

—H (ng;") NZj |28 Fy\ Z{"p) (81b)

—H (Zz(f;") nzj,|2¢ ”) 8lc)

<H (2" 07,) - d, 81d)
%B

= % - q’i7p7 (8le)

where (81a) follows since Z(z ) U Zip = Z(i "y Zip =
F, and thus (F, \ Z{,) C Z “) (81b) and (810) follow

2,p
since all bits in the library are independent, (81d) comes

from (48), (81e) comes from (47¢). 4 N
Now we bound each term H Z (z u2) ZQ(zIZP) | ézuzz )
where p € [3:N]in (77) by & — %2 to obtain
H(Fy,...,Fy) < H(Xl) + H(Z(”))
S (A
pE[2:N]
< H(X NB B+ i (20 20
= 1)+7+y + 2,u2 | 2,u2
B ¢B
N—-2)(=— 82b
+mv-2)(3-5) (s20)
NB 2yB
<H(X1)+7+ B+T_Q1u2
B ¢B
+(N-2) <5_W> , (82c)

where (82¢) comes from (81e).

5717
Hence, we have
NB 2yB B yB
HX1) > — —yB-L2 g~ (N—2)(=-L
(x> 5 o2 - (-2) (5 F)
(83a)
4yB
- _%Jr s (83b)

which proves (54).

C. Proof of (55)

Note that when N = 2, (55) does not exist. Hence, in the
following we consider N > 3 to prove (55).
From (77), we have

H(Fy, ... Fn) < H(X1) + H(25")
+ Z ( ézui;g),. ézuup | ZQ(?,JF)') (340)
pE[2:N]
= H(X) + HZ )+ 3 {H (25071235))
pE[2:N]
+H (285 22z ) | (84b)
NB 4
= H(X0) + 5 +oB+ Y H (201255
p€E[2:N]
+ Z H(Zé?u“z) Zézuizp 1)|Zézut)7Z(z up)). (840)
pE[2:N]

By considering all permutations of [N] where the first element
is ¢ and summing all inequalities as (84c), we have

NB
H(X1) 2 — —yB Z >
wiug =i pe[2:N]
(Z(’L up)| 2(1,12)
! wiuy =i pe[2:N]
H (Zézuuz}?' Zéluip l)izézuz)? Q(zuli.p)) (8521)
_ (i.p) | 7 (is0) 1
___yB_ > H(ZQ va)_(N—l)! 2
pE[NN\{d} pE[NN\{}
> X H (A A).
rel2:N] wur =i, ur=p
(85b)

where (85b) comes from the re-arrangements on the summa-
tions.

To bound the last term in (85b), we now focus on one file
F,, where p € [N] \ {7} and bound the following term

Z Z ZQz JUp—1 |Z(’L ) Z(zp))

H (ZQ(Z)UQ), 2,p >
re[2:N] wug =i, ur=p
(86)

Note that the conditional entropies in (86) are conditioned on
the same term, which is Zézpz )y Zy (”’ ) In addition, for any
€ [N]\ {4, p}, we have

Zéf;)n) \ (Z(z i) (1 I))) CF, \ (Zz(fﬂ) U Z(M))).
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Hence, we divide the bits in F}, \ (257 U Z{"")) into sub-
pieces, and denote (with a slight abuse of notation)

F\ (280 0 287 = (F,s: S C(N]\ {i,p})}, 87)
where
Fos = (F\ (25 U Z)) 1 (Pnes 28"
\(u mesZ“ o) o

In other words, F,, s represents the bits in F, \(Z(z Dy Z(”’))

which are exclusively in Z5 (z n) where n € S.
We then define

fr = > |Fpsl, VE€[0:N=2], (89)
SC(IN\{i,p}):|S|=t
as the total length of sub-pieces F,, s where |S| = t.
In (8le), we proved that for each n € [N] \ {i,p},

we have H(Z(i ")|Z(z 1)) < Q%B — ¢}, Hence, we also have

H(ZE\ 25 200 < HZSDIZ80) < %8 = g,
In other words,
2yB .
> sl -, (90)
SCINI\{i,p}:neS
By summing (90) over all n € [N]\ {7, p}, we have
> th= > > sl on)
te[0:N—2] ne[N\{i,p} SC[N]\{i,p}:neS
2yB .
<(N-2) ( N qi,p) . (91b)

(Fo\ 7)) \

In addition, since F, \ (Zézpz) U 20

(Z;’p) \ Z(z z)) we have

Z5y)) =

o\ (255 0 250 = B, \ 23 = 1250\ 24|

(92a)

B yB (z

=——-=—H(Z, -7) Z .
(92b)
Hence, we have
Z fr= Y. |Fsl (93a)
€[0:N—2] SCIN\{é,p}

B 4B GRIPAR

= _— - Z_ RVASKAR
5~ - H(Z 120 93b)
From the above definitions, we can re-write (86) as

follows,

S X ()
re[2:N]

SC(INI\{i,p}):
ﬁ{ug,...,ur_l}#@

U= 'Lu =p

=2 X

re[2:N]

[ Fp.sl- (94)

U= zu*p
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In (94), for each r € [2 : N], we can compute

Z Z |‘7:p75|
wr=r—p  SCSUNN{ip}):
! o psﬂ{uz Uy — 1}75
N-2y _ (N—r—1
— Z (N—Q)!%fp 95)
te[0:N—2] )
This is because in » sc(N)\{ip}): |.7-" 5|, there are

Sn{uz,...;upr—1}
(NtQ) - (N 2 t(’" 1)) sub-pieces whose S has ¢ elements.
Considering all permutations u where vy = ¢ and u, = p,
by the symmetry, the coefficient of each |F), s| where S = ¢
should be the same. In addition, there are in total (NZQ) sub-
pieces whose S has ¢ elements. Hence, we obtain (95).
Considering all € [2: N — 2], from (95) we have

SN SRR R

e 240 24

7“6[2N]u1 -
N—2y  (N—r—1
= Z Z —2)!%&& (962)
re[2:N] t€[0:N—2] ( t )
N—r—1
= Y Z G N

(t)

te[0:N—2] re[2:N]

N O (N=2
=(N=2)! »° <( >(N{2) (t“)>ft (96¢)
te[0:N—2] ( t )
t
— (N = 1)! -
(N=DY > = (96d)
te[0:N—2]
where (96c) comes from the Pascal’s Triangle, (Nt_3) 4+ 4+

t N—2
(t) = (t+1)'
The next step is to use Fourier-Motzkin elimination on f;
where ¢ € [0 : N—2] in (96d) (as we did in [11]) with the help
of (91b) and (93b). More precisely, we fix one integer h € [0 :

N — 3]. We multiply (91b) by % and multiply (93b)
by (Nh Jrlg " and sum them to obtain

N — 1)lh
h+2 )ft

N-1L
2 (h Dh+2)

€[0:N—2]

(h+
(N-1DN-2) (2B
<m(w—‘hm)

(N=DWm (B yB _ o w400
T (2_N H(Zy,"\225) |- OD)
From (97), we have
(N—1!h (N—1!(h+1)
Thel TR
(N-1IN-2) (2yB
S khr2) (NP
(N-Dh (B _yB _ (i) 7615
T2 (2 N ey 1 22,7)
(N—1)! (N—l)!h)
- > t + fi.
te[0:N—2]:t¢ {h.h 1} ( (h+1)(h +2) h+2
(98)
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We then take (98) into (96d) to obtain,

SN w () )
D rry D s p P

rel2: N]u1 .
(N=DIN=2) (2B
< oo
(h+1)(h+2) N P
(N=-1)!h (B yB (i2p) | 1 (ir0)
2 \z 0N (%14

— _ (h—t)(h+1-1)
te[oz:N:-z](N & (h+1)(h+2)(t+1)

(N=T1!YN-2) r2yB
= h+1)(h+2) (T_qlvp>

-0 (88 _ gz,

fe (99a)

h+2 N (59)

Finally, we take (99b) into (85b) to obtain, for each h €
[0:N-—3],

NB

)= N e S m(2128)
pe[NJ\ {3}
RPN DS
pE NI\{é} ref2:N],, zuu, =p

H (Z(zvu2)’ . Z(Z e 1)|Z§Lpz)7 2(7’1;7;0)) (100a)

NB ip
> 5 —yB- > H(Zé 225 )

peNI{i}
1 (N—1)!(N-2) <2yB i

SCE P {m N

(N=D' i L B+ DR +2)

(N-1)h (B yB (i)

B (22 gzl 2 1
M el & i VA C R ) o
_NB 2 (4,p) | 7 (is1)
=5 —yB — h+2 Z ( 125 2,p ) Z

pe[NI\ {7} pe[NI\{:}

(N —2) 2yB h B B
{(h+1)(h+2) (T 4, )+h+2<__N>}
(100¢)
NB 2 2B
2T oeo X () - 2
pelNI\{i} pelNI\{i}
(N —2) 2yB h B B
{(h+1)(h+2) (T 4, >+h+2<__W)}’
(100d)

where (100d) comes from (81e). Hence, we prove (55).

APPENDIX B
PROOFS OF (61), (62), AND (65)

The proofs of (61) (62) (65) come from a similar strategy
used in Appendix A. Hence, in the following, we briefly
describe the proofs of (61) (62) (65).

Recall from (60b) that by considering a permutation of [N],
assumed to be u = (uy,...,un), Where u; = 4, we can

5719

derive
H(X») > (H(F;) — H(Z{ ;) +
Z (H(Fup) - H(Zizp’ 7i,up’ 1 up Qlltzitpl))
pE[2:N]
(101)
For each p € [2 : N], we have

H(Etp) - H(fo;t,ﬂ zi,u,,? 1, up . Qup 1) > 0. (102)
A. Proof of (61)

Now  we bound each term  H(F,,) —
H(fo;p, Fupr Q1% Qlfpu’pl) where p € [2 : N]
in (101) by 0, to obtaln

- B B
H(Xy) 2 H(F) - H(Zi,) = 5 - 55, (03)
which proves (61).
B. Proof of (62)

Now we  bound each term  H(F,,) -
H(ZYZP Ty Qi 11“““;1) where p € [3 : N]
in (101) by 0, to obtain

H(X3) > (H(F') - H(Zfi))
+ > (HR,) - HZY, QL Q1 Q)
p€E[2:N]
(104a)
> (H(F) - H(Z,)) + (H(Fu,) = H(Z{%,,. Q1 u,))
(104b)
> H(F;) — H(Z{; + H(Fy,) — H(Z{%,,) — H(Q} .,)
(104c¢)
2yB .
=B-—g - Qs (1044d)

which proves (62).

C. Proof of (65)

Note that when N = 2, (65) does not exist. Hence, in the
following we consider N > 3 to prove (65).
From (101), we have

H(X2) = (H(F) — H(Z,))
+ ) H(Z}%,), Qs Q%2 Q1)
pE[2:N]
(1052)
= (H(F) —H(Z{ ;) + Y (H W) — H(Z%,)
PE[2:N]
~H(QL,120%,) = H(Q1,,, . Q|21 Q)
(105b)
B
=N Z H 1up lup)
pE[2:N]
Z H lu ’c 11Lpup1|Zl Up? lu ) (105C)

p€E[2:N]
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By considering all permutations of [N] where the first ele-
ment is ¢ and summing all inequalities as (105c), we can
obtain

= (g_%

o > 2 A

uu1 =i p€e[2:N]

o 2 A

uu1 =ipe[2:N]

up )
1 up 1,up

Up—1 7
1 up Qlﬁtp | 1 up l,up)

(106a)

_ (g_%ﬁ-zjﬂ<uwmwwném

pe[NI\{:}

IO IEEDD

pe[NJ\{¢} re[2:N] urur=i,ur=p

1p7" UT 1|Z1pa i,p)a

(106b)

where (106b) comes from the re-arrangements on the
summations.

To bound the last term in (106b), we now focus on one
file F, where p € [N] \ {i{} and bound the following
term

> > H(QE,....Qf

re[2:N] wiur =i, u,.=p

|Z1 D’ lp) (107)

We divide the bits in F, \ (27, U Q) ,) into sub-pieces, and
denote
Fp \ (Zf,p U Qll,

p) ={9.s : SC(INJ\{i,p})},  (108)

where

gp,S = (FP \ (Zf,p U Qzl,p)) N (mnes QTIL,p) \ ( n1¢3 n1 )

(109)
We then define
gi = > IGpsl, Vte[0:N—=2].  (110)
SC(IN]\{i,p}):|S|=t
For each n € [N]\ {i,p}, we have H(Q} |27, Q1 ,) <
H(QT,). Hence, we have
Yoote< D> diy (111)

te[0:N—2] n€[NJ\{i,p}

In addition, since F},\ (Z] ,UQ] ) =
pr), we have

th

€[0:N—2]

(FI)\Z{),]))\( ’i,p\

yB

G| = 5 — 45 = H(Q1,170,).

o | O

D

SCIN\{i.p}
(112)
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From the above definitions, we can re-write (106b) (as we
did to obtain (96d)),

Z Z H( ufp,“ u7 1|Z;D’p7 Zl,p)
TG[Q N]Ul ’LUT—[)
-> ¥ > 1G] (1132)
relaN], o  SSONNMin)):
Sn{uz,...,ur—1}
N—2y  (N—r-—1
D ST DRI L Ak i 0 P ES
re[2:N] t€[0:N—2] (t)
t
=(N-1)! > o (113¢)
te[0:N—2]

By Fourier-Motzkin elimination on g, where ¢t € [0 : N — 2]
in (113c) with the help of (111) and (112), we obtain for each
he0:N-3],

Z Z H(Qr%, - ur1|Z1pa 1;0)
relzN] P —p
(N—1)!

< T 2. @

h+1)(h+2 D

(h+1)(h+2) L=

(N=1th (B _yB i P

2 (2N H@QulZ,) ). a4

Finally, by taking (114) into (106b), we obtain for each
hel0:N-3],

B yB 2 i | P
H(XQ) Z N (5 —W> —_h+2 Z H( 1,p|Z1,p)
pE[NJ\ {3}
> {Znew\w iy b (E_@)}
h+1)(h+2 h+2\2 N
pe[NI\{7} (h+1)(h+2) "
(115a)

B ¢B 2 j
>N(5 -2 ) - —— 1
= (2 N) h+2 Z,ql”’
pE[NJ\{4}
_ Z Z”E[N]\{p,i}q?,p_ h E_@
(h+1)(h+2) h+2\2 N ’

pe[NI\{:}
(115b)

where (115b) follows since H (
Hence, we prove (65).

. » Co

Zl7p|Z1,p) = H(Qzlm) - qip'
APPENDIX C

GENERALIZATION OF THE PROOF IN SECTION V-C

In Section V-C, we prove Theorem 6 for the case where
K/2 is an integer and 2N /K is also an integer. In the following,
we only consider the case where K/2 is not integer and ﬁ
is not an integer neither. The proof for the case where K/2 is an
integer and 2N /K is not an integer, or K/2 is not an integer and
LKNW is an integer, can be directly derived from the following
proof.

Recall M = N+ 2%, where y € [O, %] We first fix one user
k € [K] (assuming now k& = K). We can divide the users in
[K]\ {k} into two groups, and generate an aggregate user for
each group. Denoted the two aggregate users by ki and ko,
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respectively. The cache size of each aggregate user is MB x
%. In addition, the demanded files of aggregate users k1 and
ko are the union sets of the demanded files of users in [(K —
1)/2] and of users in [(K 4 1)/2: K — 1], respectively.

By denoting N; := [2N/K] |K/2], we divide files in [N]
into |2N/K] non-overlapping groups, each of which contains
|K/2] files. Each aggregate user demands one group of files.

We assume that the caches of aggregate users k; and ko are
Al and A}. The transmitted packets by aggregate users k; and
ks are denoted by X and X}, and the transmitted packets by
user k = K are denoted by X, such that from (X}, Xy, A})
aggregate user ki can decode the files in group 1 and from
(X7, X, A}) aggregate user ko can also decode the files
in group 1. We then construct the cache configurations of
aggregate users k1 and ko by a |2N/K]-ary tree, as we did in
Section V-B.

In the first approach, when we consider A% where
i € [[2N/K]] (cache of aggregate user ki where from
(X4, Xk, A}), the files in group i can be decoded), by con-
structing a genie-aided super-user as in (51) (the cache of this
super-user is denoted by A), by Fano’s inequality,

H(Fy,...,En|[{F;: £ €[Ny +1:N]})
< H(X])+ H(Xp)+ H(A|{F; : £ € [Ny +1:NJ}).
(116)
By considering one permutation of [[2N/K|], denoted by

u = (u1,...,uon/k|) Where u; = i, by the similar deriva-
tions of (70) and (71), we obtain

H(X]) + H(Xy) > (% - yNB) K/2]; (117)
H(X]) + H(X) > [K/2)B — K/2) 22 4 gf o ig)

By considering all permutations of [|2N/K ] where the first
element is ¢ to develop (116) as we did in (52e), and by the
similar derivation of (72), we obtain

H(X7) + H(Xy)

2 Gip
pell2N/K]I\ (i}
_ ([2N/K] - 1)(I2N/K] —2) 2yB
(h+ 1)(h +2) N
(12N/K] = 1)k (B yB

2N/K] — 2 5
1 2
(Rt D +2) | oimon

S
)h

[K/2]

i
QLp

C(2N/K—1)(2N/K—2)2yBK  (2N/K —

(h+1)(h+2) N 2 h+2
B yB)\K 2 [2N/K]| — 2
<§_W>5}+<h+2+(h+1)(h+2)>
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D

PE[[2N/K]\{i}
where (119a) follows since
N N K
2N/K| —1) |K/2| =N — 2N /K —
Ry 2N/ = 1) [K/2) = N = ey < (N/K = 1)5.
(120)

By considering all ¢ € [|2N/K]] to bound H(X1)+H (X}),
and all j € [|2N/K]] to bound H(X}) + H(X}), we sum
all inequalities as (119a) to obtain (by the similar derivation
of (73)),

R}, B+H(Xk)>m{<8—@>N— 4

g, Vhe[0:[2N/K]| 3], (119a)

N N h+2
2WBKY  (2N/K - 1)2N/K - 2) 4B K
<(2N/K_1) N 2> (h+1)(h+2) N 2
h(2N/K — 1) 2B
T T2 <B > } <h+2 ) I2N/K]
12N/K| — 2 > S
([2N/K]) (R +1)(h + 2)) 2N el RN
+ ) S g, |, vhelo:[2N/K] 3]

FE[2N/K]T pe[[2N/K]\{s}
(121)
Similarly, in the second approach, when we consider
(X%, Xi) and the same permutation as the one to derive (117)
and (118), by constructing a genie-aided super-user as in (59)
(the cache of this super-user is denoted by A’), by Fano’s
inequality,
H(Fy,...,En|{Fy: €[Ny +1:NJ})
< H(X)) + H(Xg)+ H(A|{F,: £ € [Ny +1:NJ}).
(122)

By the similar derivations of (74) and (75), we obtain

HO + 10 > (5 - 7 ) 1K/2)

[K/2) 22

(123)

H(X3) + H(Xy) > [K/2]B — — G, (124)

In addition, by considering all permutatlons to bound
H(X{) + H(X}) and all permutations to bound H(X}) +
H(X}), we sum all inequalities to obtain (by the similar
derivation of (76)),

RLB+ H(X})

N1 h (% - ].) 2yB K
>—<{NB-2yB— ————=(B——— | =
=N { Y (h+2) N )2
2 |2N/K]| — 2
h+2 )I2N/K] (A +1)(h+2) |2N/K]

Bot D D
i€[3] pe[ R\ (i}

i
QI,p ’
% pe| z” N}

Vhe[0: [2N/K] —3]. (125)
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By summing (117) and (123), summing (118) and (124),
and summing (121) and (125), we obtain

R: B+ H(X) > (B - %) 1K/2] ; (126a)
R:. B+ H(X}y) > (28 - %) 1K/2); (126b)
R}.cB+ H(X})
> % {NB —2yB — }%2 ((2N/K - 1)%8 ;)

(2N/K — 1)(2N/K — 2) 2yB K
 (h+1)(h+2) N 2
—% <B—%> g} Vhe[0: [2N/K] —3].

(126¢)

Finally we consider all k& € [K] and sum inequalities
as (126), to obtain (recall that R} .B >}, - H (X)),

N K 2yB
R8> e (850 e
LAY
=t (- 0) 3 (27
R, B > K (25 6yB> 1K/2]
= 2TK/2]
K2 6yBY K
= ot (2850 5 (2
R% B> 2“’:/2] Ny {NB 2B -
2yBKY (2N/K —1)(2N/K — 2) 2yB K
((QN/K_” N 2>_ h+D)(h+2) N 2
h(2N/K — 1) 2B\ K
 (h+2) (B_T> 5}
_ LK/2] |2N/K] {NB_2 B _2
[K/2] 2N/K h+t2
<(2N/K_1)2yBK> (2N/K - 1)(2N/K = 2) 2yBK
N 2 (h+1)(h+2) N 2
h(2N/K — 1) 2B\ K . -

(127¢)

where (127¢) comes from (recall that Ny := [2N/K]| [K/2]),

K N K 2N/KJ[K/2]  [K/2] [2N/K]
2[K/2] N~ 2[K/2] N T [K/2] 2N/K
(128)

Hence, we prove Theorem 6.

APPENDIX D
PROOF OF THEOREM 2

We first provide a direct upper buoungi oNf the achieved load of
(t)f( f ) < (t) _ U— i+l
( [§] [§]

Scheme A in Theorem 1, since < ;
t—1 t—1 )
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Lemma 3: The achieved load of Scheme A in Theorem 1
is upper bound by the lower convex envelop of (N/K, N) and

N+¢t—1 U—-t+1
( tiel + >,Vt€[U+1]. (129)
K t
We then introduce the following lemma, whose proof is in

Appendix E.

Lemma 4: The multiplicative gap between the lower con-

N+f1 1 U—t141
t1

[U], and the lower convex envelop of the
K_/) where t € [2 : K], is at

vex envelop of the memory-load tradeoff (
where t1 €

memory-load tradeoff ( K T
most 3 when M > 2},
We then prove the two cases in Theorem 2, where N > K

and N < K.

A. N >K

1) Converse: It was proved in [9] that for the shared-link
caching model with N > K, the lower convex envelope of

the corner points (%, % , where ¢t € [0 : K], achieved by
the MAN caching scheme in [4] is order optimal to within a
factor of 2. In addition, it was proved in [11] that these corner

points are successively convex. Hence, when M > 2N/K, the

lower convex envelop of ('}'(t, K= ), where t € [2 : K] is order
optimal to within a factor of 2. We will also use this converse

in our model. Hence, for M € [2N/K, N], R* is lower bounded

by the lower convex envelope ( %, % , where ¢t € [2: K].
2) Achievability: From Lemma 4, it can be seen that from
the proposed scheme in Theorem 1, we can achieve the lower

Nt 3(K—=t)
convex envelop of the memory-load tradeoff (?, t+—1)

where ¢ € [2: K].
As a result, the proposed scheme in Theorem 1 is order
optimal to within a factor of 6 when N > K and M > %

B. N <K

1) Converse: It was proved in [36] that for the shared-link
caching model with N < K, the lower convex envelope of the
corner points (0, N) and (%, %2 where ¢ € [K], achieved
by the MAN caching scheme in [4] is order optimal to within
a factor of 4.

Since the corner points (%, % where ¢ € [K], are
successively convex, the lower convex envelop of the MAN
caching scheme for N < K is as follows. There exists one
to € [K], such that the lower convex envelop of the MAN
caching scheme for M € [0, N¢2/K] is the memory-sharing

Nty K-t
between (0,N) and (727 )

envelop for M € [N¢2/K, N] is the lower convex envelop of
the successive corner points (&, % where ¢ € [ta : K].
In addition, it is obvious that ¢ is the maximum value among

2 € [K] such that the memory-sharing between (0,N) and

Nz K-z
K z+1

, while the lower convex

at the memory M’ = w leads to a lower

load than % More precisely, if we interpolate (0,N)
and (N—If,';—ﬁ where x € [K] to match M’ = N(m D the

achieved load 18
NI NE -1

Nz
T K

(K=z)(z—-1) N
z(r+1) T

N =
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Hence, we have

(K=z)(z—=1) N K-z+1
ty 1= —_— =< — 130
= e (300
2K-N+1
-5 (130b)

We then interpolate (0, N) and (%, ';j:f) to match M; =

N/K, to get the memory-load tradeoff

N — K—to
(M1, Ry) = <g N-— —L2+L ) : (131)

ta
Hence, it is equivalent to say that the lower convex envelop
of the achieved memory-load tradeoffs by the MAN caching
scheme for M > N/K also has two regimes.

HDM e [%,%} The lower convex envelop is the
memory-sharing between (M, R) and (%, 'f;:f)

2) M € [B2 N]. The lower convex envelop of the MAN
scheme is the lower convex envelop of the corner points
N %), where ¢ € [ta : K].
Since the MAN scheme is order optimal to within a factor of
4, R* is lower bounded by the lower convex envelope of the
corner points (M, %) and (%, ﬁ), where t € [t5 : K].
2) Achievability: Let us first focus on M = N/K. The
achieved load by the proposed scheme in Theorem 1 is N.
In the following, we will prove N < 2R;. More precisely,
_ K=ty
Barl
2
2N(ta + 1) — 2(K — t2) — Nta(t2 + 1)
to (tg —+ 1)
~ =Nt3+ (N+2)t —2(K—N)
o to (tg —+ 1)
—ta(Nta =N —2) —2(K—N)
to (tQ + 1)
—(Nty — N —2) — 2N

_ ta
= C¥S)) . (132)

We consider the following two cases.
1) to = 1. From (132), we have

N—-2R; =2

2—-—2(K—N
N—2R1:% <0, (133)
which follows K > N.
2) to > 1. From (132), we have
—(2N—-N-2) — M
N —2R; < | <0, (134

which follows N > 2 and K > N.

Hence, from the proposed scheme in Theorem 1, we can
achieve (My,2R;). In addition, from Lemma 4, it can be
seen that from the proposed scheme in Theorem 1, we can
achieve the lower convex envelop of the memory-load tradeoff

(%’ 3(;:_*1‘5)) where t € [ta : K].

As a result, the proposed scheme in Theorem 1 is order
optimal to within a factor of 12 when N < K.
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APPENDIX E
PROOF OF LEMMA 4
: : Nt K—t
It was proved in [11] that the corner points (?, f+—1)
where ¢ € [0 :

K] are successively convex, i.e., for each
memory size M € [

%,w where ¢ € [0 : K — 1], the
lower convex envelop is obtained by memory-sharing between

(M @) and (N(t+1)’K—t—1

K> Tl K T2 ) Hence, in order to prove

Lemma 4, in the following we prove from (%, U%ll“)

where t; € [U], we can achieve (%, 3 ('f;f)) for each
tel2:K].
We now focus on one t € [2: K]. We let 1 = N(t — 1) +
1 such that the memory size is
N+t —1 N+NE—1)+1-1 Nt

K K K (135)
The achieved load is
U—tp+1 U= YD
ToU(t—1

b SR+
_U(K—l)—U(t—l)
S UE-1)+(K=1)
B K—t
-1+ KL

K—t
< -
—t—-1

K-t
<3—— 136
<37 (136)

where (136) comes from ¢ > 2. Hence, we prove the proof of
Lemma 4.
APPENDIX F

PROOF OF COROLLARY 1

Recall that for the two-user system, the achieved cor-
ner points of Scheme A are (%, @), where
t € [N + 1]. The achieved corner points of Scheme B

N N’ N(N—1)
are (§+2(N+€’71)’(t’+1)(N+t’71)) and  (N,0), where

t'ef0:N—-1].
To prove Scheme B is better than Scheme A for the two-user

system, we prove that for each ¢t € [N], by memory-sharing
Nt N(N—1)

1) (t’+1)(N+t’71)) and (N,0), where

N+t—1 N—t+1)

2 0t

between (% + 5N
t' =t — 1, we can obtain (
we let o = W We have
N Nt/
N 1—a)N
O‘(z +2(N+t’—1)) -9

. More precisely,

CINHE - DN- NN 1) P 1)

TTONN—D) 2(N+r—1) T N(N=1)

N2 - D(N—t) (1)

B 2(N —1) N-1

_ (N=D)(N-?)

 2(N-1)

_w; (137)
N(N — 1) CN—# N—t+1

TrnNrr—n T 0=gT g s

(138)
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APPENDIX G
PROOF OF THEOREM 5

A. Optimality in Theorem 5

When N = 2, it can be easily checked that the con-
verse bound in Theorem 4 is a piecewise curve with corner
points (%,N), (%, %) and (N,0), which can be achieved
by Scheme B in (10). Hence, in the following, we focus on
N > 2.

Recall that M = % +y. For0 <y < %, from the converse

bound in (11) with A = 0, we have

N dy+ (N—1)h
RiZN -2y - ===
R2(N — 1) — N(N — 3) + h(N + 1) 2y
(h+1)(h +2) N
=N-2y—2y—y(N—23)
— N—y(N+1). (139)

In other words, when % <M< %, the converse bound on
Ry in (139) is a straight line between (§,N) and (M2, ML),
In addition, Scheme B in (10) achieves (§,N) with ¢’ = 0,
and (B N-L) with ¢/ = 1. Hence, we prove Scheme B
is optimal under the constraint of uncoded cache placement
when % <M< %
For 2 < M < 2N (e, N <y < Ny h
3 < < T (e, § <y < ), from the converse

bound in (12)

6 6M
R;22—Wy:5—w. (140)
By noticing that % > % when N > 3, from (140), it can
be seen that when M = ';'é;’,t‘:g)) , RE > 2NN73, coinciding with

Scheme B in (10) with ¢ = N — 2. When M = 3} R* > 1,
coinciding with Scheme B in (10) with ¢ = N — 1. Hence,
we prove that Scheme B is optimal under the constraint of
uncoded cache placement when % <M< %.

Finally, for 3} < M < N (e, § <y < ), from the
converse bound in (13), we have
2 2M
A W

Ri>1-—
v N N

(141)

From (141), it can be seen that when M = 3N R% > 1
coinciding with Scheme B in (10) with ¢ = N — 1. When
M = N, R% > 0, which can be also achieved by Scheme B.
Hence, we prove that Scheme B is optimal under the constraint

of uncoded cache placement when % <M <N.

B. Order Optimality in Theorem 5

From Theorem 4, we can compute that the proposed
converse bound is a piecewise curve with the corner
points

N N/ (B —1)(N+ 1)+ (N— 1N
<2+2(N+2h’—2)’ (W + 1)(N + 2h' — 2) )
Wh' € [0: N — 2], (142)
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(2},1), and (N,0)." Note that the proposed converse

bound is a piecewise linear curve with the above cor-
ner points, and that the straight line in the memory-load
tradeoff between two achievable points is also achievable
by memory-sharing. Hence, in the following, we focus on
each corner point of the converse bound, and characterize
the multiplicative gap between Scheme B and the converse
bound.

Note that in (142), when b/ = 0, we have (%, N); when
h! = 1, we have (N;rl, %), when A/ = N — 2, we have
(%, 1). In addition, in Appendix G-A, we proved the opti-
mality of Scheme B under the constraint of uncoded cache
placement when M < % or when M > %. Hence, in the
following, we only need to compare Scheme B and the corner
points in (142) where A’ € [2: N — 2] and N > 4.

In Corollary 1, we show that Scheme B is better than
Scheme A. We will prove the multiplicative gap between
Scheme A and the corner points in (142) where b’ € [2 : N—2]
and N > 4, is no more than 3.

Recall that the achieved points of Scheme A for the two-user
system are

<N+t—1 N—-t+1

R >,Vt6[N+1]. (143)

We want to interpolate the achieved points of Scheme A

to match the converse bound at the memory size
M = % + m where i’ € [2: N — 2]. By computing
N+¢t—-1 N n NR/
2 2 2(N+2n -2)
NR/
t=—"7—"7"-—+1 144
Tl T Nv2m 2 (149

and observing N‘f“ is non-increasing with ¢, it can be seen

that the achieved load of Scheme A at M = % + 2(,\,}:‘27}};,72)
is lower than

N - g+ 1 N2+ (N4 20 - 1)

R — (145)
NE
NT2h =2 NA/
By comparing R’ and “’C}Zﬂ“{{,ﬁ:ﬂ(}:; N e have
R/
(W=D (N+h)+(N—DN
D (NT2h—2)
NZ+ (N+2)(h —1))(M +1)(N+2hr" —2

(NN 20— D)+ 1) ) e

NA/ (W —1)(N+ h) + (N = 1)N)

2The first corner point in (142) is (%, N) with A’ = 0, and the last
corner point is (N, 0). For each A’ € [N — 3], we obtain the corner point
in (142) by taking the intersection between the converse bounds in (11) with
h = h’ —1 and h = h'. The corner point in (142) with A’ = N — 2,
is obtained by taking the intersection between the converse bounds in (11)

with A = N — 3 and the converse bound in (12). The corner point %, %
is obtained by taking the intersection between the converse bounds in (12)
and (13).
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In addition, we compute

3NR/((R" = 1)(N+ ') + (N = 1)N)
— (N + (N +2)(h' — 1)) (B + 1)(N + 21" - 2)
= 2N3R' — N3 — 6N2h’ — 3NR” + (N — 4)n”

+3N% 4 2NR/ + 41/ (W +1) — 4. (147)

Now we want to prove the RHS of (147) is larger than 0 for
N >4 and A’ € [2: N — 2]. More precisely, when N = 4 and
h' = 2, we can compute the RHS of (147) is equal to 36;
when N = 5 and i’ = 2, the RHS of (147) is equal to 138;
when N = 5 and A’ = 3, the RHS of (147) is equal to 216.
Now we only need to consider N > 6 and A’ € [2: N — 2].
When N > 6 and 1’ € [2: N — 2], we have

ON3R — N3 — 6N2R/ — 3N + (N — 4)B" + 3N2

+2NA + 4R/ (W +1) — 4

> 2N®h' — N® — 6N2h/ — 3NR”

= (N®1' — 6N2R/) + (0.5N3K — 3NR”) + (0.5N3h/ — N3)

> 0. (148)
Hence, we prove

3Nh'((h’ —1)(N+2n")+(N-— 1)N)

— (N>+(N+2)(K' 1)) (K’ +1)(N+ 20" —2) > 0.  (149)

By taking (149) into (146), we prove that the multiplicative
gap between Scheme A and the corner points in (142) where
h' €[2:N—2] and N > 4, is no more than 3.

In conclusion, we prove that Scheme B is order optimal
under the constraint of uncoded cache placement to within a
factor of 3.

APPENDIX H
PROOF OF THEOREM 7

In this proof, for the achievability, we consider the load in
Lemma 3, which is an upper bound of the achieved load of
Scheme A.

We first focus on the case where N < 6K, and compare
Scheme A with the shared-link caching converse bound under
the constraint of uncoded cache placement (without privacy)
in [11]. Recall that when M € [N N], the converse bound

K>
. . . . . . Nt K*t
in [11] is a piecewise curve with corner points { ¢, )

where ¢ € [K]. It was proved in Appendix D-A that Scheme A

K— .
?lt), where t € [2: K].

In addition, when M = %, the converse bound in [11] is R >
K—1 while the achieved load of Scheme A is

can achieve the corner points (%, 3

2

N <6K <9(K—-1), when K > 3.

Hence, the multiplicative gap between Scheme A and the
converse bound in [11] at M = % is no more than 18. So we
prove that N < 6K, Scheme A is order optimal under the
constraint of uncoded cache placement within a factor of 18.

In the rest of the proof, we focus on the case where N > 6K.
It was proved in Theorem 2 that when N > K and M > 2N,
Scheme A is order optimal to within a factor of 6. Hence,

in the following we consider % <M< %, which is then

5725

divided into three memory size regimes, and prove the order
optimality of Scheme A separately,
N NAq

N
Regi 1l:— <M< — 4+ ———MM
ceime L =M S e SN K, — K

where hq := {%MJ ; (150a)
Regime2:g—|—2(N+NK—f;;_K)M<

g + m where hy 1= {% - ZJ . (150b)
Regime 3 : g+ 2(N+NK—222_K) <M< 27 (150¢)

K(N—4K+8)
10 and hy := |2} —2| > 10. Thus we have h; < ho.
In addition, we have

Note that when N > 6K, we have hy := {WJ <

N Nho N N2l — 2
=t s < 2
K 2(N+Khy —K) = K = 2(N+K2Z - 2K -K)
4N
=—_. 151
3K (151)

Hence, the above memory regime division is possible.
From the converse bound in (14), for each h €

[0: |2N/K — 3]] we have,
N [K/2] |2N/K] 8y + h(2N — K)
S {N BT

e K/2] 2N/K
h2K(2N — K) — 2N(2N — 3K) + hK(K + 2N)
+ (h + 1)(h + 2)KN y}
6 8y + h(2N — K)
~ 13 {N B AT
h2K(2N — K) — 2N(2N — 3K) + hK(K + 2N)
+ i+ 1)(h + 2)KN

where (152) follows since K > 3 and N > 6K.
In Regimes 1 and 2, we will use (152) as the converse
bound. In Regime 3, we use the shared-link caching con-

verse bound under the constraint of uncoded cache placement
in [11].

y}7 (152)

A. Regime 1

It can be computed that the converse bound in (152) for
¥ <M < X+ m is a piecewise curve with the
corner points

N NA/
(R TN K —K)

6 K(h —1)(2N 4+ KR') + 2N(2N — K)
13 4(h +1)(N+ Kh' — K)

) s Vh/ S [0 : hl],
(153)

where b/ = 0 represents the first corner point where M = N /2,
and each corner point in (153) with A’ is obtained by taking
the intersection of the converse bounds in (152) between h =
h—1and h="0.
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For the achievability, we take the memory-sharing between
(R-N) and (W, U%f“), where 5 = 2K — 3. Notice
that

N+t3—1 N+2K—4 N 2K-14
K K = R + K (154)
In addition, we have
N Nhq N Nhq
— —_— = — P —— 1
KT 2N+Kh—K) K 2(NtKh—K) 1%
4(K=2)(N=K)
N N KN=akTs)"
<7t 4(K—2)(N—K (155b)
K 2(N+K I(((Nle(KJrB)) -K)
_N+ AN(K = 2)(N — K)
K 2((N — K)K(N — 4K + 8) + 4K(K — 2)(N — K))
(155c¢)
N 4AN(K —2)(N — K)
= — 1
KT T 2KN(N—K) (155d)
N (155¢)
TKTTK ©
where (155b) comes from W is increasing with
hi and hy < W From (154) and (155e), we can

see that this memory-sharing can cover all memory sizes in
regime 1.
When 1/ = 0, we have the corner point in (153) is (¥, %%)

213 )
while Scheme A achieves (%, N). Hence, the multiplicative

gap between Scheme A and the converse is 3.

6
For each h’ € [h1], we now interpolate Scheme A between
(M 1, Rl) - (N

>N) and (Mg, Ry) = (N+f3 Ntta—1 U—tatl t3+1)

t3

to match the corner point in the converse bound (M3, R3) =

+ NA' 6 K(h'—1)(2N+Kh')+2N(2N—K)
I(NFKh —

K)’» 13 4(h'+1)(N+Kh'—K)
c1se1y, by memory-sharing between (Mi,R;) and (M2, Ra)
with coefficient

My — M3

= M2_M =

) . More pre-

N(4K — h'K — 8) + 4K(h' — 1)(K — 2)
4(K = 2)(N + 'K — K)

(156)
such that aM; + (1 — a)Ma = M3, we get at M3 Scheme A

can achieve,
R, = aR1 + (1 - Oé)RQ
—12N + 8K?(W — 1) + K(N(8 — 1') —
42K = 3)(N + WK = K)

141/ +12)

(157)
In the following, we compare R’ and R3 to obtain
R’ 13N(R' + 1)
Ry 6(2K —3)(K(W — 1)(2N + KI/) + 2N(2N — K))
(12N + 8K?*(h' — 1) + K(N(8 — I') — 14h' +12)) .

(158)

Finally, we will prove

6R’ N(R +1)

13R; (2K — 3)(K(h' — 1)(2N + Kh') + 2N(2N — K))
(—12N + 8K?*(h' — 1) + K(N(8 — ') — 141" 4 12))
<8. (159)
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We can compute that

8(2K—3)(K(h' — 1)(2N+Kh/)+2N(2N — K))=N(h + 1)
(—12N+8K*(h — 1)+K(N(8 — h') — 14K + 12))

> 8(2K—3) (K(h' — 1)(2N+KR')+2N(2N — K))

—N(h' + 1) (12N + 8K*(h' — 1) + KN(8 — 1)) (160a)
= (322K —3) + 12(h' + 1) — K(8 — I/) (R + 1))N?

— (8K(R +1)(h —1) — 16(2K — 3)(h' — 2))KN

+8(2K — 3)K2h/ (W — 1) (160b)
> (32(2K — 3) + 12(h' + 1) — K(8 — &') (K + 1))N?

— (8(h' + 1)(W —1) — 16(K’ — 2))K®N

+ 8(2K — 3)K2H/ (W — 1), (160c)

where (160a) comes from A’ > 1 and (160b) comes from
K> 3.

Recall that N > 6K, and that ' < h; = {
10.

We first focus on ' = 9. If A’ = 9, it can be seen that
6K < N < %K. Hence, we have

4(K=2)(N—K
I(<(N—21(K+8))J <

8(2K — 3)K2h/ (W — 1) > §(2K —3)KNK/ (B’ — 1)

> ZKQNh’(h’ — 1) = 90K?N. (161)
We take A’/ = 9 and (161) into (160c) to obtain

8(2K=3)(K(h" — 1)(2N+KR')+2N(2N — K))=N(h" + 1)
(—12N+8K*(h — 1)+K(N(8 — 1) — 14K + 12))

> (74K + 24)N? — (640 — 112 — 90)K2N (162a)
> 74KN? — 438K2N (162b)
>0, (162¢)

where (162¢) comes from N > 6K.

We then focus on ' = 8. If K = 3, from (160c), we have
the RHS of (160c) becomes 204N (N — 18) 4+ 12096, which is
larger than 0 since N > 6K > 18. Now we consider K > 4.
From (160b), we have

8(2K—3)(K(h' — 1)(2N+KA)+2N(2N — K))—N(h' +1)

(—12N-+8K*(h — 1)+K(N(8 — h') — 14K + 12))

> (32(2K — 3) + 12(h' + 1) — K(8 — &') (K 4+ 1))N?
— (8K(h +1)(h —1) = 16(2K — 3)(h' — 2))KN  (163a)

> (32(2K — 3) + 12(h' + 1) — K(8 — &') (K 4+ 1))N?
— (8K(R' +1)(h — 1) — 20K(h" — 2))KN (163b)
= ((56 + 1" — Th')K + 12" — 84)N?
—(32+8 1" —20 W)K2N (163c)
> (56 + R — TH)KN? — (32 +8 1" — 20 K )K2N
(163d)
> 6(56+h" — 7TH)K2N — (3248 1" — 20 h/)K2N
(163e)
=0, (163f)

where (163b) comes from K > 4 and thus % > %,
and (163e) comes from N > 6K.
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Lastly, we consider 1’ € [7]. From (160c), we have

8(2K—3) (K(W — 1)(2N+KR')+2N(2N — K))=N(h' + 1)
(—12N+8K*(W — 1)+K(N(8 — 1) — 14K + 12))

> (32(2K — 3) +12(h' + 1) — K(8 — &') (K 4+ 1))N?

— (8(h +1)(W —1) —16(h' —2))K°N (164a)
= ((56 + B — Th')K + 121" — 84)N?

— (2448 K" —16 W)K2N (164b)
> (56 + h"" — 7H + 4’ — 28)KN?
— (2448 K" —16 K)K2N (164c)
> 6(28+ 1" — 3W)K2N — (24 + 8 " — 16 h/)K2N

(164d)

= (144 — 21" — 21)K3N (164e)
>0 (164f)

where (164c¢) comes from h' < 7 and K > 3, which lead to
121 — 84 > (4h' — 28)K, and (164d) comes from N > 6K,
and (164f) comes from A’ € [7].

In conclusion, we prove (159). In other words, under the
constraint of uncoded cache placement and user collusion,
Scheme A is order optimal to within a factor of % x 8 < 18 for
the memory size Regime 1.

B. Regime 2

Similar to the converse bound for Regime 1, it can be com-

puted that the converse bound in (152) for % + m <
M< R+ W};) is a piecewise curve with the corner
pomts

N NA/
<R+ 5N+ Ki/ —K)

6 K(h' —1)(2N + KA') + 2N(2N — K)
13 4(W +1)(N + Kh' — K)

> R Vh' € [hl : hg]
(165)

For the achievability, we take the memory-sharing among
the achieved points in (129), (%, %) where ¢ € [U+
1]. We want to interpolate the achieved points of Scheme A
to match the converse bound at the memory size M = % +

Q(NJFNKi}M where h’ € [hy : hg]. By computing
N+¢—1 N n NR/
K K 2(N+ KR —K)
NA'K
t=——7——— +1 166
TITANTRY K (166)
and observing % is non-increasing with t it can be seen

that the achieved load of Scheme A at M = K + 2(,\|+NK7}M
is lower than

NA/
U-— 2(N+K1h’ K) +1

NR/K
2(N+KA —K)

R =

(167)

. 6 K(h'—1)(2N+Kh)+2N(2N-K)
By comparing R’ and {3 100 +1) (NTKR —K) ,

we have (168), as shown at the top of the next page.
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Since K > 3, we have

/ _ | 4K=2)(N-K) 2(N - K) :

== { K(N— 4K+ 8) J = {N—4K+8J =
(1692)

W< hy = {Q—QJ <2 (169)

In the following, we will use (169) and N > 6K > 18 to
prove (170), as shown at the top of the next page.

We can compute that

8KNA'(K(h — 1)(2N + KR') + 2N(2N — K))

—4(N+ KK = K)(h +1)(2K*N(h' — 1)

+ K(2N? + 2N +2 1/ — 3NR' — 2) — 2N(N — 1))

> 8KNA'(K(h' — 1)(2N + KR') 4+ 2N(2N — K))

—4(N+ KK = K)(h +1)(2K*N(W — 1)

+ K(2N? + 2N + 2 1/ — 3NR' — 2))

= 8K(N — K) + 8K3N(h/ — 1) 4+ 4KN?(n' — 2)

+ 8KN(3N2R' — 4KNR' — N?)

+ AKR (3KNR” — 3KN — 2KA/ ) +4KNK” (3N — 2K — 2)

+ 8K2N + 16K2N2 + 8K2H + 8K2K" (171b)

> 8K(N — K) 4 8K3N(h' — 1) + 4KN?*(h' — 2)

+ 8KN(3N?h’ — 4KNR' — N?)

+ AKR (3KNR” — 3KN — 2KK") + 4KNR” (3N —2K —2)

(171a)

(171c)
> 8KN(3N2h' — 4KNA' — N?)

+ 4AKK (3KNA — 3KN — 2KR'") (171d)
= 8KN(N?A' — N?) + 8KN(2N?h" — 4KNA')

+ AKR (KN = 3KN) + 4KK/ (2KNB — 2KK*)  (171e)
>0, (171f)

where (171d) and (171f) come from N > 6K and A’ > 2.

In conclusion, we prove (170). In other words, under the
constraint of uncoded cache placement and user collusion,
Scheme A is order optimal to within a factor of % x8 < 18 for
the memory size Regime 2.

C. Regime 3

When % <M< % the converse bound in [11] is a straight

line between (N %) and (%, %) which is denoted by

K»
R 117(M). Hence, the converse bound in [11] for Regime

3 where ¥ + m <M < 2V is a straight line. When
M = 2'\' , we proved in Appendix D A that the multiplicative
gap between Scheme A and the converse bound in [11] is no

more than 6. Hence, in the rest of this proof, we focus on the

memorysizeM:%—ngMg%.
Recall that hy := L%— Jg%—z we note that
N, N N N(R-2)
K 2(N+Khy—K) =~ K 2{N+K(%—)—K}
4N
= 3K (172)
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R 134(N +Kh' — K)(A' + 1) (2K2N(R' — 1) + K(2N2 + 2N + 2 &’ — 3NA/ — 2) — 2N(N — 1))

— = . (168)
Ry 6 KNR/ (K(R' — 1)(2N + KA') + 2N(2N — K))
6R" 4(N+ KK — K)(h' +1)(2K3N(R' — 1) + K(2N? + 2N + 2 i/ — 3NA’ — 2) — 2N(N — 1)) . 170
= < 8.
13R3 KNI/ (K(R' — 1)(2N + KR/) + 2N(2N — K))
Hence, the load of the converse bound in [11] at M = REFERENCES
N Nho . . . / _ 4N
w + smri=—ws 1S strictly higher than the one at M" = 7.
K 2(N+K{I’2_K) y g . , AN - 3K [1] K. Wan, H. Sun, M. Ji, D. Tuninetti, and G. Caire, “Device-to-device
By computing the converse bound in [11] at M" = 3K 18 private caching with trusted server,” in Proc. IEEE Int. Conf. Commun.
(ICC), Jun. 2020, pp. 1-6.
, 2K—-1 1K=2 4K — 5 [2] K. Wan, H. Sun, M. Ji, D. Tuninetti, and G. Caire, “Novel converse for
R [11] (M ) = g D) g 3 = 9 s (173) device-to-device demand-private caching with a trusted server,” in Proc.
IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2020, pp. 1705-1710.
N Nho [3] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role
at M = KT 2(NTKhy—K)> WE have of proactive caching in 5G wireless networks,” IEEE Commun. Mag.,
vol. 52, no. 8, pp. 82-89, Aug. 2014.
, 4K — 5 [4] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
Ri.c = Run(M) > Rpup(M) = — (174) IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856-2867, May 2014.
[5] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-
. o . . tradeoff f hi ith ded fetching,” IEEE Trans.
For the achievability, it was proved in (167) that the E;m;}gorgé \i())l. 6: rncoéczmsp‘wllzg lu_nlcz%g Fgr]: gocléflg rans
achieved load of Scheme A at M = % + W is lower [6] K. Wan and G. Caire, “On coded caching with private demands,” IEEE
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[7]1 S. Kamath, “Demand private coded caching,” 2019, arXiv:1909.03324.
U— Nh2K +1 [8] C. Yapar, K. Wan, R. F. Schaefer, and G. Caire, “On the optimality
R = 2(N+Khz—K) (175a) of D2D coded caching with uncoded cache placement and one-shot
% delivery,” IEEE Trans. Commun., vol. 67, no. 12, pp. 8179-8192,
2~ Dec. 2019.
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(6K — 8)N? — (8K — 11)KN + 6N — 8K pp. 161-165.
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