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On Extremal Rates of Storage Over Graphs
Zhou Li , Member, IEEE, and Hua Sun , Member, IEEE

Abstract— A storage code over a graph maps K independent
source symbols, each of Lw bits, to N coded symbols, each of
Lv bits, such that each coded symbol is stored in a node of the
graph and each edge of the graph is associated with one source
symbol. From a pair of nodes connected by an edge, the source
symbol that is associated with the edge can be decoded. The ratio
Lw/Lv is called the symbol rate of a storage code and the highest
symbol rate is called the capacity. We show that the three highest
capacity values of storage codes over graphs are 2, 3/2, 4/3.
We characterize all graphs over which the storage code capacity
is 2 and 3/2, and for capacity value of 4/3, necessary condition
and sufficient condition (that do not match) on the graphs are
given.

Index Terms— Capacity, extremal rates, storage codes.

I. INTRODUCTION

MOTIVATED by the heterogeneity of modern distributed
storage systems, a storage code problem over graphs

is introduced in [1] and [2], where a storage code maps
K independent source symbols, W1, · · · , WK to N coded
symbols, V1, · · · , VN , and the coded symbols are stored in
the node set of a graph {V1, · · · , VN} (so that Vn denotes
both the coded symbol and the node). The heterogeneous data
recovery pattern is captured by the edges of the graph, where
each edge {Vi, Vj} is associated with one source symbol Wk

and from (Vi, Vj), we can decode Wk. As the structure of the
graph can be very diverse, versatile distributed storage and
data access requirements can be accommodated. An example
of the storage code problem over a graph is given in Fig. 1.
The metric of pursuit is the capacity C of a storage code
over a graph, i.e., the highest possible symbol rate, defined as
Lw/Lv , where Lw(Lv) is the number of bits contained in each
source (coded) symbol and Lw/Lv represents the number of
source symbol bits reliably stored in each coded symbol bit.

The graph based storage code problem is not new in the
sense that it can be equivalently transformed to a network
coding problem [1], [2], [3], [4] and adding further security
constraints (i.e., beyond desired data decodability, leakage
about other source symbols is prevented), it is intimately
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Fig. 1. An example graph of a storage code problem with K = 3 source
symbols and N = 10 coded symbols, whose capacity turns out to be 4/3
(refer to Theorem 7. See Fig. 11 for a code construction).

related to conditional disclosure of secrets [5], [6], [7], [8] and
secret sharing [9], [10]. What is new is the view brought by
[1] - finding extremal networks/graphs. Instead of first fixing
the network/graph and then finding its highest rate, we focus
on the extremal (highest) capacity values and aim to find
the networks/graphs whose capacity is equal to the extremal
values (see Fig. 2). This complementary view is useful in
identifying critical combinatorial graph structures that limit
the rate and in separating more tractable graph classes in
terms of capacity characterization. Considering that networks
are becoming more and more heterogeneous and solving each
network instance becomes infeasible and impossible (as hard
instances that require non-linear codes for achievability or non-
Shannon information inequalities for converse are well known
[11], [12], [13]), this extremal rate and extremal network
approach might be a fruitful direction to produce new results
and insights.

In this work, we start from the highest possible capacity
values and for the two highest rates - 2 and 3/2, all extremal
graphs with corresponding extremal capacity values are easily
characterized. For extremal rate of 2, absolute no interference
is allowed as Lw = 2Lv , i.e., a pair of nodes can just store the
desired source symbols. As long as there exists interference,
the maximal capacity value drops to 3/2, the next extremal
rate, and all storage code instances with capacity 3/2 only
require intra-source symbol coding, i.e., mixing of symbols
from the same source symbol. When rate of 3/2 cannot be
achieved, the next highest capacity value is shown to be 4/3,
which is our main focus and the corresponding graphs turn
out to be highly technical. We identify necessary condition
(converse required) and sufficient condition (achievability
provided) for graphs with storage code capacity 4/3 (see
Fig. 2). The converse is based on delicate arguments on the
intimate relation between the maximum amount of interference
(undesired source symbols) allowed and the minimum amount
of desired source symbols needed. The achievable scheme uses
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Fig. 2. The extremal rate and network approach of this work and results obtained.

vector linear codes that carefully control the alignment of
interfering source symbols and the independence of desired
source symbols. The conditions are stated in terms of the
presence or absence of critical nodes and edges of the graph,
whose combinatorial structure places constraints on the code
rate.

A. Related Work and More Background

Before proceeding to the problem statement section, we give
a more detailed account of related work using our terminology
so that our paper is also put in perspective. In classical
work on algebraic storage codes for distributed storage (e.g.,
RAID architectures [14], [15]), the studied regime is when the
symbol rate is 1, i.e., Lw = Lv (each source symbol has the
same size as each coded symbol) and the recovery constraint
is placed uniformly on all source symbols, e.g., minimum
distance constraint (number of erasures that can be tolerated
for no loss in recovering all sources). In contrast, we allow to
vary the symbol rate (which is our main figure of merit) and
our recovery constraint is stated with respect to each source
symbol (instead of all) so that each source symbol may have
different access patterns, in line with requirements of modern
heterogeneous storage systems.

More recently, the distributed storage repair problem
attracted much attention which mainly includes two lines of
work - regenerating codes [16], [17] and locally repairable
(recoverable) codes [18], [19], [20]. Both lines focus on how to
efficiently recover lost (erased) coded symbols (server) while
we focus on the recovery of source symbols. Regenerating
codes use the communication cost (repair bandwidth or
more generally the tradeoff between the storage cost and
communication cost) as the performance metric while locally
repairable codes use the number of coded symbols contacted
during repair (called locality) as the performance metric. While
early work considers the symmetric case where the number
of coded symbols contacted is a constant, some recent work
brings graphical topology into the picture [21], [22], [23],
[24] where graphs are used to model the network connectivity
(which links or coded symbols can be used for recovery).
Note that these graphs, which describe coded symbol repair
constraint, are different from ours, which describe source
symbol recovery constraint although a similar term - storage
codes on graphs is used.

Last but not least, locally decodable codes [25], [26], studied
more in computer science literature, tackle how to efficiently

recover source symbols by contacting a few coded symbols.
Similar to classical coding theory work, the focus is mainly
on minimizing the code length while fixing the symbol rate.
Instead we focus on maximizing the symbol rate for fixed code
length. The only locally decodable codes work that studies the
symbol rate, to the best of our knowledge, is [27], where the
recovery constraint is only on the number of coded symbols
contacted and not specified by a graph.

II. PROBLEM STATEMENT AND DEFINITIONS

Consider K independent uniform source symbols
W1, · · · , WK of size Lw bits each.

H(W1, · · · , WK) = H(W1) + · · ·+ H(WK),
Lw = H(W1) = · · · = H(WK). (1)

Consider N coded symbols V1, · · · , VN , each of Lv bits.
Our interest lies in the relative size of Lw, Lv (see (3)) and
coding over arbitrary finite fields is allowed, so Lw, Lv can
take arbitrarily large values (that are not necessarily integers).

The source symbol recoverability constraint on the coded
symbols is specified by a graph G = (V, E , t), where the
node1 set V = {V1, · · · , VN}, the edge set E is a set
of unordered pairs from V , and the function t associates
each edge {Vi, Vj} ∈ E with a source symbol Wk, k ∈
{1, 2, · · · , K} ≜ [K], i.e., t({Vi, Vj}) = Wk. For each edge
{Vi, Vj} ∈ E such that t({Vi, Vj}) = Wk, we can decode Wk

with no error, i.e.,

H(Wk|Vi, Vj) = 0 if t({Vi, Vj}) = Wk. (2)

Isolated nodes are trivial as they are not connected to any edges
and thus involve no constraints. Without loss of generality,
we assume in this work that any graph contains no isolated
nodes.

A mapping from the source symbols W1, · · · , WK to
the coded symbols V1, · · · , VN that satisfies the decoding
constraint (2) specified by a graph G = (V, E , t) is called a
storage code. The (achievable) symbol rate of a storage code
is defined as

R ≜
Lw

Lv
(3)

1Note that we abuse the notation by using Vn to denote both a coded
symbol and a node of the graph, which will not cause confusion.
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and the supremum of symbol rate is called the capacity,
C ≜ supLw

Lw/Lv = limLw→∞ Lw/Lv , as block codes are
allowed.

Next we introduce some graph definitions to facilitate the
presentation of our results.

A. Graph Definitions

Definition 1 (Wk-Edge, Wk-Path, and Wk-Component):
An edge that is associated with Wk is called a Wk-edge.
A sequence of distinct connecting Wk-edges is called a
Wk-path. A Wk-component is a maximal subgraph wherein
every edge is a Wk-edge and every two nodes are connected
by a Wk-path (an isolated node is defined as a trivial
component).

For example, in Fig. 1, {V1, V2} (also all solid
black edges) is a W1-edge; the sequence of W1-edges
({V2, V1}, {V1, V5}, {V5, V6}) is a W1-path and also a W1-
component (V2, V1, V5, V6 are connected by W1-edges/paths
and there are no more W1-edges to extend the connectivity).

Definition 2 (Internal Edge and Residing Path): A Wk-
edge that connects two nodes (say Vi, Vj) in a Wk′ -path,
k′ ̸= k is said to be internal and the Wk′ -path with end nodes
Vi, Vj is called the residing path of the internal Wk-edge
{Vi, Vj}.

For example, in Fig. 1, the W2-edge {V2, V6} is an
internal edge as it connects two nodes V2, V6 in the W1-path
({V2, V1}, {V1, V5}, {V5, V6}), which is then its residing path.

Definition 3 (M -Color Node): A node whose connected
edges are associated with M different source symbols is called
an M -color node.

For example, in Fig. 1, V1, V9 are 1-color nodes and
V5, V6 are 2-color nodes.

We need to further distinguish two types of 2-color nodes,
defined as follows.

Definition 4 (Normal 2-Color Node and Wk-Special
2-Color Node): For a 2-color node V that is connected to
Wk-edges and Wk′-edges, k ̸= k′, if the nodes connected to
V through Wk-edges are all 1-color, then V is called a Wk-
special 2-color node (or just a special 2-color node when Wk

does not need to be highlighted). A 2-color node that is not
special is said to be normal.

For example, in Fig. 1, the 2-color node V5 is W2-special
as V9 is the only node that is connected to V5 through
W2-edges and V9 is 1-color; the 2-color node V6 is
normal as it is connected to a 2-color node V2 through a
W2-edge and is connected to a 2-color node V5 through a
W1-edge.

Definition 5 (Graph Class GC=R∗ ,GC≥R∗ ,GC<R∗ ):
The set of graphs whose storage code capacity is equal
to\no smaller than\strictly smaller than R∗ is denoted by
GC=R∗\GC≥R∗\GC<R∗ .

III. RESULTS

Our results are presented in this section, along with
illustrative examples and observations.

Fig. 3. (a) An example graph G ∈ GC=2. W1 = (a1, a2), W2 = (b1, b2),
and each Ai\Bj is a generic linear combination of (a1, a2)\(b1, b2).
(b) An example graph G ∈ GC=3/2. W1 = (a1, a2, a3), W2 = (b1, b2, b3),
and each Ai\Bj is a generic linear combination of (a1, a2, a3)\(b1, b2, b3).
(c) An example graph G ∈ GC<3/2 where two 2-color nodes V1, V2 are
connected.

A. Extremal Graphs With Storage Code Capacity 2, 3/2:
GC=2,GC=3/2

The three highest extremal capacity values and the full
extremal graph characterization for the two highest extremal
capacity values are established in the following theorem.

Theorem 1: [GC=2,GC=3/2] The three highest storage code
capacity values are 2, 3/2, 4/3. The storage code capacity of
a graph is equal to 2 (G ∈ GC=2) if and only if every node is
1-color. The storage code capacity of a graph is equal to 3/2
(G ∈ GC=3/2) if and only if all nodes are 2-color or 1-color
(and 2-color nodes exist) and there are no connected 2-color
nodes.

The proof of Theorem 1 is fairly straightforward and is
deferred to Section IV-A. An example of the achievable
scheme (code construction) is shown in Fig. 3.(a) and
Fig. 3.(b). An example graph that does not belong to GC=2 ∪
GC=3/2 is shown in Fig. 3.(c). An intuitive explanation on
why the rate is upper bounded by 4/3 is as follows. V3 can at
most contribute Lv bits of information about W2. {V1, V3} is
a W2-edge so that V1 has to provide at least the remaining
Lw − Lv bits of information about W2, leaving at most
Lv − (Lw −Lv) = 2Lv −Lw bits of room for W1. The same
reasoning applies to V2. Finally, {V1, V2} is a W1-edge so that
the size of the remaining room must accommodate the Lw bits
of W1, i.e., 2(2Lv − Lw) ≥ Lw so that R = Lw/Lv ≤ 4/3.

B. Extremal Graphs With Capacity 4/3: GC=4/3 With K = 2
Source Symbols

Next we focus on the storage code capacity value of 4/3,
whose extremal graph characterization turns out to be highly
non-trivial. In this section, we consider the cases where there
are K = 2 source symbols to illustrate the results in a simpler
setting and defer the generalizations to more than 2 source
symbols to the next section.

The obtained necessary and sufficient conditions are
rather involved. To make the results more clear we give a
summarizing chart in Fig. 4.

1) Sufficient Condition: Internal Edge and 1-Color Node:
A crucial graphic structure for the achievability of rate 4/3 is
the absence of internal edges (or when they exist, the presence
of 1-color nodes in their residing paths). This result is stated
in the following theorem.
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Fig. 4. A summary of sufficient and necessary conditions of GC=4/3 with
K = 2.

Fig. 5. Two example graphs G ∈ GC≥4/3 and code constructions for rate
4/3. W1 = (a1, a2, a3, a4), W2 = (b1, b2, b3, b4) and each Ai\Bj is a
generic linear combination of (a1, · · · , a4)\(b1, · · · , b4).

Theorem 2: [Sufficient Condition of GC=4/3] With K =
2 source symbols, a graph G ∈ GC≥4/3 if G contains no
internal edge or for any internal edge, its residing path contains
a 1-color node.

The proof of Theorem 2 is presented in Section IV-B.
To illustrate the idea, two examples are shown in Fig. 5,
where Example (a) contains no internal edge; Example (b)
contains two internal edges {V2, V3} and {V3, V5}. Internal
W2-edge {V2, V3} resides in W1-path ({V2, V1}, {V1, V3}),
which contains 1-color node V1 and internal W1-edge {V3, V5}
resides in W2-path ({V3, V2}, {V2, V4}, {V4, V5}), which
contains 1-color node V4. So the condition of Theorem 2 is
satisfied and rate 4/3 is achievable. We next explain how to
construct the code.

We are targeting at rate Lw/Lv = 4/3 so that any pair
of nodes connected by an edge contain 2Lv = 3Lw/2 bits.
Except from Lw bits from the desired source, at most we can
tolerate 2Lv − Lw = Lw/2 undesired bits (i.e., interference).
Then the key is to guarantee for any Wk-edge, k ∈ {1, 2}, the
interference from W3−k has at most half source size. That is,
W3−k symbols shall be assigned according to Wk-edges (Wk-
components). When there is no internal edge (or residing path
contains 1-color nodes), such interference based assignment
automatically ensures the independence (thus decodability) of
desired source symbols. We now come back to the examples
in Fig. 5 to see how to implement the above code design idea.

Consider Example (a) first and Example (b) will follow
similarly. We set Lw/ log2 p = 4 so that W1 = (a1, a2,

Fig. 6. (a) W2-component decomposition of W1-connected nodes in
Fig. 5.(a), according to which Ai symbols are assigned. (b) W1-component
decomposition of W2-connected nodes in Fig. 5.(a), according to which Bj

symbols are assigned.

a3, a4) and W2 = (b1, b2, b3, b4), where each symbol is
from a sufficiently large finite field Fp (the exact field
size will be given in the general proof in Section IV-B).
To achieve rate R = Lw/Lv = 4/3, we set Lv =
3 log2 p, i.e., each Vn contains three symbols from the
same field. We generate a number of generic linear
combinations of (a1, · · · , a4)\(b1, · · · , b4) and denote them
as (A1, A2, · · · )\(B1, B2, · · · ). For now, it suffices to view
each Ai\Bj as a random linear combination of symbols
from W1\W2 and if we can collect four linearly independent
combinations of Ai\Bj , then we can recover W1\W2. The
detailed randomized construction is again deferred to the
general proof. Each one of the three symbols in Vn will
be a linear combination of some Ai and Bj symbols.
We first assign the Ai and Bj symbols in each Vn and
then linearly combine them to produce the final three
symbols in Vn.

Consider nodes that are connected to W1-edges so that some
Ai symbols need to be assigned, i.e., all nodes V1, · · · , V6.
The 1-color nodes are trivial (i.e., V1), and we just assign
three distinct Ai symbols. Next, consider the remaining 2-
color nodes V2, · · · , V6 for which the Ai symbols are assigned
according to W2-components (see Fig. 6.(a)). V2, · · · , V6 form
two W2-components - one consists of V2, V3, V4 and the other
consists of V5, V6. For each W2-component, we assign generic
linear combinations of the same 2 = 1

2Lw/ log2 p Ai symbols
(say Ai1 , Ai2 ) so that the interference dimension is limited
to two. Further, a normal 2-color node and a W2-special
2-color node will get two generic linear combinations of
(Ai1 , Ai2) and a W1-special 2-color node will get one generic
linear combination of (Ai1 , Ai2). For example, consider
W2-component with nodes V2, V3, V4, where the Ai symbols
appeared are limited to A4, A5; V2, as a W1-special 2-color
node, gets one combination A4 + A5 and V3, V4, as normal
2-color nodes, each gets two generic combinations (e.g.,
V3 gets A4 + 5A5, A4 + 6A5). The other W2-component with
nodes V5, V6 is assigned similarly - the Ai symbols are limited
to A6, A7.

The assignment for nodes connected to W2-edges is exactly
the same (see Fig. 6.(b)). Nodes V2, · · · , V6 are connected
to W2-edges and they are all 2-color. The Bj symbols
are assigned according to W1-components, i.e., V2 (as a
single-node component) gets generic linear combinations of
B1, B2; V3, V5 form a W1-component and get generic linear
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combinations of B3, B4; V4, V6 form a W1-component and the
Bj symbols are limited to B5, B6.

The last step is to combine the Ai, Bj symbols so that each
Vn has only three symbols. This step is simple, if a node gets
at most three Ai, Bj symbols, then just set them as Vn (e.g.,
V1, V2); otherwise the node must be normal 2-color, which gets
two generic combinations of Ai and two generic combinations
of Bj and we just add one arbitrary combination (say the last)
of Ai and Bj together to reduce the total number of symbols
to three (e.g., V3, V4, V5, V6).

Finally, let us verify why the decoding constraints (2)
are satisfied. An edge that contains 1-color node is
straightforward, e.g., from W1-edge {V1, V2}, we have
A1, A2, A3, A4 + A5, so as long as the Ai combinations
are generic we can recover W1 = (a1, · · · , a4). For edges
that connect two 2-color nodes (e.g., W2-edge {V3, V4}),
we have 1) the interference dimension is limited to two as
our assignment is based on components of interfering sources
(e.g., we may decode A4, A5 and remove them, leaving us with
only Bj symbols); 2) the four symbols from the desired source
have full rank (e.g., B3, B4, B5, B6 are generic combinations)
so that we can recover the desired source symbol. Note
that because there is no internal edge, for any Wk-edge,
the two nodes obtain distinct desired Wk symbols, e.g., for
W2-edge {V3, V4}, V3 is assigned B3, B4 symbols and
V4 is assigned B5, B6 symbols as V3, V4 belong to distinct
W1-components (refer to Fig. 6.(b)). If V3, V4 belong to the
same W1-component, then the W2-edge {V3, V4} will be
internal).

The code construction for Example (b) in Fig. 5 follows
from the same procedure as that of Example (a). That is,
first consider 1-color nodes and assign generic combinations
(e.g., V1, V4); for remaining 2-color nodes, assign Wk symbols
according to W3−k-components (e.g., the W1 space of the
W2-edge {V2, V3} is spanned by A4, A5, and the W2 space
of the W1-edge {V3, V5} is spanned by B6, B7); finally
combine the four symbols to three for normal 2-color nodes
(e.g., V3). The decoding constraints (2) are easily verified as
the interference dimension is strictly controlled and desired
source symbols are sufficiently generic because after removing
1-color nodes, there no longer exist internal edges.

2) Necessary Condition: Residing Path and Special 2-Color
Node: The sufficient condition of the achievability of rate
4/3 in Theorem 2 requires the absence of internal edges or
the presence of 1-color node in residing paths. Considering the
complementary cases, we identify a crucial graphic structure
for the unachievability of rate 4/3 - the presence of at most
one special 2-color node in a residing path. This result is stated
in the following theorem.

Theorem 3: [Necessary Condition of GC=4/3] With K = 2
source symbols, a graph G ∈ GC<4/3 if G has a residing
path which contains no 1-color node and at most one special
2-color node.

The proof of Theorem 3 is presented in Section IV-C.
To illustrate the idea, an example is shown in Fig. 7,
where the internal W2-edge {V1, V2} resides in the W1-path
({V1, V3}, {V3, V4}, {V4, V2}) and this residing path contains
only one special 2-color node V3 and no 1-color node. So the

Fig. 7. An example graph G ∈ GC<4/3 where the internal edge {V1, V2}
is highlighted and the only special 2-color node V3 in its residing path is
highlighted.

condition of Theorem 3 is satisfied and rate 4/3 cannot be
achieved. To see why, we next give an intuitive explanation
by contradiction.

Suppose rate 4/3 is achievable, i.e., Lw/Lv = 4/3. Then
we can show that for any 2-color node (e.g., V3), it must
contain at least Lw/4 bits of information about each of W1 and
W2 (captured through conditional entropy. See Lemma 1 in
Section IV-C). This is because the connecting node can provide
at most Lv = 3Lw/4 bits of information about the desired
source symbol (e.g., V5 can contribute Lv = 3Lw/4 bits on
W2 at most and the remaining Lw − Lv = Lw/4 bits must
come from V3). Further, if the 2-color node is normal (e.g.,
V4), it must contain exactly Lw/2 bits of information about
each of W1 and W2 (see Lemma 2). The reason is that for two
connecting 2-color nodes, the amount of interference allowed
is at most 2Lv − Lw = Lw/2 bits and a pair of nodes must
contribute Lw bits of information about the desired source
symbol (thus Lw/2 from each node). For example, consider
W1-edge {V2, V4}, where from an interference view, V2 can
contain at most Lw/2 bits on W2; from the desired source
view, V2 must also contribute at least Lw/2 bits on W2 because
of the W2-edge {V1, V2}.

We now consider the propagation of interference through the
residing W1-path ({V2, V4}, {V4, V3}, {V3, V1}). Start from
the normal 2-color node V2, which contains Lw/2 bits on
W2 and as a W1-edge can tolerate at most Lw/2 bits on
W2, then the normal 2-color node V4 must contain the same
Lw/2 bits on W2 (see Lemma 3). We are now at V4 and
continue the W1-path through edge {V3, V4}, where V3 is
special so that V3 contains at least Lw/4 bits on W2 and this
Lw/4 bits are contained in the total Lw/2 interference bits
in V4. Continue further the W1-path through edge {V3, V1},
where the Lw/4 bits on W2 in V3 must be contained in the
Lw/2 bits on W2 in V1. This in turn means that the Lw/2 bits
on W2 in V1 must overlap with the Lw/2 bits on W2 in V2

(in the Lw/4 bits on W2 in V3), thus the internal W2-edge
{V1, V2} cannot contribute Lw/2 + Lw/2 = Lw independent
bits for the desired W2 source and we have arrived at a
contradiction.

From the above reasoning, we can now illuminate the role
of special and normal 2-color nodes in a residing path. For
an internal Wk-edge, its residing W3−k-path made up of 2-
color nodes must have two normal 2-color end nodes, each of
which contains Lw/2 independent bits of information about
the desired source Wk (e.g., V1, V2 about W2). In the residing
W3−k-path, a normal 2-color node will keep the interference
on Wk to the same Lw/2 dimensions (e.g., V2, V4 have the
same Lw/2 dimensions about W2 and V1, V3 have the same
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Fig. 8. An example graph G ∈ GC≥4/3 with only one internal edge
{V1, V2} (highlighted). Special 2-color nodes V3, V4, V5 are highlighted and
each residing path has at least two of them. The code produced by the
assignment of Theorem 2 and updates needed to produce the final code with
rate 4/3 are shown.

Lw/2 dimensions about W2) while a special 2-color node
will inherit at least Lw/4 interference dimensions on Wk

(e.g., V3 gets at least Lw/4 dimensions of W2 from V3).
Conversely, a special 2-color node in a residing W3−k-path
can change at most Lw/4 dimensions of the interference on
Wk (which is the desired source for the internal Wk-edge),
so to ensure the independence of the desired source at the
internal edge we need at least two special 2-color nodes in the
residing path. This case is exactly our focus in the next section
(along this line, we can also see the role of 1-color node in
a residing path, i.e., it completely stops the propagation of
interference. See the 1-color node V4 in the residing W2-path
({V3, V2}, {V2, V4}, {V4, V5}) of Fig. 6.(b), where V3, V5 can
hold independent W1 bits although the W1-edge {V3, V5} is
internal).

3) Remaining Cases: Rate 4/3 May or May Not Be
Achievable: Continuing the discussion in the previous
paragraph, the cases that are not covered by Theorem 2 and
Theorem 3 are those where each residing path contains at least
two special 2-color nodes (and no 1-color node). This setting
turns out to be quite intricate and is not fully understood.
In the following, we show that here 4/3 may or may not be
achievable, depending on the structure of other parts of the
graph.

On the one hand, we show that if there is only one internal
edge, then the presence of two special 2-color nodes in the
residing path is sufficient to achieve rate 4/3. This result is
stated in the following theorem.

Theorem 4: With K = 2 source symbols, a graph
G ∈ GC≥4/3 if G contains only one internal edge and its
every residing path has at least two special 2-color nodes.

The proof of Theorem 4 is presented in Section IV-D.
To illustrate the idea, an example is shown in Fig. 8, where
for the only internal edge {V1, V2}, three special 2-color nodes
V3, V4, V5 ensure that at least two of them are contained in any
residing path.

Fig. 9. A graph G ∈ GC<4/3 albeit each residing path has two special
2-color nodes. G contains two internal edges {V1, V2}, {V3, V4} and three
special 2-color nodes V5, V6, V7 in residing paths.

To assign the code, we first follow the same procedure
in Theorem 2 to assign the coded symbols (see Fig. 8).
Because of the presence of the internal W2-edge {V1, V2} (and
absence of 1-color nodes in the residing paths), the desired
W2 symbols are not independent (i.e., only B7, B8 appears
in V1, V2 while we need four Bj symbols to recover W2).
So we need to expand the dimension of the W2 symbols
to satisfy the decoding constraint (2) for the internal edge
{V1, V2}. This is done by replacing B8\B7 in V1\V2 with
another generic B11\B12 symbol (see Fig. 8), but now the
interference on W2 in the residing path will not be limited to
only two dimensions. A final update is required - starting from
V2, we visit each residing path to find its closest special 2-color
nodes, which turn out to be V4, V5 and remove B7 therein to
ensure the interference along this path is limited to B8, B12

two dimensions (see Fig. 8). Repeat the same for V1, i.e., visit
each residing path starting from V1, find the closest special
2-color nodes, which turn out to be V3, and only keep B7

(remove B8) at V3. Such special 2-color nodes are guaranteed
to exist as each residing path has at least two special 2-color
nodes. Also replace B8 by B11 for each node visited along the
residing paths so that now again the interference dimension is
limited to B7, B11 (i.e., V6. See Fig. 8). The update is complete
and decoding constraints (2) are all satisfied (refer to Fig. 8
for a verification). Indeed, we may see that the role of each
special 2-color node along the residing Wk-path is to replace
Lw/4 dimensions of W3−k so that with two special 2-color
nodes we may have fully independent Lw/2 dimensions of
W3−k for the two nodes in the internal W3−k−edge.

On the other hand, we show that for the graph in Fig. 9,
rate 4/3 cannot be achieved even if each residing path contains
two special 2-color nodes. This result is stated in the following
theorem.

Theorem 5: The storage code capacity of the graph G in
Fig. 9 is strictly smaller than 4/3.

The proof of Theorem 5 is presented in Section IV-E.
An intuitive explanation, which builds upon and generalizes
the converse arguments in Theorem 3, on the unachievablity
of rate 4/3 is given here. Suppose rate 4/3 can be achieved.
Consider the internal W2-edge {V1, V2}, where V1, V2 are
normal 2-color and each must contain independent Lw/2 bits
of information about W2. Due to the W1-edges {V1, V5} and
{V2, V6}, the special 2-color node V5 must inherit Lw/4 bits
on W2 from V1 (because the total amount of interference about
W2 in any W1-edge cannot exceed Lw/2 bits) and the special
2-color node V6 must inherit Lw/4 bits on W2 from V2. Note
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Fig. 10. An example graph G ∈ GC<4/3, where a normal 2-color node
V1 is connected to a special 2-color node V4 and V1, V4 are connected to
different types of edges.

now that V3 is connected to both V5, V6 with W1-edges, so the
Lw/2 bits of information about W2 in the normal 2-color
node V3 must contain the Lw/4 bits of information about
W2 in V5 and V6. Further, V5 and V6 contain independent
information about W2. So the Lw/2 bits on W2 in V3 is
exactly the union of the Lw/4 bits on W2 in V5 and V6.
From the same reasoning, as V8 is connected to both V5 and
V6 with W1-edges, V8 contains exactly the same Lw/2 bits of
information about W2 as V3. This will cause a contradiction
because ({V8, V7}, {V7, V4}) belongs to a residing path and
V7 is a special 2-color node, so V4 must share Lw/4 bits on
W2 with V8 (thus V3), which contradicts the fact that {V3, V4}
is an internal W2-edge, i.e., V3, V4 must contain independent
Lw/2 bits of information about W2.

C. Extremal Graphs With Capacity 4/3: GC=4/3 With K > 2
Source Symbols

We now generalize the results on GC=4/3 from K = 2
source symbols to K > 2 source symbols. Let us start
from necessary conditions, which include some new graphic
structures with more than 2 sources that place rate constraints,
and state the result in the following theorem.

Theorem 6: [Necessary Condition of GC=4/3] A graph
G ∈ GC<4/3 if G contains 1) an M -color node, where M ≥ 4,
or 2) a 3-color code that is connected to an M -color code,
where M ≥ 2, or 3) a normal 2-color node V that is connected
to a 2-color node whose connected edges are associated with
a different set of source symbols from that connected to V .

The set of graphs that satisfy the conditions in Theorem 6
is denoted as GThm 6

C<3/4. The first two conditions are easily seen
and an example for the third condition is shown in Fig. 10.
The proof of Theorem 6 is deferred to Section IV-F. We give
an intuitive explanation here on why R < 4/3 for the graph
G in Fig. 10. From (V1, V4, V5), we can decode W1, W3, i.e.,
2Lw bits. V4, V5 can contribute at most 2Lv bits on W1, W3 so
that the remaining 2Lw−2Lv bits must come from V1, leaving
only Lv − (2Lw − 2Lv) = 3Lv − 2Lw bits of room for W2.
Similarly, V2 has at most Lv − (Lw − Lv) = 2Lv − Lw bits
of room for W2 because at least Lw − Lv bits of W1 must
come from V2 (consider the W1-edge {V2, V3}). The W2-edge
{V1, V2} needs to have at least Lw bits of room for the desired
source W2, i.e., (3Lv − 2Lw) + (2Lv − Lw) ≥ Lw so that
R = Lw/Lv ≤ 5/4 < 4/3.

Interestingly, if we exclude the graphs in GThm 6
C<3/4, i.e., those

for which rate 4/3 cannot be achieved, then the sufficient
condition in Theorem 2 generalizes immediately to more than

Fig. 11. An example graph G ∈ GC≥4/3 with K = 3 source
symbols and code construction for rate 4/3. W1 = (a1, · · · , a4),
W2 = (b1, · · · , b4), W3 = (c1, · · · , c4) and each Ai\Bj\Cm is a generic
linear combination of (a1, · · · , a4)\(b1, · · · , b4)\(c1, · · · , c4).

K = 2 source symbols. This result is stated in the following
theorem.

Theorem 7 (Sufficient Condition of GC=4/3): A graph G ∈
GC≥4/3 if G /∈ GThm 6

C<3/4 and G contains no internal edge or for
any internal edge, its residing path contains a 1-color node.

The code construction of Theorem 7 is almost identical to
that of Theorem 2 and it turns out to work as long as the
structures in Theorem 6 are avoided. The detailed proof is
deferred to Section IV-G and an example is shown in Fig. 11
to illustrate the idea. The assignment is still interference
based, i.e., for each source symbol Wk, decompose all nodes
connected to Wk-edges according to Wk′ -components, where
k′ ̸= k (each node will belong only to one such component)
and assign the same Wk symbols within the same Wk′ -
components. After this operation, the interference dimension
is controlled; the absence of internal edges (after removing
1-color nodes) will guarantee the independence of desired
symbols. The condition G /∈ GThm 6

C<3/4 helps to guarantee that
if a pair of connecting 2-color nodes are connected to edges
associated with more than 2 source symbols (e.g., in Fig. 11,
{V2, V3} are associated with 3 sources), the pair of nodes
must be special 2-color and the interference caused by the two
interfering source symbols is still limited to Lw/2 dimensions
(e.g., in Fig. 11, V2, V3 are special 2-color and for W2-edge
{V2, V3}, the interference is one Ai combination in V2 and
one Cm combination in V3, i.e., two dimensions in total).
Other edges are the same as those in Theorem 2 and decoding
constraints (2) hold (see Fig. 11).

IV. PROOFS

A. Proof of Theorem 1: GC=2,GC=3/2

In this section, we provide the full characterization of GC=2

and GC=3/2. From the proof, we can obtain that the three
highest storage code capacity values are 2, 3/2, 4/3.

1) If and Only If Condition of GC=2: We show that
G(V, E , t) ∈ GC=2 if and only if every node V ∈ V is 1-
color. We prove the if part and the only if part sequentially.

If Part: If every node V ∈ V is 1-color, then we prove
that the capacity is 2. First, we show that R ≤ 2. Note that
we assume G has no isolated nodes, so G must contain one
edge, say Wk-edge {Vi, Vj}. From the decoding constraint (2),
we have

Lw
(1)
= H(Wk)

(2)
= I(Vi, Vj ; Wk) ≤ H(Vi, Vj) ≤ 2Lv (4)

⇒ R
(3)
= Lw/Lv ≤ 2 (5)
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where the last inequality in (4) follows from the fact that each
coded symbol Vi contains at most Lv bits.

Second, we show that symbol rate R = 2 is achievable,
by an MDS code. Note that each node is 1-color; suppose there
are Mk nodes that are only connected to Wk-edges, k ∈ [K]
and denote this set of nodes by Vk. Choose the field size
p to be a prime that is no smaller than maxk∈[K] Mk. Set
Lw = 2 log2 p, Lv = log2 p so that each source\coded symbol
is comprised of 2\1 symbols\symbol from Fp and the rate
achieved is 2. Generate MDS coded symbols as follows.

Wk = (Wk(1); Wk(2)) ∈ F2×1
p (6)

Xk = (Xk(1); · · · ; Xk(Mk)) ≜ VkWk ∈ FMk×1
p (7)

where Vk ∈ FMk×2
p is a full rank Vandermonde matrix so

that from any two elements of Xk, we can recover Wk (i.e.,
MDS). Finally, we assign each node in Vk a distinct element
of Xk so that from any Wk-edge, we can decode Wk.

Only if Part: We show that if there exists an M -color node,
M ≥ 2, then R < 2 so that the capacity must be strictly
smaller than 2 and further, the capacity will drop to 3/2 at
least. Suppose we have an M -color node Vi that is connected
to Wk1 -edge {Vi, Vj1}, · · · , WkM

-edge {Vi, VjM
}, then

MLw
(1)
= H(Wk1 , · · · , WkM

) (8)
(2)
= I(Vi, Vj1 , · · · , VjM

; Wk1 , · · · , WkM
) (9)

≤ H(Vi, Vj1 , · · · , VjM
) (10)

≤ (M + 1)Lv (11)

⇒ R
(3)
= Lw/Lv ≤ (M + 1)/M ≤ 3/2 < 2. (12)

2) If and Only If Condition of GC=3/2: We show that
G(V, E , t) ∈ GC=3/2 if and only if every node V ∈ V is
2-color or 1-color (and there exists a 2-color node) and there
are no connected 2-color nodes. We prove the if part and the
only if part sequentially.

If Part: We show that C = 3/2 if the condition above
is satisfied. First, G contains a 2-color node, so from (12)
we have that R ≤ 3/2. Second, we show that R = 3/2 is
achievable, again by an MDS code. Note that each node is
1-color or 2-color. Consider the nodes that are connected
to Wk-edges, among which suppose M1

k are 1-color (denote
this set by V1

k ) and M2
k are 2-color (denote this set by V2

k ).
Choose the field size p to be a prime that is no smaller than
maxk(2M1

k + M2
k ). Set Lw = 3 log2 p, Lv = 2 log2 p, i.e.,

each source\coded symbol is comprised of 3\2 symbols from
Fp and the rate achieved is 3/2. Generate MDS coded symbols
as follows.

Wk = (Wk(1); Wk(2); Wk(3)) ∈ F3×1
p (13)

Xk = (Xk(1); · · · ; Xk(2M1
k + M2

k ))

≜ VkWk ∈ F(2M1
k+M2

k)×1
p (14)

where Vk ∈ F(2M1
k+M2

k)×3
p is a full rank Vandermonde

matrix so that from any three elements of Xk, we can
recover Wk (i.e., MDS). The existence of such a full rank
Vandermonde matrix is guaranteed due to our field size choice.
Finally, we assign each node in V1

k\V2
k two\one distinct

elements\element of Xk. Note that any node V ∈ V will
be assigned two Fp symbols. To verify that the decoding
constraint (2) holds, consider any Wk-edge {Vi, Vj}, where
Vi, Vj cannot both be 2-color because from our condition of
GC=3/2, 2-color nodes do not connect. As a 2-color node
contains one element of Xk and a 1-color node contains two
elements of Xk, (Vi, Vj) will contain at least three elements
of Xk, from which we can recover Wk.

Only if Part: We show that C ̸= 3/2 if the condition of
GC=3/2 is violated, i.e., if 1) there only exist 1-color nodes,
2) there is an M -color node, where M ≥ 3, or 3) if there are
connected 2-color nodes, say Vi, Vj . For Case 1), G ∈ GC=1;
for Case 2), from (12) we have R ≤ 4/3 < 3/2; for Case 3),
we next show that R ≤ 4/3 so that the proof is complete
and when capacity 2 and 3/2 cannot be achieved, it drops to
4/3 at least (and rate 4/3 is achievable for some graph, e.g.,
Theorem 2, so the third-highest capacity value is 4/3).

Suppose {Vi, Vj} is a Wk-edge. As Vi is 2-color, Vi must be
connected to some node Vi1 , i1 ̸= i with a Wk1 -edge, where
k1 ̸= k. Consider the Wk1 -edge {Vi, Vi1} and we have

Lw
(1)
= H(Wk1) (15)
(2)
= I(Vi, Vi1 ; Wk1) (16)
= H(Vi, Vi1)−H(Vi, Vi1 |Wk1) (17)
≤ 2Lv−H(Vi, Vi1 |Wk1) (18)

⇒ H(Vi|Wk1) ≤ H(Vi, Vi1 |Wk1) ≤ 2Lv − Lw. (19)

Symmetrically, Vj is 2-color so that Vj must be connected
to Vj1 , j1 ̸= j with a Wk2 -edge, where k2 ̸= k. Note that
j1 may be the same as i1 and k2 may be the same as k1. The
same proof will work under all circumstances. Consider the
Wk2 -edge {Vj , Vj1}. Following the derivation of (19), we have

H(Vj |Wk2) ≤ 2Lv − Lw. (20)

Finally consider the Wk-edge {Vi, Vj} and we have

Lw
(1)
= H(Wk|Wk1 , Wk2) (21)
≤ H(Wk, Vi, Vj |Wk1 , Wk2) (22)
(2)
= H(Vi, Vj |Wk1 , Wk2) (23)
≤ H(Vi|Wk1) + H(Vj |Wk2) (24)

(19)(20)

≤ 2Lv − Lw + 2Lv − Lw (25)

⇒ R
(3)
= Lw/Lv ≤ 4/3. (26)

B. Proof of Theorem 2: Sufficient Condition of GC=4/3 With
K = 2

We show that if a graph2 G(V, E) contains no internal
edge or each residing path contains one 1-color node, then
R = 4/3 is achievable. We first present the code construction
and then prove it satisfies the decoding constraint (2).

2For simplicity, the edge association mapping t is omitted from the graph
notation G in this section.
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1) Code Construction: Choose the field size p to be a prime
that is greater than 4|E|. Set Lw = 4 log2 p, Lv = 3 log2 p so
that each source\coded symbol is comprised of 4\3 symbols
from Fp and the rate achieved is 4/3.

Consider the set of nodes that are connected to Wk-edges,
k ∈ {1, 2} and denote this set by Vk. Consider the subgraph
of G(V, E) whose node set is Vk and edge set is comprised
of all W3−k-edges that are connected to some node in Vk,
denoted by E3−k and denote this subgraph by Gk(Vk, E3−k).
Decompose Gk(Vk, E3−k) into W3−k-components and sup-
pose we have Mk such components. Among these Mk

W3−k-components, suppose M1
k components are comprised

of 1-color nodes (each such component is an isolated node)
and label them as P

[1]
k , · · · , P

[M1
k ]

k ; the remaining M2
k =

Mk − M1
k components are comprised of 2-color nodes and

label them as Q
[1]
k , · · · , Q

[M2
k ]

k . For an example of subgraph
Gk(Vk, E3−k) and its decomposition, refer to Fig. 6.

Generate generic linear combinations of the source symbols
as follows.

Wk = (Wk(1); · · · ; Wk(4)) ∈ F4×1
p , k ∈ {1, 2} (27)

Xk = (Xk(1); · · · ; Xk(3M1
k + 2M2

k ))

≜ HkWk ∈ F(3M1
k+2M2

k)×1
p (28)

where Hk is a (3M1
k +2M2

k )×4 matrix over the field Fp and
each element of Hk is chosen uniformly and independently
from Fp. Thus our construction is randomized and we will
show that the probability that all decoding constraints (2) are
satisfied is strictly larger than 0 so that one feasible code
construction exists.

Consider P
[m]
k , m ∈ [M1

k ], denote its node by V , and set

V =
(
Xk(3m− 2), Xk(3m− 1), Xk(3m)

)
. (29)

This step completes the assignment for all 1-color nodes, each
of which must reside in one P

[m]
k .

Consider Q
[m]
k , m ∈ [M2

k ]. Suppose Q
[m]
k contains J

nodes Vi1 , · · · , ViJ
(each must be 2-color). Consider node

Vij
, j ∈ [J ].

If Vij
is Wk-special, setV [k]

ij
≜

Xk

(
3M1

k + 2m− 1
)

+ (2j − 1)Xk

(
3M1

k + 2m
)
; (30)

otherwise, set V
[k]
ij

= (V [k]
ij

(1), V [k]
ij

(2))

≜
(
Xk

(
3M1

k + 2m− 1
)

+ (2j − 1)Xk

(
3M1

k + 2m
)
,

Xk

(
3M1

k + 2m− 1
)

+ 2jXk

(
3M1

k + 2m
))

. (31)

Finally, after setting V [1], V [2] for each 2-color node V ,
we are ready to set V .

If V is normal, then set
V = (V [1](1), V [2](1), V [1](2) + V [2](2)); (32)
otherwise, set V = (V [1], V [2]). (33)

Note that for a special 2-color node, at least one of V [1], V [2]

will be one symbol so that V will contain no more than three
symbols (when a node V is simultaneously W1-special and

W2-special, V will have only two symbols and we may zero-
pad to make its length three). This completes the assignment
for all 2-color nodes and the code construction is complete.

2) Proof of Correctness: We show that the decoding
constraint (2) is satisfied. Consider any edge {Vi, Vj} ∈ E
and suppose it is a Wk-edge.

When Vi, Vj contain one 1-color code, say Vi, then Vi

contains three elements of Xk (say, Xk(m1), Xk(m1 +
1), Xk(m1 + 2); refer to (29)) and Vj contains at least one
generic combination of distinct two elements of Xk or one
distinct element of Xk (say, Xk(m2) + jXk(m2 + 1) or
Xk(m2); refer to (29) - (33)). These 4 symbols in Xk can
be written as a multiplication of a 4 × 4 matrix, denoted by
Tij and the source symbol vector Wk. View the determinant
of Tij as a polynomial Tij(H1,H2), whose variables are
the elements of H1,H2 (refer to (69)). Tij(H1,H2) is not a
zero-polynomial as we may set Xk(m1) = Wk(1), Xk(m1 +
1) = Wk(2), Xk(m1 + 2) = Wk(3), Xk(m2) =
Wk(4), Xk(m2 +1) = 0 so that Tij is an identity matrix and
Tij(H1,H2) = 1.

We are left with cases where Vi, Vj are both 2-color. Note
that Vi, Vj cannot be Wk-special. We have three cases.

1) Vi, Vj are both W3−k-special. Then each of Vi, Vj

contains two generic combinations of two distinct
elements of Xk (refer to (31) and (33)), say

Xk(m1) + (2j1 − 1)Xk(m1 + 1),
Xk(m1) + 2j1Xk(m1 + 1) from Vi and
Xk(m2) + (2j2 − 1)Xk(m2 + 1),
Xk(m2) + 2j2Xk(m2 + 1) from Vj (34)

where the elements of Xk are all distinct because
Vi, Vj belong to different W3−k-components in the
decomposition of Gk(Vk, E3−k). Otherwise, {Vi, Vj} is
an internal edge after removing 1-color nodes, which
contradicts the condition of Theorem 2. From the four
symbols in (34), we can recover four distinct elements
of Xk, i.e., (Xk(m1); Xk(m1 + 1); Xk(m2); Xk(m2 +
1)), which can be similarly written as T4×4

ij Wk. View
det(Tij) as a polynomial Tij(H1,H2), which is not the
zero-polynomial.

2) One of Vi, Vj is W3−k-special, say Vi and the other is
normal, say Vj . From (31) - (33), we have

Vi =
(
Xk(m1) + (2j1 − 1)Xk(m1 + 1),
Xk(m1) + 2j1Xk(m1 + 1),
X3−k(m∗) + (2i1 − 1)X3−k(m∗ + 1)

)
Vj =

(
Xk(m2) + (2j2 − 1)Xk(m2 + 1),
X3−k(m∗) + (2i2 − 1)X3−k(m∗ + 1),
Xk(m2) + 2j2Xk(m2 + 1)

+ X3−k(m∗) + 2i2X3−k(m∗ + 1)
)

(35)

where the elements of Xk are all distinct due to the
same reason as above; the elements of X3−k must be the
same, i.e., m∗ appears in both Vi, Vj because {Vi, Vj}
is a Wk-edge so that Vi, Vj belong to the same Wk-
component in the decomposition of G3−k(V3−k, Ek).
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Further, Vi, Vj are distinct so i1 ̸= i2 in (35) (refer
to (31)). Thus from (Vi, Vj), we can first decode and
remove X3−k(m∗), X3−k(m∗ + 1), leaving us with
four distinct elements of Xk, i.e., (Xk(m1); Xk(m1 +
1); Xk(m2); Xk(m2 + 1)) = T4×4

ij Wk. View det(Tij)
as a polynomial Tij(H1,H2), which is non-zero.

3) Vi, Vj are both normal. From (31) - (33), we have

Vi =
(
Xk(m1) + (2j1 − 1)Xk(m1 + 1),
X3−k(m∗) + (2i1 − 1)X3−k(m∗ + 1),
Xk(m1) + 2j1Xk(m1 + 1)

+ X3−k(m∗) + 2i1X3−k(m∗ + 1)
Vj =

(
Xk(m2) + (2j2 − 1)Xk(m2 + 1),
X3−k(m∗) + (2i2 − 1)X3−k(m∗ + 1),
Xk(m2) + 2j2Xk(m2 + 1)

+ X3−k(m∗) + 2i2X3−k(m∗ + 1)
)

(36)

where the elements of Xk are all distinct, the
elements of X3−k must be the same, and i1 ̸=
i2. Thus from (Vi, Vj), we can first decode and
remove X3−k(m∗), X3−k(m∗ + 1), leaving us with
(Xk(m1); Xk(m1 + 1); Xk(m2); Xk(m2 + 1)) =
T4×4

ij Wk and det(Tij) is a non-zero polynomial
Tij(H1,H2).

Finally, consider all edges of G(V, E) and consider∏
i,j:{Vi,Vj}∈E Tij(H1,H2), which is a polynomial with

degree at most 4|E|. Now each element of H1,H2 is selected
independently and uniformly from Fp, where p > 4|E|. By the
Schwartz–Zippel lemma [28], [29], [30], we have

Pr

 ∏
i,j:{Vi,Vj}∈E

Tij(H1,H2) = 0

 ≤ 4|E|
p

< 1. (37)

Therefore there exists a realization of H1,H2 so that each
Tij(H1,H2) ̸= 0 and each Tij has full rank, i.e., Wk can be
recovered from {Vi, Vj} and all decoding constraints (2) are
satisfied.

C. Proof of Theorem 3: Necessary Condition of GC=4/3 With
K = 2

We show that R = 4/3 cannot be achieved if a graph
G contains an internal Wk-edge {Vi1 , ViP

} and its resid-
ing W3−k-path ({Vi1 , Vi2}, · · · , {ViP−1 , ViP

}) contains only
2-color nodes, Vi1 , · · · , ViP

, among which at most one is
special (if there exists, suppose it is Vip

, 1 < p < P ).
To set up the proof by contradiction, let us assume that

R = limLw→∞ Lw/Lv = 4/3 is asymptotically achievable
(the same proof works for the exact achievable case by
replacing o(Lw) with zero), i.e.,

Lv = (3Lw)/4 + o(Lw). (38)

We show that a 2-color node V must contain at least
Lw/4 bits (minimum amount of desired information) and
at most Lw/2 bits (maximum amount of interference) of
information about each of W1 and W2. This result is stated in
the following lemma.

Lemma 1 (2-color Node): When R = 4/3, for any 2-color
node V , we have

Lw/4 + o(Lw) ≤ H(V |Wk)
≤ Lw/2 + o(Lw), ∀k ∈ {1, 2}. (39)

Proof: As V is 2-color, we have a W1-edge {V, Vj1} and a
W2-edge {V, Vj2}. We prove (39) when k = 1 and the proof
when k = 2 follows from symmetry.

Consider the W1-edge {V, Vj1}. Following the steps in (15)
to (19), we have

H(V |W1) ≤ 2Lv − Lw
(38)
= Lw/2 + o(Lw). (40)

Consider the W2-edge {V, Vj2}. We have

Lw
(1)
= H(W2|W1) (41)
≤ H(W2, V, Vj2 |W1) (42)
(2)
= H(V, Vj2 |W1) (43)
≤ H(V |W1) + H(Vj2) (44)
≤ H(V |W1) + Lv (45)

⇒ H(V |W1) ≥ Lw − Lv
(38)
= Lw/4 + o(Lw). (46)

Next, we tighten the result in Lemma 1 when the 2-color
node is further normal. Specifically, a normal 2-color node V
must contain exactly Lw/2 bits of information about each of
W1 and W2. This result is stated in the following lemma.

Lemma 2 (Normal 2-Color Node): When R = 4/3, for
any normal 2-color node V , we have

H(V |Wk) = Lw/2 + o(Lw), ∀k ∈ {1, 2}. (47)

Proof: As V is normal 2-color, it must be connected to Vj1

through a W1-edge and Vj2 through a W2-edge, and further
Vj1 , Vj2 are 2-color. The ‘≤’ direction of (47) has been proved
in (39), so we only need to prove the ‘≥’ direction, which is
considered in the following when k = 2 and the proof when
k = 1 follows from symmetry.

Consider the W1-edge {V, Vj1}. We have

Lw
(1)
= H(W1|W2) (48)
≤ H(W1, V, Vj1 |W2) (49)
(2)
= H(V, Vj1 |W2) (50)
≤ H(V |W2) + H(Vj1 |W2) (51)

(39)

≤ H(V |W2) + Lw/2 + o(Lw) (52)
⇒ H(V |W2) ≥ Lw/2 + o(Lw) (53)

where (52) holds because Vj1 is a 2-color node so that we
may apply (39) of Lemma 1.

After establishing the properties on the nodes, we proceed
to consider the edges. We show that for any two connected
2-color nodes, the interference contained in them is Lw/2 bits
if the two nodes contain one normal 2-color node.
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Lemma 3 (W3−k-edge): When R = 4/3, for any W3−k-
edge {Vi, Vj} where Vi, Vj are 2-color and at least one of
Vi, Vj is normal, we have

H(Vi, Vj |W3−k) = Lw/2 + o(Lw). (54)

Proof: Suppose Vi is normal, then on the one hand, we have

H(Vi, Vj |W3−k) ≥ H(Vi|W3−k)
(47)
= Lw/2 + o(Lw). (55)

On the other hand, we have

H(Vi, Vj |W3−k)
(19)

≤ 2Lv − Lw
(38)
= Lw/2 + o(Lw) (56)

so that the proof is complete.

We now go from the properties of edges in Lemma 3 to
those of paths that were made up of such edges. We show
that the interference contained in a sequence of such edges,
i.e., a path, is Lw/2 bits, in the following lemma.

Lemma 4 (W3−k-path): When R = 4/3, for
a W3−k-path ({Vi1 , Vi2}, · · · , {ViP−1 , ViP

}) where
Vi1 , · · · , Vip−1 , Vip+1 , · · · , ViP

, 1 < p < P are normal
and Vip

is either normal or special, we have

H(Vi1 , · · · , Vip |W3−k) ≤ Lw/2 + o(Lw) (57)
H(Vip , · · · , ViP

|W3−k) ≤ Lw/2 + o(Lw). (58)

Proof: We prove (57) and (58) follows similarly. The proof
is based on a straightforward application of the submodular
property on the entropy function to (54) in Lemma 3 (note
that each edge in the path contains at most one special 2-color
node).

H(Vi1 , Vi2 |W3−k) + · · ·+ H(Vip−1 , Vip
|W3−k)

≥ H(Vi1 , · · · , Vip
|W3−k) + H(Vi2 |W3−k)

+ · · ·+ H(Vip−1 |W3−k) (59)
(47)(54)
=⇒ (p− 1)Lw/2 ≥ H(Vi1 , · · · , Vip

|W3−k)
+ (p− 2)Lw/2 + o(Lw) (60)

=⇒ H(Vi1 , · · · , Vip
|W3−k) ≤ Lw/2 + o(Lw). (61)

Equipped with the above lemmas, we are ready to
demonstrate a contradiction as follows.

Lw = Lw/2 + Lw/2 (62)
(57)(58)

≥ H(Vi1 , · · · , Vip
|W3−k)

+ H(Vip
, · · · , ViP

|W3−k) + o(Lw)(63)
≥ H(Vi1 , · · · , ViP

|W3−k)
+ H(Vip

|W3−k) + o(Lw) (64)
(2)(39)

≥ H(Vi1 , ViP
, Wk|W3−k)

+ Lw/4 + o(Lw) (65)
≥ H(Wk|W3−k) + Lw/4 + o(Lw) (66)
(1)
= 5Lw/4 + o(Lw) (67)

⇒ 1 ≥ 5/4 (contradiction) (68)

where (64) follows from submodularity; the first term of (65)
follows from the decoding constraint (2) of the Wk-edge

{Vi1 , ViP
} and the second term of (65) follows by applying

Lemma 1 to the 2-color node Vip ; the last step follows by
dividing by Lw on both hand sides and letting Lw →∞.

D. Proof of Theorem 4: One Internal Edge

We show that R = 4/3 is achievable if a graph G(V, E)
contains only one internal edge, say Wk-edge {Vi, Vj} and
each residing path has at least two special 2-color nodes.
We first present the code construction and then prove it
satisfies the decoding constraint (2).

1) Code Construction: The first part of the code construc-
tion is the same as that in Section IV-B.1. The second part
is presented now, where we need to make the following
updates. Generate two more generic linear combinations of
Wk symbols.

Xk = (Xk(1); Xk(2)) ≜ HkWk ∈ F2×1
p (69)

where each element of Hk ∈ F2×4
p is independent and uniform

over Fp.
Consider the internal Wk-edge {Vi, Vj} and find its all

residing W3−k-paths whose nodes are all 2-color (i.e., no 1-
color nodes). Suppose there are M such paths, denoted by
P1, · · · , PM . Start from Vi\Vj and visit each path Pm, m ∈
[M ] along the W3−k-edges until we see a special 2-color
node, denoted by Vim

\Vjm
. Denote the set of Vim

\Vjm
nodes

as Vi\Vj . Note that every node in Vi,Vj is Wk-special and
Vi ∩ Vj = ∅ (as each residing path has at least two special
2-color nodes).

Vi, Vj are normal and suppose they are currently set as (by
the construction in Section IV-B.1)

Vi =
(
Xk(m∗) + (2j1 − 1)Xk(m∗ + 1),
X3−k(m1) + (2i1 − 1)X3−k(m1 + 1),
Xk(m∗) + 2j1Xk(m∗ + 1)

+ X3−k(m1) + 2i1X3−k(m1 + 1)
Vj =

(
Xk(m∗) + (2j2 − 1)Xk(m∗ + 1),
X3−k(m1) + (2i2 − 1)X3−k(m1 + 1),
Xk(m∗) + 2j2Xk(m∗ + 1)

+ X3−k(m1) + 2i2X3−k(m1 + 1)
)

(70)

where because the Wk-edge {Vi, Vj} is internal, the desired
symbols are limited to Xk(m∗), Xk(m∗+1). Then each Wk-
special 2-color node in Vi,Vj is currently set as

V ∈ Vi ∪ Vj :
V =

(
Xk(m∗) + (2j3 − 1)Xk(m∗ + 1),
X3−k(m2) + (2i3 − 1)X3−k(m2 + 1),
X3−k(m2) + 2i3X3−k(m2 + 1)

)
(71)

and update it to

if V ∈ Vi : V =
(
Xk(m∗),
X3−k(m2) + (2i3 − 1)X3−k(m2 + 1),
X3−k(m2) + 2i3X3−k(m2 + 1)

)
(72)

if V ∈ Vj : V =
(
Xk(m∗ + 1),
X3−k(m2) + (2i3 − 1)X3−k(m2 + 1),
X3−k(m2) + 2i3X3−k(m2 + 1)

)
. (73)
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For every normal 2-color node V in the segment of residing
path Pm, m ∈ [M ] from Vi to the node before Vim . Update
V as follows.

V =
(
Xk(m∗) + (2j4 − 1)Xk(m∗ + 1),
X3−k(m3) + (2i4 − 1)X3−k(m3 + 1),
Xk(m∗) + 2j4Xk(m∗ + 1)

+ X3−k(m3) + 2i4X3−k(m3 + 1)
)

(74)

→ V =
(
Xk(m∗) + (2j4 − 1)Xk(1),
X3−k(m3) + (2i4 − 1)X3−k(m3 + 1),
Xk(m∗) + 2j4Xk(1)

+ X3−k(m3) + 2i4X3−k(m3 + 1)
)
. (75)

Similarly replace Xk(m∗+1) by Xk(1) for all nodes (except
Vim

) that are connected to the above V through a W3−k-path.
For every normal 2-color node V in the segment of residing

path Pm, m ∈ [M ] from Vj to the node before Vjm . Update
V as follows.

V =
(
Xk(m∗) + (2j5 − 1)Xk(m∗ + 1),
X3−k(m4) + (2i5 − 1)X3−k(m4 + 1),
Xk(m∗) + 2j5Xk(m∗ + 1)

+ X3−k(m4) + 2i5X3−k(m4 + 1)
)

(76)

→ V =
(
Xk(2) + (2j5 − 1)Xk(m∗ + 1),
X3−k(m4) + (2i5 − 1)X3−k(m4 + 1),
Xk(2) + 2j5Xk(m∗ + 1)

+ X3−k(m4) + 2i5X3−k(m4 + 1)
)
. (77)

Similarly replace Xk(m∗) by Xk(2) for all nodes (except Vjm
)

that are connected to the above V through a W3−k-path. The
description of the code construction is complete.

2) Proof of Correctness: The proof of correctness is similar
to that in Section IV-B.2, where we wish to show that for each
edge {Vi, Vj}, the interference dimension is limited to two so
that interference can be decoded and removed and the linear
mapping from the four linear combinations of desired source
symbols to the four desired source symbols, described by a
4 × 4 matrix Tij may have full rank and then the existence
of a feasible code construction (i.e., a choice of H1,H2,Hk)
is guaranteed by the Schwartz–Zippel lemma [28], [29], [30]
(refer to (37)).

We now consider each edge of G. The unchanged edges are
the same as before and the proof in Section IV-B.2 applies.
We are left with the edges that have been updated. First,
for the only internal Wk-edge {Vi, Vj}, the interference is
unchanged, i.e., limited to X3−k(m1), X3−k(m1 +1) and the
desired symbols are Xk(m∗), Xk(m∗ + 1), Xk(1), Xk(2) so
that det(Tij) is not the zero polynomial. Second, for every
W3−k-edge in the segment of residing path Pm, m ∈ [M ]
from Vi to Vim

, the desired X3−k symbols are unchanged
and the interference from Wk is limited to Xk(m∗), Xk(1),
i.e., two dimensions (refer to (72), (75)) so that interference
can be decoded and removed. Third, for every W3−k-edge in
the segment of residing path Pm, m ∈ [M ] from Vj to Vjm ,
the desired X3−k symbols are unchanged and the interference
from Wk is limited to Xk(m∗+1), Xk(2), i.e., two dimensions

(refer to (73), (77)). Finally, for all other edges that involve
a node that has been updated, no matter it is a W3-edge or
a W3−k-edge, we may verify that interference has dimension
two and desired symbols have dimension four. The proof of
correctness is thus complete.

E. Proof of Theorem 5: Graph G in Fig. 9

We show that R < 4/3 for the graph G in Fig. 9.
To set up the proof by contradiction, let us assume that
R = limLw→∞ Lw/Lv = 4/3 is (asymptotically) achievable,
i.e., Lv = 3Lw/4 + o(Lw).

Let us start with a useful inequality, stated in the following
lemma.

Lemma 5: When R = 4/3, for the graph G in Fig. 9,
we have

H(V5, V6|W1) ≥ Lw/2 + o(Lw). (78)

Proof:

H(V5, V6|W1) = H(V1, V2, V5, V6|W1)
− H(V1, V2|V5, V6, W1) (79)

(2)

≥ H(V1, V2, W2|W1)−H(V1|V5, W1)
− H(V2|V6, W1) (80)

(1)

≥ Lw −H(V1, V5|W1) + H(V5|W1)
− H(V2, V6|W1) + H(V6|W1) (81)

(39)(54)

≥ Lw − Lw/2 + Lw/4
− Lw/2 + Lw/4 + o(Lw) (82)

= Lw/2 + o(Lw) (83)

where the first term of (80) follows from the decoding
constraint (2) of the W2-edge {V1, V2}; (82) follows by
applying Lemma 3 to edges {V1, V5}, {V2, V6} and applying
Lemma 1 to nodes V5, V6.

Next, applying Lemma 3 to edges {V3, V5}, {V3, V6},
{V8, V5}, {V8, V6}, {V8, V7}, {V7, V4} and submodularity
repeatedly, we have

3Lw + o(Lw)
(54)
= H(V3, V5|W1) + H(V3, V6|W1)

+ H(V8, V5|W1) + H(V8, V6|W1)
+ H(V8, V7|W1) + H(V7, V4|W1) (84)

≥ H(V3, V5, V6|W1) + H(V3|W1)
+ H(V8, V5, V6|W1) + H(V8|W1)
+ H(V8, V7, V4|W1) + H(W7|W1) (85)

(39)(47)

≥ H(V3, V4, V5, V6, V7, V8|W1) + H(V5, V6|W1)
+ H(V8|W1) + 5Lw/4 (86)

(2)(47)(78)

≥ H(V3, V4, W2|W1)
+ Lw/2 + Lw/2 + 5Lw/4 (87)

(1)

≥ 13Lw/4 (88)
⇒ 3 ≥ 13/4 (contradiction) (89)
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where (86) follows by applying Lemma 1 to 2-color node
V7 and applying Lemma 2 to normal 2-color nodes V3, V8 and
the first term of (87) follows from the decoding constraint (2)
of the W2-edge {V3, V4}. We have arrived at a contradiction
and the proof is complete.

F. Proof of Theorem 6: Necessary Condition of GC=4/3
With K > 2

We show that R < 4/3 if a graph G contains any one of
the three structures in Theorem 6. Let us consider the three
structures sequentially.

The first structure is that G contains an M -color node,
where M ≥ 4. From (12), we have R ≤ (M + 1)/M ≤
5/4 < 4/3.

The second structure is that G contains a 3-color node
V that is connected to an M -color node Vi1 , where M ≥
2. Suppose {V, Vi1} is a Wk1 -edge. As V is 3-color,
we have a Wk2 -edge {V, Vi2} and a Wk3 -edge {V, Vi3}, where
k1, k2, k3 are distinct and i1, i2, i3 are distinct. As Vi1 is M -
color, M ≥ 2, we have a Wk-edge {Vi1 , Vj} where j might
be i2 or i3 (but j ̸= i1) and k might be k2 or k3 (but k ̸= k1).
The following proof will work under all circumstances.

Consider Wk2 -edge {V, Vi2} and Wk3 -edge {V, Vi3}. From
the decoding constraint (2), we have

2Lw
(1)(2)
= I(V, Vi2 , Vi3 ; Wk2 , Wk3) (90)
= H(V, Vi2 , Vi3)−H(V, Vi2 , Vi3 |Wk2 , Wk3) (91)
≤ 3Lv −H(V |Wk2 , Wk3) (92)

⇒ H(V |Wk2 , Wk3) ≤ 3Lv − 2Lw. (93)

Consider Wk-edge {Vi1 , Vj}. From (19), we have

H(Vi1 |Wk) ≤ 2Lv − Lw. (94)

Adding (93) and (94), we have

5Lv − 3Lw ≥ H(V |Wk2 , Wk3) + H(Vi1 |Wk) (95)
≥ H(V, Vi1 |Wk2 , Wk3 , Wk) (96)
(2)

≥ H(Wk1 |Wk2 , Wk3 , Wk) (97)
(1)
= Lw (98)

⇒ R = Lw/Lv ≤ 5/4 < 4/3. (99)

The third structure is that G contains a normal 2-color
node V that is connected to a 2-color node Vi and V, Vi are
connected to different types of edges. Suppose {V, Vi} is a
Wk-edge. As V, Vi are 2-color (the two colors are different)
and V is normal, we have a Wk1 -edge {Vi, Vi1}, a Wk2 -
edge {V, Vj1}, and a Wk3 -edge {Vj1 , Vj2} where k, k1, k2 are
distinct and k3 ̸= k2.

Consider Wk-edge {V, Vi} and Wk1 -edge {Vi, Vi1}.
Following the derivation of (93), we have

H(V |Wk, Wk1) ≤ 3Lv − 2Lw. (100)

Consider Wk3 -edge {Vj1 , Vj2}. From (19), we have

H(Vj1 |Wk3) ≤ 2Lv − Lw. (101)

Adding (100) and (101), we have

5Lv − 3Lw ≥ H(V |Wk, Wk1) + H(Vj1 |Wk3) (102)
≥ H(V, Vj1 |Wk, Wk1 , Wk3) (103)
(2)

≥ H(Wk2 |Wk, Wk1 , Wk3) (104)
(1)
= Lw (105)

⇒ R = Lw/Lv ≤ 5/4 < 4/3. (106)

G. Proof of Theorem 7: Sufficient Condition of GC=4/3 With
K > 2

We show that R = 4/3 is achievable if a graph G(V, E) /∈
GThm 6

C<3/4 contains no internal edge after removing one 1-color
nodes in residing paths. We first present the code construction,
which is a minor modification of that in Section IV-B.1 and
then prove it satisfies the decoding constraint (2), which is
similar to that in Section IV-B.2.

1) Code Construction: Choose the field size p to be a prime
that is greater than 4|E|. Set Lw = 4 log2 p, Lv = 3 log2 p so
that each source\coded symbol is comprised of 4\3 symbols
from Fp and the rate achieved is 4/3.

Consider the set of nodes that are connected to Wk-edges,
k ∈ [K] and denote this set by Vk. Consider the subgraph of
G(V, E) whose node set is Vk and edge set is comprised of
all edges that are not Wk-edges and are connected to some
node in Vk, denoted by Ekc and denote this subgraph by
Gk(Vk, Ekc). Decompose Gk(Vk, Ekc) into Wk′ -components,
k′ ̸= k and suppose we have Mk such components. A trivial
component with a single node can be classified as a Wk′ -
component for any k′ ̸= k and we just fix one k′ (any choice
will work). Among these Mk Wk′ -components, suppose
M1

k components are comprised of 1-color nodes and label
them as P

[1]
k , · · · , P

[M1
k ]

k ; M2
k components are comprised of

2-color nodes and label them as Q
[1]
k , · · · , Q

[M2
k ]

k ; the
remaining M3

k = Mk −M1
k −M2

k components are comprised
of 3-color nodes and label them as S

[1]
k , · · · , S

[M3
k ]

k (each such
component is an isolated node as 3-color nodes are connected
to only 1-color nodes when G /∈ GThm 6

C<3/4).
Generate generic linear combinations of the source symbols

as follows.

Wk = (Wk(1); · · · ; Wk(4)) ∈ F4×1
p , k ∈ [K] (107)

Xk = (Xk(1); · · · ; Xk(3M1
k + 2M2

k + M3
k ))

≜ HkWk ∈ F(3M1
k+2M2

k+M3
k)×1

p (108)

where each element of Hk ∈ F(3M1
k+2M2

k+M3
k)×4

p is chosen
uniformly and independently from Fp.

Consider P
[m]
k , m ∈ [M1

k ], denote its node by V , and set

V =
(
Xk(3m− 2), Xk(3m− 1), Xk(3m)

)
. (109)

This step completes the assignment for all 1-color nodes.
Consider Q

[m]
k , m ∈ [M2

k ]. Suppose Q
[m]
k contains J nodes

Vi1 , · · · , ViJ
. Consider Vij

, j ∈ [J ], which is 2-color.

If Vij is Wk-special, set V
[k]
ij

≜

Xk

(
3M1

k + 2m− 1
)

+ (2j − 1)Xk

(
3M1

k + 2m
)
;
(110)
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otherwise, set V
[k]
ij

= (V [k]
ij

(1), V [k]
ij

(2))

≜
(
Xk

(
3M1

k + 2m− 1
)

+ (2j − 1)Xk

(
3M1

k + 2m
)
,

Xk

(
3M1

k + 2m− 1
)

+ 2jXk

(
3M1

k + 2m
))

. (111)

For any 2-color node V that is connected to Wk1 -edges and
Wk2 -edges,

if V is normal, then set
V = (V [k1](1), V [k2](1), V [k1](2) + V [k2](2)); (112)
otherwise, set V = (V [k1], V [k2]). (113)

This step completes the assignment for all 2-color nodes.
Consider S

[m]
k , m ∈ [M3

k ], denote its node by V , and set

V [k] ≜ Xk(3M1
k + 2M2

k + m). (114)

For any 3-color node V that is connected to Wk1 -edges,
Wk2 -edges, and Wk3 -edges, set

V = (V [k1], V [k2], V [k3]). (115)

This step completes the assignment for all 3-color nodes and
as G /∈ GThm 6

C<3/4 contains no M -color nodes, where M ≥ 4,
the code construction is complete.

2) Proof of Correctness: Consider any edge {Vi, Vj} ∈ E
and suppose it is a Wk-edge.

When Vi, Vj contain one 1-color code, then our assignment
ensures that (Vi, Vj) contains four distinct elements of Xk,
which can be written as T4×4

ij Wk and det(Tij) is a non-zero
polynomial Tij(H1, · · · ,HK).

We are left with cases where Vi, Vj are both 2-color
(because 3-color nodes in G /∈ GThm 6

C<3/4 are connected only
to 1-color nodes). When Vi, Vj contain one normal 2-color
code, then G /∈ GThm 6

C<3/4 ensures that Vi, Vj are connected to
edges that are associated with the same set of two source
symbols, i.e., we are back to the K = 2 setting considered in
Theorem 2 and following the proof in Case 2 and Case 3 of
Section IV-B.2, we have Tij(H1, · · · ,HK) is non-zero. The
only remaining case is that Vi, Vj are both special, say Vi is
Wk1 -special and Vj is Wk2 -special, where k1 ̸= k, k2 ̸= k.
Then from (111) and (113), we know that (Vi, Vj) each
contains two distinct elements of Xk (distinctness is due to
the absence of internal edges after removing 1-color nodes)
so that Tij(H1, · · · ,HK) is not the zero-polynomial.

Finally, consider
∏

i,j:{Vi,Vj}∈E Tij(H1, · · · ,HK), which
is a non-zero polynomial with degree at most 4|E| < p,
the field size. By the Schwartz–Zippel lemma [28], [29],
[30], there exists a realization of H1, · · · ,HK so that each
Tij(H1, · · · ,HK) ̸= 0 and all decoding constraints (2) are
satisfied.

V. DISCUSSION

An extremal rate perspective is taken to study the storage
code problem over graphs. For the highest capacity values,
we have identified a number of combinatorial structures that
have significant impact on the code rate - M -color code
(i.e., the number of sources associated with a node), internal
edge (which captures a direct conflict between alignment
of undesired source symbols and independence of desired

source symbols), normal 2-color node\special 2-color node
(for rate 4/3, which keeps the same interference\which
could change interference up to the extent of 1/4 source
size). Both the achievability and converse results are guided
by a linear dimension counting view. The sufficient and
necessary conditions presented are not the largest that our
proof technique can lead to, i.e., we can solve more graph
instances, but a systematic description is still out of current
reach. It is not clear which rates will turn out to have
hard capacity instances. Specifically, all extremal graphs with
storage code capacity 4/3 appear to go beyond the techniques
of this work. Regarding generalizations, we note that our
model is the most elementary, where we have focused on
the highest capacity values, i.e., best rate scenarios instead
of lowest capacity values, i.e., worst rate scenarios, or other
physically meaningful rates; decoding constraints are placed
on a pair of nodes in this work instead of an arbitrary set of
nodes, i.e., we may have a hypergraph rather than a graph [2];
each edge is associated with only one source symbols instead
of multiple source symbols where the decoding structure can
be more diverse [1]. Finally, from an extremal rate and network
perspective, we may view combinatorial objects using the
metric of capacity and study further extremal (largest, densest,
most (linearly) independent) graphs, set families, vector spaces
etc. along the line of extremal combinatorics [31].
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