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Abstract— A secure storage code maps K source symbols, each
of Lw bits, to N coded symbols, each of Lv bits, such that each
coded symbol is stored in a node of a graph (one may view a
node as a server). Each edge of the graph is either associated
with D of the K source symbols such that from the pair of nodes
connected by the edge, we can decode the D source symbols and
learn no information about the remaining K − D source symbols;
or the edge is associated with no source symbols such that from
the pair of nodes connected by the edge, nothing about the K
source symbols is revealed. The ratio Lw/Lv is called the symbol
rate of a secure storage code and the highest possible symbol rate
is called the capacity. We characterize all graphs over which the
capacity of a secure storage code is equal to 1, when D = 1. This
result is generalized to D > 1, i.e., we characterize all graphs
over which the capacity of a secure storage code is equal to 1/D
under a mild condition that for any node, the source symbols
associated with each of its connected edges do not include a
common element. Further, we characterize all graphs over which
the capacity of a secure storage code is equal to 2/D.

Index Terms— Capacity, extremal rate, secure storage codes.

I. INTRODUCTION

MODERN datasets are usually massive and stored in a
distributed manner. Providing flexible accessibility and

security control over a variety of network topologies with
limited storage budget is a challenging task. Motivated by
such secure storage tasks, in this work we model a distributed
storage system and its data access structure using a graph and
aim to find storage efficient codes that satisfy the accessibility
and security constraints specified by the graph.

A secure storage code is a mapping from K source symbols
(e.g., files), W1, · · · , WK , each of Lw bits, to N coded
symbols, V1, · · · , VN , each of Lv bits. Each coded symbol
is stored in a node of a graph G (e.g., a server), so the
node set of the graph is V = {V1, · · · , VN }. Note that we
use Vn to denote both a coded symbol and a node as they
have a one-to-one mapping. The data accessibility and security
constraints are given through the edges of the graph. An edge
{Vi , V j } of the graph G is associated either with D of the K
source symbols or no source symbols. In the former case, the
requirement is that from (Vi , V j ), we can decode the D source
symbols and learn nothing about the remaining K − D source
symbols; in the latter case, (Vi , V j ) must be independent of
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Fig. 1. An example graph of a secure storage problem with K = 3 source
symbols and N = 8 coded symbols, whose capacity turns out to be 1/2 (refer
to Theorem 2. See Fig. 6 for a code construction). We may interpret this
instance as storing 3 files W1, W2, W3 over 8 servers V1, · · · , V8 such that
from some pair of servers, we may securely retrieve some files.

the K source symbols such that no information is leaked.
An example of a secure storage problem over a graph is given
in Fig. 1. We can now see how a graph representation is
used to capture the various data access patterns and security
requirements of storing K files over N servers. The storage
efficiency of a secure storage code is measured by its symbol
rate, defined as Lw/Lv , i.e., out of the (Lv) bits of each coded
symbol, how many bits (Lw) of each source symbol can be
securely stored. Our objective is to characterize for a given
graph G, the highest possible symbol rate, termed the capacity
C = sup Lw/Lv , of a secure storage code.

While this work is presented in a storage system context
(i.e., how to securely store files over a graph based distributed
storage system), the problem of secure storage has intimate
relations to a few communication network contexts. First,
when the graph G is bipartite (e.g., Fig. 1), the secure storage
problem can be viewed a generalization of the conditional dis-
closure of secrets (CDS) problem [1], [2], [3], [4], [5]. To see
this, we view the nodes on one side (e.g., V1, V2, V3, V4 in
Fig. 1) as the transmit signal sent by Alice and view the
nodes on the other side (e.g., V5, V6, V7, V8 in Fig. 1) as
the transmit signal sent by Bob. If and only if the signal
indices (node indices) satisfy some function (i.e., the type of
the edge corresponds to some source symbols), Carol who
receives both signals can recover the corresponding secrets.
Compared to the classic CDS problem where there is only one
secret (source symbol) to disclose, the secure storage problem
generalizes to include multiple secrets [5]; further, an arbitrary
subset of all secrets can be conditionally disclosed. As a result,
our secure storage problem can be applied to conditional
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disclosure of multiple secrets, e.g., there are multiple business
plans to share from Alice and Bob to Carol and if and only
if certain condition is satisfied for Alice and Bob (modelled
through the graph), correspoding business plans are revealed to
Carol. As CDS is closely related to secret sharing [6], secure
storage carries over such connection, especially to secret
sharing where access structure is modelled through graphs [7].
Note that extensions of secret sharing to multiple users are
present in the literature [8], [9], [10], but differences exist
in the message setting (e.g., how many secrets are associated
with each user) and performance metrics (e.g., symmetric rate
versus sum rate) when compared to our work. Second, the
secure storage problem can be interpreted as a secure network
coding problem [11], [12], [13] over a class of combination
networks. While previous work mainly considers multicast
or special message structures (e.g., nested) over combination
networks (often with no security) [14], [15], [16], [17], our
focus in this work is on the interplay between data access and
security pattern modelled by graphs other than the network
topology graph. As a consequence, our results on the secure
storage problem correspond to the solution of a class of secure
network coding problem, which can be interpreted as a class
of communication network problem with security constraints.

Main Result and Technique: Characterizing the capacity
of secure storage codes appears to be a formidable task,
mainly due to the fact that the constraint graph G can be
arbitrary. Different classes of graphs (or hypergraphs) G can be
used to model various well-known network information theory
problems, such as index coding [18] and coded caching [19],
as noticed in [20], which considers a similar graph storage
problem with no security constraints (but the coded symbols
may have different sizes). As a result, allowing arbitrary G
will involve well-established hard capacity questions.

Instead of fixing a graph G first and then pursuing the
capacity, the perspective we take in this work is to focus on
extremal rate values and the associated extremal graphs whose
secure storage capacity values are extremal. A natural starting
point is the setting of D = 1 and C = 1, where it is easily seen
that the capacity of secure storage code cannot exceed 1, i.e.,
the size of each coded symbol must be at least the size of each
source symbol, as long as there exist security constraints. Our
first main result is a full characterization of all such extremal
graphs whose capacity is C = 1 (refer to Theorem 1), i.e.,
if a graph belongs to this class, we construct a secure storage
code that achieves the highest possible symbol rate of 1 and
otherwise if a graph does not belong to this class, the symbol
rate of any secure storage code must be strictly smaller than
1. The key to this extremal rate characterization result is an
alignment view of the space of the source symbols, the noise
symbols (required to ensure information theoretic security),
and the coded symbols. Such an alignment view is first
introduced in [3], where all extremal graphs with C = 1 are
found with K = 1 source symbol. This work generalizes this
result to an arbitrary number of source symbols, i.e., from
K = 1 to any K . While only noise alignment and signal
(coded symbol) alignment are needed in [3] as there is only
K = 1 source symbol, here we further need interference
alignment to take care of other undesired source symbols as

K > 1. Interestingly, a decomposition based approach turns
out to be effective, i.e., we first separately design a secure
storage code for each source symbol and then combine each
separate code to produce a joint code that works for all source
symbols.

Our second main result is a generalization of Theorem 1
from D = 1 to any D > 1, but under an additional
condition to ensure that each coded symbol must be fully
covered by noise symbols (then C ≤ 1/D, equivalently,
Lv ≥ D × Lw). Under such a condition, we characterize
all extremal graphs whose capacity is C = 1/D (refer to
Theorem 2). Compared to Theorem 1 where each edge may
recover D = 1 source symbol, Theorem 2 considers the
case where each edge may recover D > 1 source symbols
and this introduces some technical difficulty. While the same
decomposition based approach continues to apply, ensuring
the simultaneous recovery of multiple source symbols is
more involved. As a consequence of such difficulty, the code
construction in Theorem 1 is explicit while in Theorem 2
we are only able to provide an existence proof that relies on
randomized code constructions over higher dimensions. So the
code construction and associated (achievability and converse)
proofs go much beyond those in [3].

Finally, noting that there exist graphs whose secure storage
code rates are strictly larger than C = 1/D, we study the
extremal rate of 2/D, which is the highest possible symbol
rate among all graphs. This graph class turns out to be fairly
straightforward and is stated mainly for completeness. Here
any pair of nodes connected by an edge have a total storage
size of 2Lv = D×Lw, i.e., all storage space is occupied by the
desired D source symbols. The extremal rate of 2/D places
very strict constraints on the graph G. Our third main result is a
full characterization of all extremal graphs G whose capacity is
C = 2/D (refer to Theorem 3). Notably, linear coding (storing
linear combinations of different source symbols) is necessary
to achieve the capacity of 2/D, i.e., storing the source symbols
directly is not sufficient.

II. PROBLEM STATEMENT AND DEFINITIONS

Consider K independent source symbols W1, · · · , WK , each
of Lw bits.

H(W1, · · · , WK ) = H(W1) + · · · + H(WK ),

Lw = H(W1) = · · · = H(WK ). (1)

Consider N coded symbols V1, · · · , VN , each of Lv bits.
Note that Lw, Lv are not necessarily integer values. For
example, if Wk are uniformly random F3 symbols, then
Lw = log2 3 bits. Furthermore, since we are interested in their
relative size (see (4)), Lw, Lv are allowed to take arbitrarily
large values.

The constraints on the coded symbols are specified by a
graph G = (V, E), where the node1 set V = {V1, · · · , VN }

and the edge set E is a set of unordered pairs from V .
Each edge {Vi , V j } ∈ E is associated with a subset D of

1Note that we abuse the notation by using Vn to denote both a coded
symbol and a node of the graph, for the sake of simplicity. The context will
make its meaning clear.
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{1, 2, · · · , K } ≜ [K ], which either has D elements or is an
empty set, i.e., |D| = D or D = ∅. The edge association is
described by a function t : t ({Vi , V j }) = D. For each edge
{Vi , V j }, it is required that from (Vi , V j ), we can decode and
only decode the messages (Wk)k∈D. That is, ∀{Vi , V j } ∈ E
such that t ({Vi , V j }) = D, we have

(Correctness) H
(
(Wk)k∈D | Vi , V j

)
= 0, (2)

(Security) I
(
Vi , V j ; (Wk)k∈[K ]\D | (Wk)k∈D

)
= 0 (3)

where for two sets A,B, A\B denotes the set of elements that
belong to A but not to B. To understand the security constraint,
we may interpret the threat model as the existence of an
external eavesdropper, who may observe any edge of the graph
but cannot obtain any additional information. An isolated node
V , i.e., a node connected to no edges, is trivial as it has
no constraint. Without loss of generality, we assume that any
graph G considered in this work contains no isolated nodes.

A mapping from the source symbols W1, · · · , WK to the
coded symbols V1, · · · , VN that satisfies the correctness and
security constraints (2), (3) specified by a graph G = (V, E)

is called a secure storage code. The (achievable) symbol rate
of a secure storage code is defined as

R ≜
Lw

Lv

(4)

and the supremum of symbol rates is called the capacity, C .
Note that supremum includes limits, so R = limLw→∞ Lw/Lv

is also (asymptotically) achievable.

A. Graph Definitions

To facilitate the presentation of our results, we introduce
some graph definitions in this section.

For a graph G = (V, E), we wish to separately consider
each source symbol Wk and see if each edge is associated
with Wk (i.e., can recover Wk). This leads us to the definition
of G[k].

Definition 1 (Characteristic Graph G[k] of Wk): For a
graph G = (V, E), define ∀k ∈ [K ]

G[k]
= (V [k], E [k]) such that V [k]

= {V [k]

1 , · · · , V [k]

N },

{V [k]

i , V [k]

j } ∈ E [k] if and only if {Vi , V j } ∈ E,

t [k]({V [k]

i , V [k]

j }) =

{
{k} if k ∈ t ({Vi , V j })

∅ else if k /∈ t ({Vi , V j }).
(5)

Fig. 2 shows an example of G and its G[1] of W1.
For a node V of a graph G = (V, E), the common elements

of the source symbols associated with each of its connected
edges are relevant in stating our results, then we make them
explicit in the following definition.

Definition 2 (Common Sources C(V )): Consider a node
V ∈ V of a graph G = (V, E), define

C(V ) =

⋂
i :{V,Vi }∈E

t ({V, Vi }). (6)

For example, consider node V1 in Fig. 2, C(V1) = {1, 2} ∩

{2, 3} ∩ {1, 3} = ∅.

Fig. 2. (a) An example graph G with K = 3 source symbols, N = 8 coded
symbols, and D = 2 (each edge may be associated with 2 source symbols)
and (b) its characteristic graph G[1] of W1.

For an edge of a graph G = (V, E), it is important if
the edge is associated with some source symbol or no source
symbol. Depending on this, an edge is called either qualified
or unqualified and we have similar definitions for paths and
components.

Definition 3 (Qualified/Unqualified Edge/Path/Component):
Consider a graph G = (V, E). An edge E ∈ E is called
qualified if t (E) ̸= ∅ and unqualified if t (E) = ∅.
A sequence of connecting qualified/unqualified edges is
called a qualified/unqualified path. A qualified edge that
connects two nodes in an unqualified path is said to be
internal. A qualified/unqualified component is a maximal
induced subgraph of G wherein any two nodes are connected
by a qualified/unqualified path.

Note that the above definition applies to both G and
G[k]. For example, in Fig. 2, {V1, V5} is a qualified edge,

{V [1]

1 , V [1]

6 } is an unqualified edge,
(
{V [1]

5 , V [1]

4 }, {V [1]

4 , V [1]

7 }
)

is an unqualified path, G is a qualified component, and G[1]

contains no internal qualified edges.
Finally, a node V of a graph G = (V, E) whose all

connected edges are associated with the same set of source
symbols, is degenerate (because all constraints of V can be
satisfied by storing the same set of source symbols in V ). It is
convenient to remove all degenerate nodes when the results are
presented (note that this is only to simplify the presentation
and our results and proofs hold with degenerate nodes) and
we have the following definition.

Definition 4 (Non-degenerate Subgraph G̃ of G): For a
graph G = (V, E), denote the set of degenerate nodes
by Vd , i.e.,

Vd ≜
⋃ {

V ∈ V | t ({V, Vi }) = C(V ), ∀{V, Vi } ∈ E
}
. (7)

The subgraph of G induced by the non-degenerate nodes V\Vd
is defined as G̃, i.e., G̃ ≜ G[V\Vd ].
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Fig. 3. An example graph G with K = 2, N = 5, D = 1 and G̃ = ∅.
W1 = (a1, a2), W2 = (b1, b2) and C = 2.

III. RESULTS

In this section, we present our main results along with
illustrative examples and observations.

A. D = 1 and Extremal Graphs With C = 1

We start with the setting of D = 1. All extremal graphs
whose secure storage capacity is C = 1 are characterized in
the following theorem.

Theorem 1: The capacity of a secure storage code over a
graph G with D = 1 is C = 1 if and only if the non-
degenerate subgraph G̃ of G is not empty and for every
qualified component Q of G̃, the characteristic graph Q[k] of
each coded symbol Wk, k ∈ [K ] contains no internal qualified
edge.

Remark 1: When the non-degenerate subgraph G̃ of G
is empty, each node of G is connected to edges that are
associated with the same set of source symbols. If there exists
a qualified edge in G, the secure storage capacity is 2 (this
trivial case will be covered in Theorem 3, see Fig. 3 for an
example).

The proof of Theorem 1 is presented in Section IV. Here
to illustrate the idea, we give two examples. The first example
(see Fig. 4) is used to explain the ‘if’ part, i.e., the graph G
satisfies the condition in Theorem 1 and the secure storage
capacity is C = 1.

Example 1: Consider the secure storage problem instance
in Fig. 4. Each node has security constraint such that Lv ≥ Lw

and R ≤ 1. An optimal code with R = 1 is constructed as
follows. Suppose each coded symbol Wk is from F5. First, G
is a qualified component so that the same independent noise
variable Z (uniform over F5) must be used (coined noise
alignment, refer to Lemma 3). Second, the coded symbols
are designed by considering each Wk and G[k] separately.
For example, consider W1 and G[1] in Fig. 4.(b), wherein an
unqualified component cannot reveal anything about W1 so
that the same coded symbol must be assigned (coined coded
symbol alignment, refer to Lemma 4). We then assign a
generic combination to each unqualified component, e.g.,
V [1]

1 = V [1]

4 = W1 + Z , V [1]

2 = V [1]

3 = 2W1 + Z , V [1]

5 =

V [1]

6 = 3W1 + Z (colored differently in Fig. 4.(b)). As there
is no internal qualified edge, all qualified edges span different
unqualified components and contain linearly independent com-
binations of the source symbol and the noise, from which the
desired source symbol can be obtained (e.g., see (V [1]

1 , V [1]

5 )

in Fig. 4.(b)). Finally, we combine (add) the source symbol
assignment in each G[k] to produce the coded symbol assign-
ment in G so that for any edge, the desired source symbol

Fig. 4. (a) An example graph G with K = 2, N = 6, D = 1 and (b) its
G[1] of W1. The secure storage capacity over G is 1 and a capacity achieving
code construction is shown.

Fig. 5. (a) An example graph G with K = 2, N = 3, D = 1 and (b) its
G[1] of W1. The secure storage capacity over G cannot be 1.

has different coefficients (thus correct) and undesired source
symbols (and noise) are aligned (thus secure).

The second example (see Fig. 5) is used to explain the ‘only
if’ part, i.e., when G̃ ̸= ∅ and the graph G does not satisfy
the condition in Theorem 1, then the secure storage capacity
C < 1.

Example 2: Consider the secure storage problem instance
in Fig. 5. G[1] contains an internal qualified edge {V [1]

2 , V [1]

3 }

inside the unqualified path
(
{V [1]

2 , V [1]

1 }, {V [1]

1 , V [1]

3 }

)
. The

intuition that C ̸= 1, i.e., Lv ̸= Lw is as follows (ignoring
o(Lw) terms). When Lv = Lw, in Fig. 5.(a), G is a qualified
component so that the same noise must be used in each of
V1, V2, V3 (called noise alignment, refer to Lemma 3); in
Fig. 5.(b),

(
{V [1]

2 , V [1]

1 }, {V [1]

1 , V [1]

3 }

)
is an unqualified path

so that the same coded symbol about W1 must be stored
in V1, V2, V3 (called coded symbol alignment, which can be
captured by conditioned entropy. Refer to Lemma 4). It then
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Fig. 6. An example graph G with K = 3, N = 8, D = 2 and a code construction that achieves the capacity 1/2. Note that the precoding coefficients for
each source symbol are vectors while only scalars are needed in [3].

Fig. 7. An example graph G with K = 3, N = 6, D = 2 and a code
construction that achieves the capacity 1.

follows that V2, V3 must store the same information about
W1, which contradicts the fact that from (V2, V3), we can
decode W1. The above discussion can be translated to entropy
manipulations and the details are presented in Section V-A.

B. Arbitrary D and Extremal Graphs With C = 1/D

Next, we extend Theorem 1 to the setting of arbitrary D.
Under the condition that every non-degenerate node has no
common source, all extremal graphs whose secure storage
capacity is C = 1/D are characterized in the following
theorem.

Theorem 2: Consider the class of graph G = (V, E) where
the non-degenerate subgraph G̃ of G is not empty and C(V ) =

∅, ∀V ∈ V\Vd . For this class of graph G, the capacity of a
secure storage code is C = 1/D if and only if for every
qualified component Q of G̃, the characteristic graph Q[k] of
each coded symbol Wk, k ∈ [K ] contains no internal qualified
edge.

Remark 2: Theorem 2 includes Theorem 1 as a special case
because when D = 1, any non-degenerate node must have no
common source (note that non-degenerate nodes are connected
to edges associated with different source symbols).

The proof of Theorem 2 is presented in Section V. An exam-
ple is given in Fig. 6 to explain the code construction of the
‘if’ part.

Example 3: Consider the graph G in Fig. 6. The code
construction is based on a similar idea as that of Example 1,
i.e., each Wk and G[k] is considered separately and generic

combinations are assigned to each unqualified component of
G[k] (colored differently in Fig. 6 for W1); then the overall
assignment is obtained as the sum of each assignment in G[k].
In Fig. 6, each Wk is from F3 and Z ∈ F2×1

3 is an independent
uniform noise. The main difference between this example
where D = 2 and Example 1 where D = 1 is that to
ensure correctness, D = 1 only requires the coefficients of the
desired source symbol to be different while D > 1 needs the
coefficient matrix to be full rank (for which an explicit design
is not obvious). An explicit solution is provided in Fig. 6 for
this small example while in general, the proof in Section V-B
relies on randomized construction.

C. Arbitrary D and Extremal Graphs With C = 2/D

Finally, we consider the extremal rate of 2/D. All extremal
graphs whose secure storage capacity is C = 2/D are
characterized in the following theorem.

Theorem 3: The capacity of a secure storage code over a
graph G = (V, E) is C = 2/D if and only if the following
two conditions are satisfied.

1) For any V ∈ V , |C(V )| ≥ D/2.
2) For any {Vi , V j } ∈ E , C(Vi ) ∪ C(V j ) = t ({Vi , V j }).
In words, the conditions in Theorem 3 are 1). for each

node, there are at least D/2 common sources and 2). for
each qualified edge, the union of the common sources of
both nodes must be the set of D desired source symbols. The
intuition is fairly straightforward as the total storage of any
qualified edge is exactly 2Lv = 2 × 1/R × Lw = D × Lw

(ignoring o(Lw) terms), which must be fully occupied by the
desired D source symbols and there is absolutely no room for
anything else. As a consequence, we can show that each coded
symbol must be a deterministic function of its common sources
(refer to Lemma 5). Then the two conditions in Theorem 3
follow as necessary conditions as otherwise we do not have
sufficient information from the desired source symbols to fill
a node and a qualified edge. The two conditions also turn
out to be sufficient by random linear coding, i.e., storing a
sufficient number of generic combinations of the common
sources guarantees the successful recovery of the desired
source symbols (see Fig. 7 for an example). The detailed proof
of Theorem 3 is deferred to Section VI.
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IV. PROOF OF THEOREM 1

Theorem 1 is recovered as a special case of Theorem 2,
so the proof of Theorem 1 can also be recovered from the
proof of Theorem 2, presented in Section V. However, in this
section we still provide a proof of the code construction for the
‘if’ part because here D = 1, the code can be made explicit
while in Theorem 2 where D can be arbitrary, the code is
randomized.

A. Code Construction of the ‘if’ Part

We show that if G satisfies the condition in Theorem 1,
then we can construct a secure storage code of symbol rate
R = 1. Suppose Lw = log2(q) bits and each source symbol
Wk is one symbol from finite field Fq , where the field size
q will be specified later in the proof. Each coded symbol Vn
will be set as one symbol from Fq , i.e., Lv = log2(q) bits and
R = Lw/Lv = 1, as desired.

A degenerate node V ∈ Vd , i.e., all connected edges are
associated with the same coded symbol Wi (or all connected
edges are unqualified, in this case set V to contain an indepen-
dent noise variable), is trivial, and set V = Wi . Henceforth,
we focus on the non-degenerate subgraph G̃ of G, i.e., all
non-degenerate nodes V\Vd . Suppose G̃ has M qualified
components, Q1, · · · , QM . To assign the coded symbols in
Qm, m ∈ [M], we will first consider the characteristic graph
Q[k]

m , m ∈ [M], k ∈ [K ] of each coded symbol Wk separately
and then combine the separated assignments.

Consider Q[k]
m , ∀m ∈ [M], k ∈ [K ]. Suppose Q[k]

m contains
U [k]

m unqualified components and set the field size q as a prime
number such that q > maxm,k U [k]

m . The nodes in Q[k]
m are set

as follows.

For each node V [k] in the u-th unqualified component

of Q[k]
m where u ∈ [U [k]

m ], set V [k]
= u × Wk + Z [k]

m (8)

where Z [k]
m , ∀m, k are i.i.d. uniform noise symbols from Fq

and are independent of Wk . As the condition of Theorem 1
is satisfied, i.e., Q[k]

m contains no internal qualified edge, the
assignment (8) satisfies the following two properties.

For each qualified edge {V [k]

i , V [k]

j } in Q[k]
m ,

from V [k]

i − V [k]

j we can obtain Wk . (9)

For each unqualified edge {V [k]

i , V [k]

j } in Q[k]
m ,

V [k]

i = V [k]

j . (10)

(9) follows from the observation that as there is no internal
edge, V [k]

i and V [k]

j belong to different unqualified components
such that the coefficients before Wk are different (see (8)). (10)
follows from the fact that any unqualified edge belongs to the
same unqualified component and (8).

Consider Qm, ∀m ∈ [M]: Note that the nodes in Qm and
Q[k]

m have a one-to-one mapping. Each node in Qm is simply
set as the sum of each corresponding node in Q[k]

m for all
k ∈ [K ].

For each node V in Qm , set V =
∑

k∈[K ]
V [k]. (11)

We Show That the Code Construction (8), (11) is Correct
and Secure: Edges connected to degenerate nodes are trivial
and we only need to consider the remaining edges. Consider
any qualified edge {Vi , V j }, i.e., t ({Vi , V j }) = {l}.

Vi − V j
(11)
=

∑
k∈[K ]

(
V [k]

i − V [k]

j

)
(12)

(10)
= V [l]

i − V [l]
j (13)

where the last step follows from the fact that {V [k]

i , V [k]

j }, k ̸=

l is an unqualified edge as t ({Vi , V j }) = {l} (see Definition 1).
Further, {V [l]

i , V [l]
j } is a qualified edge, so by (9), V [l]

i − V [l]
j

can recover Wl and correctness is guaranteed. To verify
security, note that (Vi , V j ) is invertible to (Vi − V j , Vi ),
which is further invertible to (Wl , Vi ). From (8), (11), Vi is
fully covered by uniform noise variables such that nothing
about source symbols other than Wl is revealed and security
follows. Finally, any unqualified edge {Vi , V j } is easily seen
to be secure, because if Vi , V j belong to the same qualified
component, then Vi = V j and Vi is independent of all source
symbols; otherwise Vi , V j belong to two qualified components,
then Vi , V j are covered by independent noise variables.

V. PROOF OF THEOREM 2

This section contains the proof of Theorem 2. We first prove
the ‘only if’ part in Section V-A and then prove the ‘if’ part
in Section V-B.

A. Only If Part

We start with a useful lemma that holds for any symbol
rate and any graph. This lemma will be used in the proof of
Theorem 3 as well.

Lemma 1 (Independence of Non-common Sources): A
coded symbol V must be independent of its non-common
source symbols (with and without conditioning on the
common source symbols),

I
(
V ; (Wk)k∈[K ]\C(V ) | (Wk)k∈C(V )

)
= 0, (14)

I
(
V ; (Wk)k∈[K ]\C(V )

)
= 0. (15)

Proof: First, we prove (14). Consider any non-common
source symbol Wi of the node V , i.e., i ∈ [K ]\C(V ). As Wi is
not a common source symbol of V , there must exist an edge
{V, V j } such that i /∈ t ({V, V j }) = D, for which from the
security constraint (3) we have

0
(3)
= I

(
V, V j ; (Wk)k∈[K ]\D | (Wk)k∈D

)
(16)

≥ I
(
V ; Wi | (Wk)k∈[K ]\{i}

)
. (17)

Consider any subset J of [K ]\({i} ∪ C(V )). As the source
symbols Wk are independent (refer to (1)), from (17) we have

0
(17)
≥ I

(
V ; Wi | (Wk)k∈[K ]\{i}

)
(18)

(1)
= I

(
V, (Wk)k∈[K ]\({i}∪C(V )∪J ) ; Wi | . . .

. . . (Wk)k∈J , (Wk)k∈C(V )

)
(19)

≥ I
(
V ; Wi | (Wk)k∈J , (Wk)k∈C(V )

)
. (20)

Authorized licensed use limited to: University of North Texas. Downloaded on August 10,2023 at 14:03:58 UTC from IEEE Xplore.  Restrictions apply. 



LI AND SUN: ON EXTREMAL RATES OF SECURE STORAGE OVER GRAPHS 4727

The desired identity (14) can now be obtained by adding (20)
for a proper sequence of J that is consistent with the chain
rule expansion of (14).

Second, we prove (15), as a simple consequence of (14).

0
(14)
= I

(
V ; (Wk)k∈[K ]\C(V ) | (Wk)k∈C(V )

)
(21)

(1)
= I

(
V, (Wk)k∈C(V ) ; (Wk)k∈[K ]\C(V )

)
(22)

≥ I
(
V ; (Wk)k∈[K ]\C(V )

)
. (23)

We now proceed to the proof of the ‘only if’ part. We show
that symbol rate R = 1/D is not achievable if a graph G
does not satisfy the condition in Theorem 2, i.e., there exists a
qualified component Q of the non-degenerate subgraph G̃ of G
such that the characteristic graph Q[k] of some coded symbol
Wk contains an internal qualified edge. Without loss of gen-
erality, suppose k = 1 and suppose the internal qualified edge
is {V [1]

1 , V [1]

P }, which is inside the sequence of unqualified

edges
(

{V [1]

1 , V [1]

2 }, · · · , {V [1]

P−1, V [1]

P }

)
. To set up the proof

by contradiction, let us assume that R =
1
D = limLw→∞

Lw

Lv

is asymptotically achievable, i.e., Lv = DLw + o(Lw). Note
that when the rate is exactly achievable, the o(Lw) term is
zero and the following proof continues to hold.

We show that when R = 1/D, each non-degenerate coded
symbol that has no common source must be fully covered by
noise. This property is stated in the following lemma.

Lemma 2 (Noise Size): When R = 1/D, for a non-
degenerate graph G̃ = (V, E) such that every node V ∈ V
satisfies C(V ) = ∅, we have

H(V ) = H
(
V | (Wk)k∈[K ]\{1}

)
= H

(
V | (Wk)k∈[K ]

)
= DLw + o(Lw). (24)

Proof: From (15) and C(V ) = ∅, we have H(V ) =

H
(
V | (Wk)k∈[K ]\{1}

)
= H

(
V | (Wk)k∈[K ]

)
. Noting that

H(V ) ≤ Lv = DLw + o(Lw), we only need to prove
H(V ) ≥ DLw + o(Lw) and this is presented next.

As V is non-degenerate, there exists a qualified edge
{V, Vi } ∈ E and t ({V, Vi }) = D, |D| = D. From the
correctness constraint (2), we have

DLw
(1)
= H

(
(Wk)k∈D

)
(25)

(2)
= I

(
V, Vi ; (Wk)k∈D

)
(26)

(15)
= I

(
V ; (Wk)k∈D | Vi

)
(27)

≤ H(V ) (28)

where in (27), we use the fact that Vi ∈ V\Vd such that
C(Vi ) = ∅ and from Lemma 1, Vi is independent of the source
symbols Wk .

Next we show that when R = 1/D, all nodes in a qualified
component must use the same noise, i.e., noise must align.
This property is stated in the following lemma.

Lemma 3 (Noise Alignment): When R = 1/D, for a non-
degenerate graph G̃ = (V, E) such that every node V ∈ V

satisfies C(V ) = ∅, we have

∀{Vi , V j } ∈ E such that t ({Vi , V j }) = D, |D| = D,

H
(
Vi , V j | (Wk)k∈[K ]

)
= DLw + o(Lw), (29)

and for any qualified component Q of G̃

with node index set Q,

H
(
(Vi )i∈Q | (Wk)k∈[K ]

)
= DLw + o(Lw). (30)

Proof: First, consider (29). On the one hand, we have

H
(
Vi , V j | (Wk)k∈[K ]

)
= H

(
Vi , V j

)
− I

(
Vi , V j ; (Wk)k∈[K ]

)
(31)

(2)
= H

(
Vi , V j

)
− I

(
Vi , V j , (Wk)k∈D ; (Wk)k∈[K ]

)
(32)

≤ H
(
Vi , V j

)
− H

(
(Wk)k∈D

)
(33)

(1)
≤ 2Lv − DLw = DLw + o(Lw). (34)

On the other hand, we have

H
(
Vi , V j | (Wk)k∈[K ]

)
≥ H

(
Vi | (Wk)k∈[K ]

) (24)
= DLw + o(Lw). (35)

Second, consider (30). The “≥” direction is obvious,
because for any j ∈ Q

H
(
(Vi )i∈Q | (Wk)k∈[K ]

)
≥ H

(
V j | (Wk)k∈[K ]

) (24)
= DLw + o(Lw) (36)

and we only need to prove the “≤” direction. Start with any
qualified edge {Vi1 , Vi2}, i1, i2 ∈ Q in the qualified component
Q, inside which there must exist a node Vi3 and a node from
Vi1 , Vi2 (suppose it is Vi2 without loss of generality) such
that {Vi2 , Vi3} is a qualified edge. From the sub-modularity
property of entropy functions, we have

H
(
Vi1 , Vi2 | (Wk)k∈[K ]

)
+ H

(
Vi2 , Vi3 | (Wk)k∈[K ]

)
≥ H

(
Vi1 , Vi2 , Vi3 | (Wk)k∈[K ]

)
+ H

(
Vi2 | (Wk)k∈[K ]

)
(37)

(29)(24)
H⇒ DLw + DLw ≥ H

(
Vi1 , Vi2 , Vi3 | (Wk)k∈[K ]

)
+ DLw + o(Lw) (38)

⇒ H
(
Vi1 , Vi2 , Vi3 | (Wk)k∈[K ]

)
≤ DLw + o(Lw). (39)

Then we can similarly proceed to include all nodes in Q.
As Q is a qualified component, there must exist a vertex
Vi4 , i4 ∈ Q such that {V, Vi4} is a qualified edge, where V
is one vertex from Vi1 , Vi2 , Vi3 . Similarly, we have

H
(
Vi1 , Vi2 , Vi3 , Vi4 | (Wk)k∈[K ]

)
≤ DLw + o(Lw), · · · ,

H
(
(Vi )i∈Q | (Wk)k∈[K ]

)
≤ DLw + o(Lw). (40)

Consider the nodes V1, · · · , VP that violate the condition in
Theorem 2, i.e., from each one of (V1, V2), · · · , (VP−1, VP ),
we cannot learn anything about W1; from (V1, VP ), we can
decode W1. In the following lemma, we show that the coded
symbols V1, · · · , VP must contain the same information of
W1 and noise, i.e., the coded symbols must align.
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Lemma 4 (Coded Symbol Alignment): When R = 1/D, for
the nodes V1, · · · , VP as specified above, we have

∀p ∈ [P − 1],

H
(
Vp, Vp+1 | (Wk)k∈[K ]\{1}

)
= DLw + o(Lw), (41)

H
(
V1, VP | (Wk)k∈[K ]\{1}

)
= DLw + o(Lw). (42)

Proof: For both (41) and (42), the “≥” direction follows
from (24) and we only need to prove the “≤” direction.

First, consider (41). From (Vp, Vp+1) we cannot decode
W1, so the edge {Vp, Vp+1} is either an unqualified edge or a
qualified edge but 1 /∈ t ({Vp, Vp+1}). In the former case, from
the security constraint (3) where t ({Vp, Vp+1}) = ∅, we have

H
(
Vp, Vp+1 | (Wk)k∈[K ]\{1}

)
(3)(1)
= H

(
Vp, Vp+1 | (Wk)k∈[K ]

)
(43)

≤ H
(
(Vi )i∈Q | (Wk)k∈[K ]

)
(44)

(30)
= DLw + o(Lw) (45)

where (44) follows from the fact that V1, · · · , VP belong
to a qualified component Q with node index set Q. In the
latter case, from the correctness constraint (2) where 1 /∈

t ({Vp, Vp+1}) = D, we have

H
(
Vp, Vp+1 | (Wk)k∈[K ]\{1}

)
(2)
= H

(
Vp, Vp+1

)
− I

(
Vp, Vp+1, (Wk)k∈D ; . . .

. . . (Wk)k∈[K ]\{1}

)
(46)

(1)
≤ 2Lv − DLw = DLw + o(Lw). (47)

Second, consider (42). From the sub-modularity property of
entropy functions, we have

(P − 1)DLw + o(Lw)

(41)
=

∑
p∈[P−1]

H
(
Vp, Vp+1 | (Wk)k∈[K ]\{1}

)
(48)

≥ H
(
V1, · · · , VP | (Wk)k∈[K ]\{1}

)
+

P−1∑
p=2

H
(
Vp | (Wk)k∈[K ]\{1}

)
(49)

(24)
≥ H

(
V1, VP | (Wk)k∈[K ]\{1}

)
+ (P − 2)DLw + o(Lw) (50)

⇒ H
(
V1, VP | (Wk)k∈[K ]\{1}

)
≤ DLw + o(Lw). (51)

After establishing the above lemmas, we are ready to
demonstrate the contradiction as follows. Recall that from
(V1, VP ), we can recover W1, i.e., 1 ∈ t ({V1, VP }).

DLw + o(Lw)

(42)
= H

(
V1, VP | (Wk)k∈[K ]\{1}

)
(52)

(2)
= H

(
V1, VP , W1 | (Wk)k∈[K ]\{1}

)
(53)

= H
(
W1 | (Wk)k∈[K ]\{1}

)
+ H

(
V1, VP | (Wk)k∈[K ]

)
(54)

(1)(29)
= Lw + DLw + o(Lw). (55)

Normalizing (55) by Lw and letting Lw approach infinity,
we have D = 1 + D, and the contradiction is arrived. The
proof of the only if part is thus complete.

B. If Part

We show that if the condition in Theorem 2 is satisfied,
then the secure storage capacity is 1/D. We first prove that
R ≤ 1/D and then show that R = 1/D is achievable.

The proof of R ≤ 1/D is immediate. As G̃ is not
empty, there must exist a qualified edge {Vi , V j } such that
t ({Vi , V j }) = D, |D| = D. From the correctness constraint
(2), we have

DLw
(1)
= H

(
(Wk)k∈D

)
(56)

(2)
= I

(
Vi , V j ; (Wk)k∈D

)
(57)

(15)
= I

(
V j ; (Wk)k∈D |Vi

)
(58)

≤ H(V j ) ≤ Lv (59)

⇒ R
(4)
= Lw/Lv ≤ 1/D (60)

where (58) follows from the condition that C(Vi ) = ∅, ∀Vi ∈

V\Vd and (15).
We now present a secure storage code construction that

achieves symbol rate R = 1/D if G = (V, E) satisfies
the condition in Theorem 2. The scheme is a generalization
of that presented in Section IV-A. Suppose Lw = log2(q)

bits and each source symbol Wk is one symbol from finite
field Fq , where q > D|E |. Each coded symbol Vn will be
set as D symbols from Fq , i.e., Lv = D log2(q) bits and
R = Lw/Lv = 1/D, as desired.

Degenerate nodes Vd (and their connected edges) are trivial
and we only need to consider the non-degenerate subgraph G̃
of G. Suppose G̃ has M qualified components, Q1, · · · , QM .

Consider Q[k]
m , ∀m ∈ [M], k ∈ [K ]. Suppose Q[k]

m contains
U [k]

m unqualified components.

For each node V [k] in the u-th unqualified component

of Q[k]
m where u ∈ [U [k]

m ],

set V [k]
= h[k]

m,u × Wk + Z[k]
m (61)

where h[k]
m,u ∈ FD×1

q ; Z[k]
m ∈ FD×1

q , ∀m, k are i.i.d. uniform
noise symbols that are independent of Wk .

Consider Qm, ∀m ∈ [M].

For each node V in Qm , set V =
∑

k∈[K ]
V [k]. (62)

We show that there exists a choice of h[k]
m,u, k ∈ [K ], m ∈

[M], u ∈ [U [k]
m ] such that the code construction (61), (62)

is correct and secure. To this end, choose every entry of
h[k]

m,u independently and uniformly from Fq . Consider correct-
ness. For any qualified edge {Vi , V j }, i.e., t ({Vi , V j }) = D,

|D| = D, we have

Vi − V j
(62)
=

∑
k∈[K ]

(
V [k]

i − V [k]

j

)
(63)

(61)
=

∑
k∈D

(
V [k]

i − V [k]

j

)
(64)

= Hi j × (Wk)k∈D (65)
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where (64) from the fact that {V [k]

i , V [k]

j }, k /∈ D is an unqual-
ified edge such that V [k]

i , V [k]

j belong to the same unqualified
component and from (61), V [k]

i = V [k]

j , k /∈ D. (65) is
obtained because {V [k]

i , V [k]

j }, k ∈ D is a qualified edge that
is not internal, i.e., spans different unqualified components.
In addition, Hi j is a D × D matrix over Fq , whose entries can
be obtained from h[k]

m,u and we require the matrix Hi j to have
full rank while the corresponding place in the code of [3] is an
obviously non-zero scalar. View the determinant of Hi j , |Hi j |

as a polynomial in variables h[k]
m,u, k ∈ [K ], m ∈ [M], u ∈

[U [k]
m ]. This determinant polynomial has degree D and is not

a zero polynomial as there exists a realization of h[k]
m,u such

that the determinant is not zero. Consider the product of the
determinant polynomials for all |E | qualified edges,

poly ≜
∏

i, j :{Vi ,V j }∈E
|Hi j | (66)

which is a non-zero polynomial and has degree at most D|E |.
By the Schwartz–Zippel lemma [21], [22], [23], a uniform

choice of h[k]
m,u, k ∈ [K ], m ∈ [M], u ∈ [U [k]

m ] over Fq where
q > D|E | (the degree of poly) guarantees poly is not always
zero. It follows that there exists some realization of h[k]

m,u, k ∈

[K ], m ∈ [M], u ∈ [U [k]
m ] such that poly ̸= 0. Then each |Hi j |

is not zero and from each qualified edge, we can recover the
D desired source symbols, i.e., correctness is guaranteed.

Finally consider security. For any qualified edge {Vi , V j },
security is guaranteed by noting that (Vi , V j ) is invertible
to

(
(Wk)k∈D , Vi

)
and Vi is fully covered by uniform noise

variables. For any unqualified edge {Vi , V j }, security holds no
matter whether Vi , V j belong to the same qualified component
(same coded symbol assignment, i.e., Vi = V j ) or two qual-
ified components (then Vi , V j are protected by independent
noise variables).

VI. PROOF OF THEOREM 3

This section contains the proof of Theorem 3. We first prove
the ‘only if’ part in Section VI-A and then prove the ‘if’ part
in Section VI-B.

A. Only If Part

We start with a useful property for any secure storage code
of symbol rate R = 2/D, stated in the following lemma. Note
that when R =

2
D = limLw→∞

Lw

Lv
, we have2

2Lv = DLw + o(Lw). (67)

Lemma 5 (Deterministic of Common Sources): When R =

2/D, a coded symbol V that is connected to a qualified
edge is asymptotically deterministic given its common source
symbols,

H
(
V | (Wk)k∈C(V )

)
= o(Lw). (68)

2The same proof holds when the o(Lw) term is 0, i.e., when the rate is
exactly achievable.

Proof: Consider any qualified edge {V, Vi } such that
t ({V, Vi }) = D, |D| = D. From the correctness constraint
(2), we have

2Lv ≥ H(V, Vi ) (69)
(2)
= H

(
V, Vi , (Wk)k∈D

)
(70)

= H
(
(Wk)k∈D

)
+ H

(
V, Vi | (Wk)k∈D

)
(71)

(1)
≥ DLw + H

(
V | (Wk)k∈D

)
(72)

≥ DLw (73)
(67)
= 2Lv + o(Lw). (74)

The above sequence of inequalities starts and ends both with
2Lv (ignoring o(Lw) terms), then all the inequalities must be
equalities within the distortion of o(Lw). In particular,

H(V, Vi ) = 2Lv + o(Lw), H(V ) = Lv + o(Lw) (75)

and

o(Lw) = H
(
V | (Wk)k∈D

)
(76)

= H
(
V | (Wk)k∈C(V ) , (Wk)k∈D\C(V )

)
(77)

= H
(
V | (Wk)k∈C(V )

)
− I (V ; . . .

. . . (Wk)k∈D\C(V ) | (Wk)k∈C(V )

)
(78)

≥ H
(
V | (Wk)k∈C(V )

)
− I (V ; . . .

. . . (Wk)k∈[K ]\C(V ) | (Wk)k∈C(V )

)
(79)

(14)
= H

(
V | (Wk)k∈C(V )

)
. (80)

Equipped with Lemma 5, we are ready to present the proof
of the ‘only if’ part. We show that if either of the two
conditions in Theorem 3 is violated, then the symbol rate R
cannot be 2/D. We will prove this by contradiction, so suppose
there exists a secure storage code of symbol rate R = 2/D.

Suppose condition 1 is violated, i.e., there exists a node
V such that |C(V )| < D/2. Then

Lv + o(Lw)

(75)
= H(V ) (81)

= H
(
V | (Wk)k∈C(V )

)︸ ︷︷ ︸
(68)
= o(Lw)

+I
(
V ; (Wk)k∈C(V )

)
(82)

≤ H
(
(Wk)k∈C(V )

)
+ o(Lw)

(1)
= |C(V )| × Lw + o(Lw) (83)
< D/2 × Lw + o(Lw) (84)
⇒ R = lim

Lw→∞
Lw/Lv > 2/D (85)

which contradicts the assumption that R = 2/D.
Suppose condition 1 is satisfied while condition 2

is violated, i.e., there exists a qualified edge {Vi , V j }

such that C(Vi ) ∪ C(V j ) is a strict subset of t ({Vi , V j }).
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Then |C(Vi ) ∪ C(V j )| < D and

2Lv + o(Lw)

(75)
= H(Vi , V j ) (86)

= H
(

Vi , V j | (Wk)k∈C(Vi )∪C(V j )

)
︸ ︷︷ ︸

(68)
= o(Lw)

+ I
(

Vi , V j ; (Wk)k∈C(Vi )∪C(V j )

)
(87)

≤ H
(
(Wk)k∈C(Vi )∪C(V j )

)
+ o(Lw)

(1)
= |C(Vi ) ∪ C(V j )| × Lw + o(Lw) (88)
< D × Lw + o(Lw) (89)
⇒ R = lim

Lw→∞
Lw/Lv > 2/D (90)

which contradicts the assumption that R = 2/D.

B. If Part

We show that if the two conditions in Theorem 3 are
satisfied, then the secure storage capacity is 2/D. We first
prove that R ≤ 2/D and then show that R = 2/D is
achievable.

The proof of R ≤ 2/D is immediate. As condition 1 is
satisfied, all edges are qualified. Pick any one, say {Vi , V j }

such that t ({Vi , V j }) = D, |D| = D. From the correctness
constraint (2), we have

2Lv ≥ H(Vi , V j ) (91)
(2)
= H

(
Vi , V j , (Wk)k∈D

)
(92)

≥ H
(
(Wk)k∈D

)
(93)

(1)
= D × Lw (94)

⇒ R
(4)
= Lw/Lv ≤ 2/D. (95)

We now present a secure storage code construction that
achieves symbol rate R = 2/D. Consider any graph G =

(V, E) that satisfies the two conditions in Theorem 3. Set
Lw = 2 log2(q) bits, where q > 2D|E |. Suppose each Wk
consists of 2 i.i.d. uniform symbols from Fq , i.e., Wk ∈ F2×1

q .
We set each coded symbol V1, · · · , VN as follows so that
Vn ∈ FD×1

q , ∀n ∈ [N ], i.e., Lv = D log2(q) bits and the
symbol rate achieved is R = Lw/Lv = 2/D, as desired.

Set Vn = Hn × (Wk)k∈C(Vn) , ∀n ∈ [N ] (96)

where (Wk)k∈C(Vn) ∈ F2|C(Vn)|×1
q is a column vector that stacks

each Wk and Hn ∈ FD×2|C(Vn)|
q .

Next we show that there exists a choice of Hn, n ∈ [N ] so
that the constructed code satisfies the correctness and security
constraints (2), (3). To prove the existence, we generate Hn,

n ∈ [N ] randomly by choosing each element of Hn, n ∈ [N ]

independently and uniformly from Fq .
Note that condition 2 in Theorem 3 is satisfied, i.e., for any

qualified edge {Vi , V j } such that t ({Vi , V j }) = D, |D| = D,
we have C(Vi )∪C(V j ) = D. Then from the code construction
(96), the coded symbols (Vi , V j ) do not contain any undesired
source symbols (Wk)k∈[K ]\D so that nothing is revealed about

the undesired source symbols (note that the source symbols are
independent) and security is guaranteed. Regarding correct-
ness, for any qualified edge, from the coded symbols (Vi , V j )

we have 2D linear combinations in the 2D desired source
symbols. That is, the row stack of Vi , V j produces

[Vi ; V j ] = Hi j × (Wk)k∈D (97)

where Hi j ∈ F2D×2D
q can be obtained from Hi , H j , C(Vi ),

C(V j ). View the determinant of Hi j , |Hi j | as a polynomial
in variables Hn, n ∈ [N ]. This determinant polynomial has
degree 2D and is not a zero polynomial as there exists a
realization of Hn, n ∈ [N ] such that the determinant is not
zero. Consider the product of the determinant polynomials for
all |E | qualified edges,

poly ≜
∏

i, j :{Vi ,V j }∈E
|Hi j | (98)

which is a non-zero polynomial and has degree at most 2D|E |.
By the Schwartz–Zippel lemma [21], [22], [23], a uniform
choice of Hn, n ∈ [N ] over the finite field Fq where
q > 2D|E | (the degree of poly) guarantees poly is not
always zero. It follows that there exists some realization of
Hn, n ∈ [N ] such that poly ̸= 0. Then each |Hi j | is not zero
and from each qualified edge, we can recover all desired source
symbols, i.e., correctness is guaranteed.

VII. DISCUSSION

In this work we have formulated a problem on secure
storage under data access and security constraints specified
by graphs and considered the maximum storage efficiency -
capacity, as the performance metric. We have focused on
extremal graphs where the capacity takes extremal values
(e.g., maximum with non-trivial security constraints). The
extremal graph characterizations obtained in this work are
guided by an alignment view that is effective for both code
constructions and impossibility claims. For the extremal rates
considered, a crucial graphical structure turns out to be ‘inter-
nal qualified edges’, which capture the tension between using
the same noise and storing the same coded symbol for security,
and diversifying the coded symbols for correctness. While
we have focused exclusively on the symmetric rate where
each source/coded symbol has the same size, generalizing
to sum rate or rate region might reveal additional insights
and the characterization might involve more parameters such
as the number of nodes, representing an interesting research
avenue. Other open problems include relaxing the assumption
in Theorem 2 of no common sources to allow common
sources and relaxing the symmetric assumption that each edge
is associated with the same number of sources to possibly
different numbers.

Similar to many challenging open problems in network
information theory, allowing arbitrary network topologies
often includes intractable problem instances. The perspective
we take in this work is to concentrate on extremal networks
and study the consequences of the extremal structures. While
we have exclusively focuses on networks with extremal rates
(and special extremal values), many other choices appear
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promising along this line, e.g., shortest/sparest codes under
smoothness/locality constraints [24], [25] and might lead to
new interesting questions and solutions.
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