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Secure Groupcast With Shared Keys

Hua Sun

Abstract— We consider a transmitter and K receivers, each
of which shares a key variable with the transmitter. Through
a noiseless broadcast channel, the transmitter wishes to send
a common message W securely to IN out of the K receivers
while the remaining K — N receivers learn no information
about W. We are interested in the maximum message rate,
i.e., the maximum number of bits of W that can be securely
groupcast to the legitimate receivers per key block and the
minimum broadcast bandwidth, i.e., the minimum number of
bits of the broadcast information required to securely groupcast
the message bits. We focus on the setting of combinatorial keys,
where every subset of the K receivers share an independent
key of arbitrary size. Under this combinatorial key setting,
the maximum message rate is characterized for the following
scenarios - 1) NV = 1 or N = K — 1, i.e., secure unicast to
1 receiver with K — 1 eavesdroppers or secure groupcast to
K — 1 receivers with 1 eavesdropper, 2) N = 2, K = 4, i.e.,
secure groupcast to 2 out of 4 receivers, and 3) the symmetric
setting where the key size for any subset of the same cardinality
is equal for any IN, K. Further, for the latter two cases, the
minimum broadcast bandwidth for the maximum message rate
is characterized.

Index Terms— Capacity, broadcast, groupcast, information
theoretic security.

I. INTRODUCTION

HE first theoretical analysis of cryptography and secrecy

system was carried out by Shannon in the groundbreak-
ing 1949 work [1], where the mathematical framework of
information theoretic security was introduced to establish the
fundamental limits of secure point-to-point communication.
Shannon studied the one-time pad system (see Fig. 1.1),
where Alice shares a key Z with Bob and wishes to send an
independent message W to Bob such that even if the transmit
signal X is fully eavesdropped by Eve, Eve cannot learn
anything about W as long as Eve has no knowledge of the
key Z. The simple one-time pad scheme X = W + Z, where
‘4’ represents bit-wise binary addition is proved information
theoretically secure and communication-wise optimal in the

following sense.
o To send one bit of the message W securely, one bit of

the key Z must be shared. That is, the maximum message
rate is 1 bit per key bit under perfect secrecy.
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o To send one bit of the message I securely, one bit of the
transmit signal X must be broadcast (seen by everyone).
That is, the minimum broadcast bandwidth is 1 bit per
message bit under zero error decoding.

In this work, motivated by the need of secure group
(beyond point-to-point) communication under complex adver-
sarial scenario (beyond a single eavesdropper knowing nothing
about the key), we consider the following secure groupcast
communication scenario. A transmitter shares a key variable
Zik € {1,2,--- K} with Receiver k and Z; may be
arbitrarily correlated (see Fig. 1.2). Aided by the shared keys,
the transmitter wishes to send a common message W securely
to N out of the K receivers through broadcasting the signal X
to all receivers, in a way that any one of the remaining K — NV
receivers learns no information about W in the information
theoretic sense.

This secure groupcast problem naturally generalizes Shan-
non’s one-time pad system, which is a special case of secure
unicast (N = 1) over a K = 2 receiver broadcast channel
and the eavesdropping receiver knows nothing about the
key of the legitimate receiver. Following the communication
metrics considered by Shannon, we focus on the following
two questions regarding the fundamental limits of secure
groupcast.

o« What is the maximum message rate, defined as the
maximum number of bits of the message W that can
be securely groupcast per key block (a classic Shannon
theoretic formulation where we may code over a long key
block and the block size is allowed to approach infinity)?

o What is the minimum broadcast bandwidth, defined as the
minimum number of bits of the broadcast information
X required to securely groupcast a message of certain
rate?

Beyond being an elemental model for information theoretic
security, the above shared key secure groupcast problem arises
naturally in many applications, where we interpret the keys
either as digital tokens or information from memory devices
(e.g., in premiere streaming or game distribution), or more
generally as side-information variables that could be sensed
from the environment or obtained from prior communication
(e.g., in wireless networking). In addition, the model can be
easily extended from groupcasting a single message for a
single group to multiple messages, each exclusively for an
arbitrary group under various security constraints, i.e., the
secure groupcast model is introduced to enable broadcasting to
a selected set of qualified receivers while unqualified receivers
obtain no useful information.

Combinatorial Key Setting: As an initial step, we mainly
focus on the combinatorial key setting, where every subset I/
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Fig. 1. 1) The one-time pad system. 2) The secure groupcast problem (to 2 out of 4 receivers).
Rx 1 e—271= (S1, S123, S145) and the minimum broadcast bandwidth are characterized.
* e w The achievable scheme is based on random linear coding
over the key symbols. Refer to Theorem 3.
le— 2> = (S24, Sos, S123) Y . . .
Rx 2 L > e N = K — 1, any K: This can be viewed as the
secure multicast setting, with only 1 eavesdropper. The
Z1:5 = Rx 3 €— 73 = (S123) maximum message rate is characterized (and the min-
W —> imum broadcast bandwidth when K < 4 or when the
total secure key size is the same for all receivers). The
N le— 74, = (524, 5145) . y . . . )
Rx 4 achievable scheme is based on random linear coding over
the message symbols. Refer to Theorem 4.
{rx 5 €—Z5 = (S2s, S145) e N = 2, K = 4: Both the maximum message rate
and the minimum broadcast bandwidth are characterized.
The achievable scheme requires a delicate structured
Fig. 2. A secure groupcast problem to 2 out of 5 receivers with decomposition to basic components according to the key

combinatorial keys (i.e., the S variables are independent). Zj.5 denotes
(Z1, 72,73, Z4, Zs5).

of the K receivers share an independent key Sy, of arbitrary
size. An example is shown in Fig. 2, where S; denotes the
key that is known only to Receiver 1 (and the transmitter),
S145 (abbreviation of Sgj 45, for simplicity) is known to
Receiver 1, Receiver 4, and Receiver 5 etc. Further, the S
variables with different subscripts are independent of each
other.

The combinatorial key setting turns out to be technically
challenging due to the necessity of highly structured coding
of the message symbols and the key symbols (for which the
setting in Fig. 2 is a representative example even when the S
variables all have the same size), and the abundance of para-
meters (as the key size for different subsets may be different
so that overall the order of parameters is exponential in K).
The essence is to accommodate for and utilize the complex
correlation among the keys so that legitimate receivers can
decode the common message while eavesdropping receivers
cannot obtain anything from the correlated keys (i.e., need to
avoid leakage under multiple correlated views). Our results are
summarized next.

Main Results and Techniques: The main results of this work
include the exact characterization of the maximum message
rate and the minimum broadcast bandwidth for settings listed
below.

e N =1, any K: This is the secure unicast setting, with

only 1 desired receiver. Both the maximum message rate

sizes. Refer to Theorem 5.

The symmetric setting for any N, K, where the size of
the key Sy only depends on |U| (i.e., the cardinality
of the subset): Both the maximum message rate and
the minimum broadcast bandwidth are characterized. The
achievable scheme requires an intricate coding over keys
from various subsets that handles correctness and security
jointly. Refer to Theorem 6.

The converse bounds on the message rate for all results
above are given by a simple conditional entropy term
(refer to Theorem 1); the converse bounds on the broad-
cast bandwidth for all results above have an interesting
unified form that can be interpreted through common
information (refer to Theorem 2).

The simple conditional entropy converse bound in The-
orem 1 is not tight in general. Specifically, a stronger
bound is derived for the setting in Fig. 2 when the S
variables have the same size and the maximum message
rate is characterized with a matching vector linear coding
scheme (refer to Theorem 7).

We have also explored the generalization to the following
scenarios.

The rate region of secure groupcasting multiple messages.
Specifically, we consider 2 legitimate receivers with
3 desired messages (1 for each individual receiver so that
the other receiver learns nothing and a common message
for both receivers) and all these 3 messages must be
kept fully secure to an eavesdropping receiver. Refer to
Theorem 8.
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o The discrete memoryless key' setting. Interestingly, the
scenarios where random linear codes suffice for the
combinatorial key setting (i.e., N =1and N = K — 1)
generalize fully to discrete memoryless keys by random

binning. Refer to Theorem 9.
Before proceeding to the problem statement, we end

the introduction section with discussions on the connection
between secure groupcast and related prior work.

A. Related Work

The elemental problem of secure groupcast has interesting
connections to several problems that have been studied in
prior work and this section is devoted to the discussion of
these connections. Due to space limits, we will focus on the
connections to secure groupcast and leave further details to
the references cited.

1) Secret Key Agreement (Generation): In the problem of
key agreement [2]-[6], multiple terminals observing correlated
sources wish to agree on a common key through public
communication and it is required that an eavesdropper learns
nothing about the key from public communication.

Secret key agreement provides a natural achievable scheme
for secure groupcast, where the legitimate receivers first agree
on a secret key that is not known to the eavesdropping
receivers (with the help of the transmitter and the noiseless
broadcast channel). Then the secret key can be used to encrypt
the desired message. This idea will be used in Section IV-B.
Unfortunately, secret key agreement is only understood when
there is a single eavesdropper [4] but in secure groupcast,
we have multiple eavesdroppers, each with a different view of
the source. Also, for key agreement, only the maximum key
rate (corresponding to the groupcast rate in secure groupcast)
is known and the communication cost (corresponding to the
broadcast bandwidth in secure groupcast) remains open in
general [4]. Lastly, key agreement does not appear necessary
for secure groupcast.

2) Broadcast Encryption: As a related problem, broadcast
encryption [7]-[10] studies how to design the key variables
at a number of receivers so that a transmitter may securely
send a message through noiseless broadcasting in a commu-
nication efficient manner to some legitimate receivers (from
one out of a number of selected subsets of the receivers)
while the remaining eavesdropping receivers learn nothing.
There are two main differences to secure groupcast - first,
in secure groupcast the key variables are given (e.g., with fixed
joint distribution) while in broadcast encryption the keys are
subject to design; second, in secure groupcast, the identities
of legitimate and eavesdropping receivers are fixed while in
broadcast encryption, there are multiple choices of legitimate
receiver sets and the crux is to design the keys (instead of using
given keys) to enable multiple secure groupcast tasks (instead
of one). Therefore, the broadcast encryption problem can be
regarded as a ‘compound’ version of secure groupcast and
has been studied in a follow-up work using Shannon theoretic
formulations [11].

IThat is, the keys are drawn from a discrete memoryless source, such that
the key variables are generated independently symbol by symbol from a fixed
joint distribution.
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3) Latent Capacity Region: The latent capacity region of
broadcast channels [12]-[14] studies the implication of a rate
tuple of common messages for various subsets of receivers
being achievable, i.e., how can the achievable rates of certain
group of receivers be exchanged for those of other groups
of receivers? This interesting open problem is conceptually
related to combinatorial secure groupcast, where from a rate
exchange perspective, we are asking how to exchange various
key variables shared by subsets of receivers to a common
message for the group of desired receivers. However, latent
capacity region has no security constraint and the required
techniques in achievability and converse appear different.

4) Secure Broadcasting: How to send messages securely
over a broadcast channel has been studied along the line of
Wyner’s wiretap channel [15], and its generalizations to confi-
dential messages (see e.g., [16], [17]), and secure broadcasting
over wireless channels (see e.g., [18], [19]). The enabler of
secure communication in this line of work is that different
receivers experience different channels, i.e., the channel itself
has relative advantage to be exploited. In contrast, in secure
groupcast every receiver sees the same noiseless broadcast
channel and relative advantage comes from the shared keys.
Notably, a recent work has studied a model (with a few
users and a simple key structure) where both shared keys and
discrete memoryless broadcast channels are simultaneously
present [20].

5) Secure (Private) Index Coding: Index coding [21] is a
canonical problem that studies how to efficiently broadcast
under various side information at the receiver side with a
noiseless broadcast channel. There are several variants of index
coding that include security constraints (see e.g., [22]-[24])
with and without shared keys and with and without external
eavesdroppers. The main focus of index coding works is on
the side information structure and its interplay with multiple
desired messages. Secure groupcast highlights the shared key
structure and its influence on message rate and broadcast
bandwidth.

Notation: For positive integers K1, Ko, K1 < Ko, we use
the notation [K; : Ko] = {K1, K1+1,--, K2}. The notation
|| is used to denote the cardinality of a set ¢/ and the
notation | X| is used to denote the number of elements of a
vector X . For a matrix V, V (i, j) represents the element in the
i-th row and j-th column. For two matrices V1, Vo (with the
same number of columns), [V1; V2| denotes the row stack of
V1, V5. A binomial coefficient (5) is defined as 0 if K < U.

II. PROBLEM STATEMENT

Define K discrete random variables zq,zo,---,2x of
finite cardinality, drawn from an arbitrary joint distribution

P, .. 2. Following the convention, Zi,7Zs,---,Zk
denote L length extensions of 21,29,---,2K, 1€,
Z1,Zo,--- ,Zr are sequences of length L, such that

the sequence of tuples [Zi(l), Zo(l), -+, Zr(D)]E, is
produced i.i.d. according to P, ., ... 2.

Consider a transmitter that knows the keys 21, Zs,--- , Zk,
and K receivers such that Receiver k knows Zj, k € [I :
K]. The transmitter wishes to send a common message W
securely to the first N receivers, where 1 < N < K — 1.
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The message W consists of Ly i.i.d. uniform symbols from
a finite field> F,, for a prime power p, so H(W) = Ly log, p
bits. We assume that the message W is independent of the key
variables Z1, 25, -+ , Zk,

I(W;Z1,Z,--+ , Zk) = 0. (D

The communication channel is a noiseless broadcast chan-
nel, i.e., the transmit signal X is sent by the transmitter and
seen by every receiver. To securely groupcast the message W,
the transmit signal X consists of Lx symbols from F,,.

From the transmit signal X and the key Zj, each legitimate
receiver must be able to decode the message W, with proba-
bility of error P,. The probability of error must approach zero
as the key block length L approaches infinity.> From Fano’s
inequality, we have

[Correctness] H(W|X, Zy) = o(L), Yk € [1: N 2)

where any function of L, say f(L), is said to be o(L) if
limy .o f(L)/L = 0. From the transmit signal X and the key
Z, each eavesdropping receiver obtains a negligible amount
of information about the message W,

[Security] I(W;X,Z;) =0(L), YVke [N+1:K]. (3)

The groupcast rate characterizes how many bits of the
message are securely groupcast per key block, and is defined
as follows,

H(W) _ Ly logy p
L L '

A rate R is said to be achievable if there exists a sequence
of secure groupcast schemes (indexed by L), each of rate
greater or equal to R, for which P, — 0 as L — oo (i.e.,
the correctness constraint (2) and the security constraint (3)
are satisfied). The supremum of achievable rates is called the
capacity C.

The broadcast bandwidth 3(R) characterizes how many bits
of the transmit signal are broadcast per key block to securely
groupcast a message of rate R, and is defined as follows,

R:

“)

Lx logyp
BR) = ——F—.
The achievable broadcast bandwidth is defined similarly, i.e.,
broadcast bandwidth G(R) is said to be achievable if there
exists a sequence of secure groupcast schemes, each of rate
greater than or equal to R and each of broadcast bandwidth
smaller than or equal to S(R), for which P, — 0 as L — oc.
The infimum of achievable broadcast bandwidth is called the
minimum broadcast bandwidth 5*(R).

We will be mainly interested in the capacity, C' and the
minimum broadcast bandwidth when the rate value is the

capacity, 5*(C).

)

2As usual for an information theoretic formulation, the actual size of the
message is allowed to approach infinity. We allow the optimization of both
parameters of the key block length L and the field size p, to match the code
dimensions and simplify the presentation of the coding scheme.

3If P. is required to be exactly zero, then the o(L) term can be replaced
with 0. The situation is similar if zero leakage instead of vanishing leakage
is required in the security constraint (3).
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A. Combinatorial Keys

The combinatorial key setting refers to a specific type
of joint distribution of the keys and is defined as follows.
Consider 2% — 1 independent random variables s;;, where U
may be any non-empty subset of [1 : K. For example, when
K = 3, we have4 S1,82,83,812,513,523,5123 and

,Suk) = H(s1) + H(sg) +---
+ H(SU) + - +H(81;K). (6)

H(515827"' ySUy T

We assume that s;; consists of an integer number, say Ly,
of i.i.d. uniform symbols from I,

H(sy) = Ly log,y p bits. (7

The variable z;, is the collection of all s;; variables such that
kel,

zi = (su: k el). (3)

For example, when K = 3, zo = (s2, 812, S23, S123). The
symmetric setting is defined as follows,

(symmetric setting)
H(Sul) = H(Suz), VU1 ,Us such that |U1| = |U2| )
The extension of the above system model to include multiple

groupcast messages is immediate and will be presented when
we consider this generalization in Section IV-A.

IIT. MAIN RESULTS

In this section, we summarize our main results along with
illustrative examples and observations.

A. Converse on Rate R and Broadcast Bandwidth 3(R)

We present a simple converse (upper) bound on the group-
cast rate R in the following theorem.

Theorem 1 (Rate Converse): For any
problem (to the first N of K receivers),

secure groupcast

R < H(zg|ze), Vg€ [1: N],Vee [N+1:K]. (10)

The proof of Theorem 1 is presented in Section V-A. The
conditional entropy bound (10) is very intuitive, because W
must be decoded by any qualified Receiver ¢ € [1 : N] and
cannot be learned by any eavesdropping Receiver e € [N +
1 : K]. Surprisingly, this simple conditional entropy bound
turns out to be tight for many settings of interest (see below).
However, it is not sufficient in general (refer to Remark 2 after
Theorem 7).

Next, we present an interesting converse (lower) bound on
the broadcast bandwidth 3(R) in the following theorem.

Theorem 2 (Broadcast Bandwidth Converse): For any
secure groupcast problem (to the first N of K
receivers), consider any set of qualified receivers

Q £ {q1,---,q0} C [I : NJ] and consider any random

4For sy, we may simplify the subscript when the elements of I/ are easy
to list, e.g., we may write S{1,2} as S12.
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variable u. that is a function of the key of an eavesdropping
Receiver e € [N + 1 : K|, i.e., H(u¢|ze) = 0. We have

B(R)

|2
> |Q|R_ ZH(Z(L ue)_H(Z(INZ(]Qa"' 7Z(1\g\|u€)
i=1
Q-1
(1)

= |Q|R_ Z I(Zlhv"' 7Z¢1i;zqz'+1|u€)'
i=1

The proof of Theorem 2 is presented in Section V-B. The
negative term on the RHS of (11) captures the benefits of
correlated keys in reducing the broadcast bandwidth. On one
extreme when the keys are fully independent, this negative
term is zero and we have to send the message W to all |Q|
qualified receivers one by one, so that the broadcast bandwidth
is |Q] times of the rate, R of the message, i.e., G(R) >
|Q|R. On the other extreme when the keys are identical and
independent of the key at the eavesdropping receiver (i.e.,
Zg, = -+ = Zgo), this negative term becomes (| Q|—1)H (24, ).
Now suppose R = H(z,, ), then the broadcast bandwidth
bound becomes F(R) > R and it might suffice to simply send
out the one-time pad signal W + Z,,. In general, between the
two extremes, the saving is given by the difference between
the sum of individual entropy of each key and the joint entropy
of all keys, which can be interpreted as a form of common
information. Interestingly, this common information type of
term can also be written as the sum of a chain of mutual
information terms.

Equipped with the above converse results, we are now ready
to proceed to consider the combinatorial key setting, which
is referred to as the combinatorial secure groupcast problem
for short. Note that for combinatorial secure groupcast, all
achievable schemes satisfy zero error and zero leakage (i.e.,
o(L) is replaced with 0 in (2), (3)).

B. Secure Unicast N = 1 and Secure Multicast
N = K — I Settings

When there is only N = 1 desired receiver, secure groupcast
reduces to secure unicast, and this combinatorial secure unicast
problem can be solved by random linear coding over the key
symbols for the achievability side and the bounds given above
for the converse side. This result is presented in the following
theorem.

Theorem 3 (Secure Unicast): For the combinatorial secure
unicast problem (to the first of K receivers), the capacity
and the minimum broadcast bandwidth for capacity achieving
schemes are

C = min H(zlz)
e€[2:K]
= i H 12
min > H(suw), (12)
UC[1:K]:
1€eU e¢U
g (C) = C. (13)

The proof of Theorem 3 is presented in Section V-C.
The achievability is based on creating a key from what the
legitimate Receiver 1 knows so that any one of the K — 1
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eavesdropping receivers cannot learn anything about the cre-
ated key. This key can be created by random linear coding
and after the key is created, one-time pad coding suffices to
achieve the capacity and the minimum broadcast bandwidth.
An example is presented below to explain this idea.

Example 1: Consider a combinatorial secure unicast
instance with K = 4 receivers, where the key configurations
are given as follows,

Z1 = (8127813, 514, 8134), zZ2 = (812),

23 = (513,5134), 24 = (514, 5134); (14)
H(512) = 410g2 2 H(813) = 210g2 D,
H(s14) =logy p, H(s134) = 3logy p. (15)

For example, s12 € IE‘;‘)“ contains 4 symbols from [F),. From
Theorem 3, we have

C = min (H(Slg) + H(s14) + H(s134),

H(Slg) + H(SM), H(Slg) =+ H(Slg))

= 510g2 b,
8(C) = C = 5log, p.

(16)
a7)

The converse follows immediately from Theorem 1 (taking the
minimum converse bound over all eavesdropping receivers)
and Theorem 2 (taking Q@ = {1} so that §(R) > R). The
achievable scheme is presented next. Consider L = 1 block
of the keys (then Z; = z;) and we wish to send Ly =
5 message symbols from [F}, by broadcasting L x = 5 symbols,
ie., W, X are both 5 x 1 vectors over IF,. The combinatorial
key variables are each precoded by a beamforming matrix to
produce a mixed key, which is then added with the message
W to produce the transmit signal X,

X =W +Vias12+ Vizsiz + Viasis + Vizssiza  (18)

where the precoding matrices have 5 rows each and the number
of columns matches the dimension of the key variables,
e.g., Vig € FZ“. The correctness constraint (2) is trivially
satisfied. For eavesdropping Receiver 2, after canceling the
known key, he can recover

W +Vi3s13 + Vigsig + Vi3aS134
513
S14
5134

=W + [V13 Viu V134} 19)

so that in order to make sure nothing is revealed, we need

[Vi3 V14 Vi34]5x6 to have full rank (Receiver 2).  (20)

Similarly, we need

[Vi2 Vi4]5x5 to have full rank (Receiver 3) (21)

and [Vi2 Vi3]5x6 to have full rank (Receiver 4). (22)

That is, we simply need the matrices to have full rank, which
is easily satisfied by generic MDS matrices, e.g., Cauchy
matrices over a properly large field. The details are deferred
to the proof presented in Section V-C. Finally, the rate and
broadcast bandwidth achieved match the converse.
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We next consider the (somewhat) dual of secure unicast (a
single legitimate receiver and any number of eavesdroppers)
- secure multicast (a single eavesdropper and any number of
legitimate receivers), whose capacity is solved by a similar
random linear coding idea (but over the message symbols
instead of over the key symbols). This result is presented in
the following theorem.

Theorem 4 (Secure Multicast): For  the  combinatorial
secure multicast problem (to the first K — 1 of K receivers),
the capacity is

= 1 H
c I (2ql2K)
_ ' H(sy). 23
i > (su) (23)

UC[1:K—1]:qeU

Further, the minimum broadcast bandwidth for capacity
achieving schemes is characterized in the following two cases,

1. H(z1|zr) =+ = H(zx—1|2K) :
g = S Hsu)

UC[1:K—1]
2. K=4 (assume H (z1]|2z4) <min (H(:<:2|Z4)7 H(2’3|Z4)),
H(s12) < H(s13) with no loss’) :
B*(C) = H(s123)+max (QH(S1) + H(s12) +2H(s13),

(24)

3H(s1) + 2H (s12) + 2H (s13) — H(523)). (25)

The proof of Theorem 4 is presented in Section V-D.
To achieve the capacity, we simply generate random linear
combinations of the message symbols and mix them with each
of the combinatorial keys. Each legitimate receiver can decode
the message after collecting a sufficient number of coded
message symbols. This idea is explained in the following
example.

Example 2: Consider a combinatorial secure multicast
instance with K = 4 receivers, where the key configurations
are given as follows,

z1 = (s1,513), 22=(523), 23=(513,523), 24 = (); (26)
H(s1)=logy p, H(s13)=2log, p, H(s23) = 3logy p.(27)

From Theorem 4, we have

C = min (H(sl) + H(s13), H(s23), H(s13) + H(523))
= 3log, p, (28)
3*(C) = max (2H(sl) + 2H (s13),

3H(s1) + 2H (s13) — H(323)) = 6log, p. (29)

The rate converse is simply given by the minimum entropy
of the legitimate key variables (and follows from The-
orem 1). The broadcast bandwidth converse is given by
Theorem 2, where Q = {1,2} and u. = () so that

5This assumption has no loss of generality because we can switch the indices
of the receivers. Specifically, H(z1|z4) < min(H (22|24), H(z3|24)) means
that we label the receiver with minimum key entropy conditioned on Receiver
4’s key as Receiver 1 (among Receivers 1, 2, 3). After fixing Receiver 1,
H(s12) < H(s13) means that we label the receiver that shares a smaller key
with Receiver 1 as Receiver 2 (among Receivers 2, 3).
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B(C) > 2C — I(z1;22) = 2C. The achievable scheme is
presented next. Consider L = 1 and W € F3*!. The transmit
signal X € IFIG)XI is produced as follows,

ViW + s
VisW 4 513
Vs W 4+ 593

X = (30)

where the dimensions of the precoding matrices are specified
as V; € F},X‘g, Vis € IFIQ)X?’, Va3 € IFf)X?’. For the secure
multicast problem, security is trivial as the keys known by the
eavesdropping receiver are never used and correctness requires
that

[V1; Vi3] has full rank (Receiver 1),
[Va3] has full rank (Receiver 2),
and [V13; V3] has full rank (Receiver 3).

€19
(32)

The above constraints can be satisfied by generic (e.g., Cauchy
or any MDS) matrices and details are deferred to the full proof

presented in Section V-D.
Remark 1: While the capacity of secure multicast is solved

simply by random linear codes, the minimum broadcast
bandwidth for capacity achieving schemes is generally an open
problem (e.g., when K > 5). When K < 4, we need to
analyze carefully which combinatorial key has redundancy and
quantify the amount so as to use only the minimum required
(see Section V-D.1).

Interestingly, the above random coding idea for both com-
binatorial secure unicast and secure multicast generalizes to
the discrete memoryless key setting, where corresponding
results are obtained using standard existing random binning
arguments (see Theorem 9).

C. Secure Groupcast to N = 2 of K = 4 Receivers

The capacity and minimum broadcast bandwidth for the
combinatorial secure groupcast problem to 2 out of 4 receivers
are characterized in the following theorem.

Theorem 5 (N = 2, K = 4): For the combinatorial secure
groupcast problem to the first N = 2 of K = 4 receivers, the
capacity is

C = min
ge{1,2},ec{3,4}

= H(s12) + min (H(Sl) + H(s14) + H(s124),
H(s1)+H (s13)+H(s123), H(s2)+H (s24) +H(5124),
H{(s2) + H(s23) + H(5123)) (33)

H(zq|2¢)

and the minimum broadcast bandwidth for capacity achieving
schemes is

ﬁ*(C) = 20— H(Slg) — min (H(Slgg),H(5124)). (34)

The proof of Theorem 5 is presented in Section V-E. The
complexity mainly lies in the abundance of the parameters so
that we need to decompose the problem instance into multiple
basic components (also how to identify basic components)
and depending on the key configurations, there are many case
studies. To this end, we need a decomposition result of two
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(5123, S14) Wi+ 51 < (51, S123, S124)
W + S1a3 & S1a Rx 1 %W123, 14)  x — Wi + s, Rx 1 %le 123, S124
X = W + S103 + So4 Wa + S123 + S124
Ry 2 &(3123, 524) Rx 2 %(SL 5123, 5124)
(su) = W (s)—= T X —W
W— ~ W — N~ s
\\‘Rx3&(3123) \\‘Rx36( 123)
S \
S < (514, 524) > <—(S124)
Lw=1Lx =2 \Rx 4 ’ Lw=2,Lx=3 YRrx4 -
iy 2)
Wiz + s + s (sl 12y
X = Wi + so Rx 1 Yy
W5 + 823 + S24
Ry oS (52, 523, 524)
(su)—> Tx X —>W
[1:2]
W—> \:‘~m3e4&&%3)
\ 2]
Lw=2Lx=4 \Rx4e(324'314 )

3)

Fig. 3.

(W1; Wa) 2 Wiia, 513 = ( . gl2]

[1:2]
5135513

)713

etc.
achievable schemes with two independent sets of keys, stated
of mdependent

in the following lemma.

Lemma 1: Consider two ?/
(ZP], e 7ZE]) and (ZF]7 e ,Z[Q]) such that LW and L2
symbols of the messages W, VV[IQﬁ can be securely groupcast
with L[)l(] and L[f(} symbols of the transmit signals X1, X2,
respectively. Then we can concatenate the two schemes to
one such that the keys are Zj (Z,E],Z[ ]) kEell: K]

sets

Lw [1] + L[Q] symbols of W = (WM W) are
securely groupcast with Lx = L[X] + L[)i] symbols of
X = (X[l],X[Q]).

Proof: The proof is almost immediate. As long as each
component scheme is correct and secure, the concatenated
scheme will be correct and secure as the keys are indepen-
dent and the message and transmit signal symbols are also
independent. Further, this concatenation generalizes trivially
to any number of independent key sets. [ ]

We are now ready to give an example of the combinatorial
secure groupcast problem to 2 of 4 receivers, to illustrate the
main idea.

Example 3: Consider a combinatorial secure groupcast
instance to 2 of 4 receivers, where the key configurations are
given as follows,

(H(s1), H(s2), H(s13), H(s14), H (523), H(524),
H(Slgg), H(5124)) = (17 2, 2, 3, 1, 2, 2, 1)

(su

(35)

Remember that z ke U),k € {1,2,3,4}. From

Theorem 5, we have

- geq, 5?1;16{3 4 H{(zq|c)
- mln(57 5) 57 5) - 57 (36)
G*(C)=2C -0 —min(2,1) = 9. (37)

The 3 sub-networks, where the variables are independent for different sub-networks. When some variable has 2 symbols, it is denoted as W =

The rate converse follows from the conditional entropy bound
in Theorem 1 and the broadcast bandwidth converse follows
from Theorem 2 by setting Q = {1,2} and u, = z3 or z4. The
achievable scheme is shown in Fig. 3, where we decompose
the instance into 3 sub-networks. We operate over the binary
field Fo, i.e., p = 2 and key block size is L = 1. The total
number of bits in the message and the transmit signal match
the converse above (5 and 9, respectively). All key bits are
used, e.g., H(s14) = 3 so that we have 3 bits of s14, and
sub-network 1 uses 1 bit and sub-network 3 uses 2 bits (see
Fig. 3). Correctness and security are easy to verify.

D. Secure Groupcast: Symmetric Setting

We consider now the symmetric setting, where the key size
only depends on the cardinality of the set of the receivers that
have the same key. For any set & C [1 : K] with cardinality
|U| = u,u € [1 : K], we denote the key size as H(sy) =
L log, p. The capacity and minimum broadcast bandwidth
for the symmetric setting are characterized in the following
theorem.

Theorem 6 (Symmetric Setting): For the symmetric com-
binatorial secure groupcast problem (to the first N of K
receivers), the capacity and the minimum broadcast bandwidth
for capacity achieving schemes are

cz(

K

)L[ ]10g2 2

K-1 K—-N-1
* _ _ L[u] 1 ]
o= (5, ) (70 reess s
(38)
We refer to a key that is known to

u receivers as a u-key. From the capacity and broadcast
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bandwidth formula, we see that it suffices to consider u-keys
separately for distinct w values, i.e., joint coding across
different wu-keys is not necessary. This is generally not
true (e.g., see Fig. 3.1) and greatly simplifies the problem.
After we notice this simplification (we may limit to only
u-keys of one u value), the problem still requires an intricate
decomposition of the keys, depending on how many qualified
receivers and how many eavesdropping receivers know the
key. An example is presented below to illustrate the main
idea and the full proof is presented in Section V-F.

Example 4: Consider a symmetric combinatorial secure
groupcast instance to N = 3 of K = 6 receivers, where we
only have 3-keys, i.e., () keys of the same length LFPl = 1.

From Theorem 6, we have

4
C= (2) logy p = 6logy p,

B (C) = (g) logy p = 10log, p. (39)
The rate converse follows from the conditional entropy bound
in Theorem 1, where we may pick any qualified receiver and
any eavesdropping receiver such that the qualified receiver
knows (;1) keys that are not known to the eavesdropping
receiver. The broadcast bandwidth converse follows from
Theorem 2 by setting Q = [1 : 3] and u, = zg so that
B(C) > H(z1, 22, 23|26) = (g) log, p.
The achievability is designed based on dividing the 3-keys
into 3 groups.
1) The first group involves the key that is known only to
3 qualified receivers, i.e., s123. AS S123 is not known to
the eavesdropping receivers, we simply send 1 message
symbol with 1 symbol of one-time pad transmit signal,
i.e., we have achieved R' = Sl1(R') = log, p.
2) The second group involves the keys that are known
to 2 qualified receivers and 1 eavesdropping receiver.
We need to further divide these keys depending on
the set of 2 qualified receivers. Suppose the set of
qualified receivers is {1,2}, i.e., we are consider-
ing the keys (s124,8125,5126) that are common to
qualified Receiver 1 and qualified Receiver 2. Fur-
ther, any eavesdropping receiver only knows 1 key
from (s124, S125, S126). In other words, we have the
secure unicast situation (note that here Receiver 1
and Receiver 2 both require the same message and
hold the same key) where the desired receiver has
4 equal-size combinatorial key variables while the
eavesdropping receivers have 1 combinatorial key each.
Therefore, combining generic linear coding ideas for
key symbols in Theorem 3 and for message sym-

bols in Theorem 4, we can send 3 — 1 = 2
symbols securely to Receiver 1 and Receiver 2 by
transmitting

X2 =VHW2+Viys101 + Vigssias + Viggsize
(40)
where Viy, Vigs, Vigs € F2*! and VY, € F2** (the

reason of setting this size will be clear soon). We repeat
the same coding procedure for the other (3) -1=2
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sets of keys, i.e., (S134, 5135, S136) (common keys to
qualified Receiver 1 and qualified Receiver 3) and
(8234, $235, S236) (common to Receiver 2 and Receiver
3). So we set

X2 = VI W2+ Vi s134+ Vigssiss + Visesise
(41)

X2 = VEW?+ Vg, 5031+ Vigss235+ Viggsase
(42)

where V5 € F2*!, 'V € F2**. From the transmit sig-
nal X2 = (X212 X213 X?223) each qualified receiver
can obtain 4 generic desired message combinations (so
the size of V" is chosen to match this total number
of combinations), from which 4 symbols of W? can
be recovered as long as the V" matrices are chosen
in a generic manner. For example, qualified Receiver 1
can obtain (VY% W?2 V¥ W?2). Security is guaranteed
as long as the V* matrices are chosen generically so
that eavesdropping receivers see a sufficiently number
of generic key combinations. To sum up, the overall
rate and broadcast bandwidth achieved for all keys in
the second group are

3_
R? =
(o

3
B*(R?) = (2>210g2p = 6logy p.

1
1>210g2p = 4log, p,
(43)

3) The third group involves the keys that are known
to 1 qualified receiver and 2 eavesdropping receivers.
We need to further divide these keys depending on the
identity of the qualified receiver. Suppose the qualified
receiver is Receiver 1, i.e., we are considering the keys
(8145, S146, S156) such that any eavesdropping receiver
knows 2 of these 3 keys (e.g., eavesdropping Receiver 4
knows s145, S146). From the result of secure unicast
(refer to Theorem 3), we can achieve R = ((R) =
(2—1) logy p = log, p for these 3 keys. Repeat the same
procedure for (8245, 5246, 8256) and (5345, 5346 8356).
The overall rate and broadcast bandwidth achieved for
all keys in the third group are

R = log, p, 53(R3) = 3log, p. (44)

Finally, we combine the performance of all 3 groups (using
Lemma 1 for independent keys), so the total rate and broadcast
bandwidth achieved are

R=R'+R*+ R®=6log, p,
B(R) = B"(R") + B*(R?) + B*(R®) = 101og, p

which match the converse.

(45)

E. A Secure Groupcast Instance With N =2, K =5

For all capacity results presented above, the conditional
entropy converse bound in Theorem 1 turns out to be tight.
We wonder if the bound is always tight. Along this line,
we find that the answer is negative. We identify a simplest
setting of combinatorial secure groupcast instance to N = 2 of
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Wi+bi+a
Wy + b2 + 2
Wo + ax
Ws + ao
(a, Ws + a3
Wi+ b1+ ds
N Wa + b3 + do
\xd) Wi+ ds + e
» )
AN @ e) Wi + b2 + ez
Rx 5 o Ws + b3 + e3
Fig. 4. A combinatorial secure groupcast instance to 2 of 5 receivers.

The keys a, b, ¢, d, e are independent and each key has 1 bit per block. The
message has 5 bits, W = (W1, - -, W5s), sent over 3 key blocks so that each
key has 3 bits, e.g., a = (a1, a2, a3). The broadcast signal X has 10 bits.

K = b5 receivers (note that all settings with smaller N, K
values are settled by the converse bound in Theorem 1) where
a strictly stronger converse is required. The setting turns out
to be that in Fig. 2 and is redrawn here with simplified
notations (refer to Fig. 4). We have characterized its capacity
and minimum broadcast bandwidth, and this result is presented
in the following theorem.

Theorem 7: For the combinatorial secure groupcast
instance in Fig. 4, the capacity and the minimum broadcast
bandwidth for capacity achieving schemes are

C=5/3, 5*(C)=10/3. (46)

The achievable scheme is shown in Fig. 4. Correctness is
easy to verify, e.g., qualified Receiver 1 knows a, b, ¢ such
that from the first 5 rows of the transmit signal X, he can
obtain all message bits (W1, W, W3, Wy, W5). Security is
more interesting. Eavesdropping Receiver 3 learns nothing
because even if b is known, all message bits in X are pro-
tected by ¢, a, d, e (not known to Receiver 3). Eavesdropping
Receiver 4 knows ¢, d and after canceling ¢, d, he can obtain
W1 + by, Wa+bo, W1 + by, W5+ b3 that contains b. However,
nothing is leaked because the first term is the same as the third
term (highlighted in blue). In fact, this is the key of the design.
Therefore,

(

—

1w X,e.d) 2 1(W;iXle,d) 7)
= H(X|C,d)—H(X|W,C,d)
= 9-9=0 (48)

where (47) follows from the independence of the message
and the keys (refer to (1)). The situation for eavesdropping
Receiver 5 is similar, where the same noise of by (noise
alignment) appears in the same red signal Wy + by (signal
alignment). Interestingly, similar alignment view has been
proved useful recently in several other security and privacy
primitives [25]-[27].

We now discuss the rate converse. Here we give an intuitive
argument for linear schemes, which guides the design of
the achievable scheme, and defer the information theoretic
proof to Section V-G, which is based on the sub-modularity
property of entropy functions. Consider qualified Receiver 1,
who knows only a, b, c and can decode W. Then W must be
fully recoverable from the key variables a,b,c in X. As a is
only known to Receiver 1, it can easily be used to transmit
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A secure groupcast problem with 3 messages and 3 receivers.

Fig. 5.

L message bits. Then to achieve rate R, the message bits
carried by b, ¢ must be (R — 1)L bits. As b and ¢ are known
to eavesdropping Receiver 3 and eavesdropping Receiver 4,
respectively, the (R — 1)L message bits must be protected by
both b and ¢. Denote these (R — 1)L dimensions of b as Bj.
Now consider qualified Receiver 2, who knows b, d, e such that
there must exist R dimensional space of W that is covered by
b, d, e. These RL dimensions must be fully covered by d, e as b
is known to eavesdropping Receiver 3. As d, e have dimension
L each, their overlap is (2— R)L and each of them separately
covers 3(R — (2— R))L = (R — 1)L dimensions. Therefore,
eavesdropping Receiver 4 can fully recover the (R — 1)L
dimensions covered only by d (and b) as d is known. This (R—
1)L dimensional space of b is denoted as By. Symmetrically,
the (R — 1)L space of b (mixed with e) after e is known is
denoted as Bs. Finally, we connect B;, By, Bs. The desired
message bits in Bo, Bs are independent, so B;N(B2NBs) = 0.
Otherwise, in By, we have the same b space (B2 N Bs) mixed
with different desired message bits (security violated). Then
L >dim(By)+dim(B2NBs) > (R—1)L+ (2(R—-1)—1)
L = (3R —4)L, and 3R < 5. We note that the translation
of this linear argument into an information theoretic proof
with entropy terms is highly non-trivial. The converse for the
broadcast bandwidth is immediate, by setting Q = {1,2} and®
Ue = z3 = b in Theorem 2: B(C) > 2C' —I(a, b, ¢;b,d, e|b) =
2C — I(a, c;d, elb) = 2C = 10/3.

Remark 2: The conditional entropy converse bound in The-
orem 1 is R < 2 for the secure groupcast instance in Fig. 4,
which is strictly weaker than the capacity 5/3. Thus the
conditional entropy converse bound is not tight in general,
for combinatorial secure groupcast (and for secure groupcast).

IV. GENERALIZATIONS

In this section, to show how insights generalize, we consider
two extensions of the basic combinatorial secure groupcast
model - the first one includes multiple messages and in the
second one, keys are discrete memoryless sources.

A. Secure Groupcasting Multiple Messages

We consider an elementary 3 receiver broadcast network
with 3 messages (see Fig. 5).

We first succinctly describe the model, which generalizes
that in Section II. A transmitter wishes to deliver 3 messages

OHere we slightly abuse the notation. Note that in u., e denotes the index
of an eavesdropping receiver and not the combinatorial key e in the secure
groupcast instance.
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Wi, Wy, Wia (of size Lw,, Lw,, Lw,, i.i.d. uniform bits,
respectively) through broadcasting a signal X of size Lx bits
such that Receiver 1 only learns Wi, Wis, Receiver 2 only
learns Wy, Wio, and Receiver 3 learns nothing. Receiver 1 is
equipped with key Z; = (S1,S12), Receiver 2 is equipped
with key Zs = (S2,.512) and Receiver 3’s key is empty. The
key variables S1, S, S12 are L length extensions of uniform
bits s1, S, S12 (of size L1, Lo, L12 bits, respectively),

H(W17W27W127‘S’1) 527‘912) - H(Wl) + H(WQ)

+ H(Wia) + H(S1) + H(S2) + H(S12).  (49)
The correctness and security constraints are as follows,
(Receiver 1) H(Wy,Whs|X, S1,S512) = o(L),
I(WQ;X, 51,512) = (L) (50)
(RCCCiVCI‘ 2) H(WQ, W12|X, SQ, 512 = O(L)7
I(Wl;X,SQ,Slg) = (L) (51)
(Receiver 3)  I(Wq, Wa, Wig; X) = o(L). (52)

The rate of the messages and the broadcast bandwidth are
defined as follows,

— LWl _ LW2 _ LW12
Ry = L’RQ_ L;R12— 7
L
B(Ry, Ry, Riz) = — (53)

The closure of the set of achievable rate tuples (R1, Ra, R12)
is called the capacity region C and the minimum broad-
cast bandwidth for a rate tuple (Ry, Rz, R12) is denoted as
B*(R1, R, Ri2).

We present the capacity region and the minimum broadcast
bandwidth for the 3 message secure groupcast problem in
Fig. 5 in the following theorem.

Theorem 8 (Rate Region): For the 3 message combinatorial
secure groupcast problem in Fig. 5, the capacity region and
the minimum broadcast bandwidth are

0 <Ry + Ri» < H(s1)+ H(s12) (54)
0 < Ry+ Ry < H(sz) + H(s12) (55)
0< Ry <H(s1) (56)
0 <Ry < H(sz) (57)
8" (R1, R2, R12) = R1 + Rs

+ max(Ry2,2R12 — H(s12)). (58)

The proof of Theorem 8 is presented in Section V-H.

B. Discrete Memoryless Keys

The results for secure unicast and multicast with combi-
natorial keys generalize to discrete memoryless keys and are
presented in the following theorem.

Theorem 9 (Secure Unicast and Multicast under Discrete
Memoryless Keys): For the secure unicast problem (to the
first of K receivers), the capacity and the minimum broadcast
bandwidth for capacity achieving schemes are

C=p"(C)= min_ H(z|z.). (59)

e€[2:K]
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For the secure multicast problem (to the first K — 1 of K
receivers), the capacity is

C = min (60)
q€[l:K—1]

The converse proof of Theorem 9 is identical to that under
the combinatorial key setting. The achievability proof of
Theorem 9 is presented in Section V-I. We give an intuitive
overview here. First, consider secure unicast. Based on 2z,
we wish to generate a key that is secure to any eavesdropping
Receiver e € [2 : K|. With a discrete memoryless source,
we can use random binning (whose mapping does not depend
on zg, - ,zK) to obtain H(z1|z.)L + o(L) secure bits
over L key blocks. This step is well known and is typically
referred to as privacy amplification [28] (refer to Lemma 5 in
Section V-I for a technical description). Given these secure
bits, the rate value of the capacity is easily achieved by one-
time pad coding. Second, consider secure multicast, which
is similar, but with an additional step of communication for
omniscience [4] (well known as well). This is implemented as
follows. We assume the key Zx known by the eavesdropping
Receiver K is globally known (e.g., the transmitter may
broadcast Zx to everyone). Next we wish to make the
qualified receivers 1 to K — 1 all know Zj,---,Zxg_1
(i.e., common randomness). To this end, by Slepian Wolf
coding [29] (random binning), the transmitter needs to
broadcast maxgeqi.x—1] H (21, -+, 2512, 2x)L + o(L)
bits over L key blocks and note that these bits are
available to the eavesdropping Receiver K as well. After
this communication for omniscience step, the qualified
receivers all know Zi,---,Zkg_1 so that from privacy
amplification (under eavesdropped public communication),
they can agree on a key of size (H(z1, -+ ,zx-1|2K) —
maxge:x—1) H(z1, -+, 2512, 2x)) L+ o(L) =
minge(i:x—1] H (2|2 ) L+0(L) bits that are almost unknown
to the eavesdropping Receiver K (i.e., the conditional entropy
subtracts the amount of leaked communication). Equipped
with these secure key bits, the desired rate can be easily
achieved with one-time pad coding.

Remark 3: Similar to combinatorial secure multicast (see
Remark 1), the minimum broadcast bandwidth of secure
multicast under the discrete memoryless key setting is an
open problem. In particular, the step of communication for
omniscience is not necessary and might cause additional
broadcast bandwidth (this statement is also true for the key
agreement problem [4]).

H(zg|25)-

V. PROOFS

Note that in the proofs, the relevant equations needed to
justify each step are specified by the equation numbers set on
top of the (in)equality symbols.

A. Proof of Theorem I: Converse on R

Consider any qualified Receiver ¢ € [1 : N] and any
eavesdropping Receiver e € [N + 1 : K]. We have

RL ¥

= H(WI|Z)

—
=

(61)
(62)

—
—
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2

—
-

2 [(W.X,Z,Z) + o(L) (63)
QW z,|X, Z.) + o(L) (64)
< H(Z4|Ze) +o(L) (65)
= LH(z4|z) + o(L). (66)

Note that the notation @ in (61) means that (61) follows from
equation (4), introduced earlier in the paper. Normalizing (66)
by L and letting L — oo, we have the desired converse bound
R < H(z4|%e).

B. Proof of Theorem 2: Converse on 3(R)

To simplify the notations, we set @ = {1,2,---,Q} C [1
N], which has no loss of generality. Let us start with a useful
lemma.

Lemma 2: For any ¢ € [1: Q) — 1], we have

I(X;Zq+1|Z1;"' 7Zq7UeaW)
> HW)—I1(Z1, - ,Zg; Zg41|Ue) + o(L). (67)
Proof:
I(X;Zq+1|Zl7" : ;Z(pUeaW)
Y IX Wi 2 20, 20,0 (68)
= I(Xv Wa Zlv"' an;Zq+1|Ue)
- I(Zlv an;Zq+1|Ue) (69)
> IW;Zg1|Ue, X) = I(Z1, -+, Zg; Zg41|Ue) - (70)
2
© HW|U.X) = I(Zy, -+, Zyg; Zyr|Ue) + o(L) (T1)
3
C HW\U.) — (2, Zg: Zgsa|Ue) +o(L)  (72)
1
Y HW) —I(Zy, -, Zy: Zgra|Ue) + o(L). (73)
|
Next, we apply Lemma 2 to decompose the term
(X W, Zy,- -+, Zg|Ue). We have
I(X;VVth"' aZQ|Ue)
Q-1
= I(X;W, Z1|Uo)+ Y I(X; Zg1| 21, 2, Ue, W)
q=1
(74)
(67)
> I(X;W[Zy,Ue)
Q-1
Z ( Zla"' 7Zq;Zq+1|Ue)+0(L))
(75)
Y [(X, 2, U W)
Q-1
+ Y (HOW) =121, 24 Zyia|U.) + o(1))
q=1
(76)
Q' mw) +o(L)
Q-1
+ (H(W) - I(Zla 7Z(1; Zq+1|Ue) + O(L))
g=1

(77)
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gi Zg+1|Ue) + o(L).

Q-1
= ZIZl"'
g=1

(78)
Finally, note that
BRIL 2 Lylogyp (79)
> H(X) (80)
> H(X|U) (81)
2 I(X;Wazla"' aZQ|Ue)' (82)
Combining (78), (82), we have
Q-1
BRIL=QHW) =" I(Z1,-++ , Zys Zysa|U.) + o(L).
q=1
(83)

Normalizing (83) by L and letting L — oo, we have
the desired converse bound on ((R). Note that as the
keys are discrete memoryless, I(Z1,---,Zq4; Zg41|Ue) =
LI(z1,- -, 2q; 2g+1ue).

C. Proof of Theorem 3: Secure Unicast

The converse bounds for the capacity and the broadcast
bandwidth follow immediately from Theorem 1 and Theo-
rem 2, respectively. The achievable scheme is presented as
follows.

We that rate R = Milee (2. ]
>uci:k)ieuegu H(su) — and  broadcast  bandwidth
B(R) = R are achievable. Set Ly = R/logyp and
L = 1. Set the field size p to be the least prime power such
that D2 Lw + EUC[I:K]:IEL{ Ly and

show

X = W+ Z Vusu
UC[1:K]:1eU
S1
S1
= W+[Vi Viz -+ Vi (84)
BN\ S1:K

where X, W e FLwxl vy e Fiwxlu g, e FLux!
and V is chosen as a full-rank Cauchy matrix of dimension
Ly x Zu CliK]1eU Ly, such that the element in i-th row and
7-th column is given by

1

V@, j)=—ps
i~ 05

a;, b; are distinct elements over IF,,. (85)

The correctness constraint (2) is trivially satisfied. We ver-
ify the security constraint (3). Consider any eavesdropping
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Receiver e € [2: K],
I(W; X, Ze)
WEY row

>

L{C[I:K]:leu

VuSz,{ |Ze) (86)

= I(W;W—i— Z Vusul(su :661/{))
UC[L:K]:1eU e¢Ud
(87)
(1)(6) I(W; W+ 3 Vusu) (88)
UC[1:K]:1eU et
W H(W + 3 Vusu)
UC[L1:K]:1eU e¢U
- H( 3 Vusu) (89)
UC[1:K]:1€eU e¢U
< Ly logsp — Ly logap =0 90)

where in the last step, the first term of Ly logy p follows
from the fact that the vector has Ly symbols from F, and
the second term of — Ly log, p follows from the fact that the
sub-matrix [Vy : U C [1: K],1 € U,e ¢ U] of the Cauchy
matrix V has rank Ly, (as it has at least Ly, columns and
exactly Ly, rows) and s, are i.i.d. uniform symbols.
Finally, the rate and broadcast bandwidth achieved match
the converse such that the proof of Theorem 3 is complete.

D. Proof of Theorem 4: Secure Multicast

We first consider the capacity of combinatorial secure
multicast. The converse follows directly from Theorem 1 and
we consider the achievability.

We show that rate R = MiNge(1: /1]
> _ucit:k—1):qeu H(su) is achievable. Set Ly = R/log,p
and L = 1. Set the field size p to be the least prime power
such that p > Ly + Eb{c[lszl] Ly. The transmit signal
has 26— — 1 row blocks, each corresponding to a subset of
[1:K—1],

X =
Xy =

[X1§X2§"' s Xus e ;XlzK—l]

VW + sy, VU C [1: K —1] 1)

where Xy e FLw<',Vy e Fhuwtw w e Fhwxl,
Su € F£MX1 and the precoding matrices V, are sub-matrices
of a Cauchy matrix, set as follows,
V=[Vi; Vo5 Vs s Vg ]y ey ZuxZws
92)
1

Cli—bj7

Vi, j) = a;, b; are distinct elements over IF,. (93)

Security is guaranteed because the keys known to the
eavesdropping Receiver K do not appear in the transmit signal
and the sy, variables are independent. Correctness constraint
is satisfied because each qualified Receiver ¢ € [1 : K — 1]
can recover at least Ly linear combinations of the message
symbols W, ie., (VyyW :q €U C [1: K — 1]), from which
W can be decoded as any sub-matrix of a full-rank Cauchy
matrix has full rank.
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Next we proceed to the minimum broadcast bandwidth
of combinatorial secure multicast. The broadcast bandwidth
achieved by the scheme above is 3(C') = > 1. —1) H (5u),
which is optimal when H (z1|zx) = -+ = H(2x—1]zK ). This
follows from Theorem 2, where we set Q = [1 : K — 1] and
Ue = Z. We have

BC) > (K-1)C
K—-1
- ( 3" H(zglzx) — Hiz, -+ ,ZK_1|ZK))
g=1
(94)
= H(z, - ,zx-1l2K) = Z H(sy) (95)

UC[1:K—1]

where (95) follows from the fact that C = H(z1]zx) = -+ =
H(zg_1|zK ). The proof when K = 4 is more involved as we
need to improve the above achievable scheme, and is presented
next.

1) B*(C) When K = 4: First, we consider the converse.
Note that in this case, C' = H(z1|z4). From (25), we need
two converse bounds. The first one is obtained by setting
Q = {1,2},u, = z4 in Theorem 2,

B(C) > 2C —I(z1; 22|24) = 2H (21]24) — I(21; 22|24)
(96)
= 2H(81) + 2H(512) —|— 2H(813) —|— 2H(8123)
— (H(s12) + H(s123)) 7
= QH(Sl) -+ H(Slg) =+ QH(813) -+ H(8123). (98)
The second one is obtained by setting Q@ = {1,2,3},
Ue = 24 in Theorem 2,
B(C) > 3C — (I(z1;22]24) + 1(21, 22; 23|24)) (99)

= 3H(s1)+ 3H(s12) +3H(s13) + 3H (s123)
— (H(s12) + H(s13) + H(s23) + 2H(s123))
= 3H(s1)+2H(s12)+2H (s13)— H(s23)+ H (s123).
(100)

Second, we consider the achievability, where we need to
adjust the size of the keys used in (91) depending on the
key configuration. We present the scheme that achieves rate
R = H(2’1|Z4) = H(Sl) + H(Slg) + H(Slg) + H(Slgg). Set
Lw = R/log,p and L = 1.

We have 3 cases depending on the relationship between
H(s23), H(s1) + H(s13), H(s1) + H(s12). For each case,
set the field size p to be the least prime power such that
p > Lx + Ly . The transmit signal has 7 row blocks and
the 4 blocks X7, X129, X13, X123 (corresponding to the keys
known to Receiver 1) are the same for all 3 cases, where all
key symbols are used,

X = [X1;Xo; X35 X123 X135 Xo3; X123
X1 = ViW +51, X192 = VoW + 519,
X3 = VisW + 513, X123 = ViosW + 5123 (101)

where the sizes of the matrices and vectors above are the same
as before (see (91)). Note that now Receiver 1 can achieve
rate R and in the remaining proof, we only need to consider
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Receiver 2 and Receiver 3. The remaining blocks Xo, X3, Xo3
are designed for each case separately, where not all the key
symbols may be used. Note that H(s12) < H(s13), i.e.,
L1y < L.

Case 1. H(Sgg) > H(Sl) + H(Slg).

Xo=(),X3 = (), Xog = VIJW + 55 (102)

where 5[213] € is comprised of the first
Ly + Ly3 symbols from so3 (which has more symbols,
ie., Lys > Ly + Lys) and VI ¢ F{fthm)<lw,
We verify that the number of linear combinations of the
message decodable by Receiver 2 and Receiver 3 is no
less than Lyy.

}FéLlJrLlS)Xl

For Receiver 2: | X1a| + | Xo3| + | X123]

= Lyo+ (L1 + Li13) + Li23 = Ly, (103)
For Receiver 3: | X3] + | Xag| + | X123]
= Lis+ (L1 + L13) + L123 > Lw. (104)

The transmit signal size is

Lx = |X1| + | X12] + | X13] + | X123] + [ Xa2s]
= L1+ Lio+ L3+ Lias + (L1 + L13) (105)

which matches the converse bound (98) for broadcast
bandwidth. The other cases are similar.
Case 2. H(s1)+ H(s12) < H(s23) < H(s1)+ H(s13).

XQ = V[QQ]W + 8[22],X3 = (), X23 = V23W + So3

(106)
where 5[22] e P tEas =L)X i¢ comprised of the first
L1 + Li3 — Los symbols from sy (which has more
symbols, i.e., Ly > Ly + L13— Loz because H (z1]z4) <
H(z2|z4)) and V[22] € IE‘;LﬁLB_L%)XLW. We verify
that the number of linear combinations of the message
decodable by Receiver 2 and Receiver 3 is no less
than Lyy.

For Receiver 2: |X2| + |X12| + |X23| + |X123|
= (L1 + L13 — La3) + L2 + Loz + Lias

=L+ Lo+ L1z + Liog = Lw,  (107)
For Receiver 3: | X13| + [ Xos| + [ X123
= L13+ Loz + Li23 > L. (108)
The transmit signal size is
Lx = |Xq]+ |Xi2| + | Xas| + [X123]
+ | Xa| + [Xas] (109)
= L1+ Lo+ Liz+ Li2s
+ (L1 + L1z — Lo3) + Log (110)

which matches the converse bound (98) for broadcast
bandwidth.

4693
Case 3. H(Sgg) < H(Sl) + H(Slg).

Xo = VEIW 4+ 65 x5 = VPIw + s,
Xo3 = VozW + 593 (111)
8[23] c F2L1+L13*L23)><17V[23] c F2L1+L13*L23)><LW
(112)
8[3] c FZ(,L1+L12_L23)X17V£3] c FZ(7L1+L12_L23)XLW
(113)

where Lo > Ly + L1z — Loz and Ly > Ly + L1 — L3
because H (21|z4) < min(H (22|24), H(23|24)). We ver-
ify that the number of linear combinations of the
message decodable by Receiver 2 and Receiver 3 is no
less than Lyy .

For Receiver 2: | Xa| + | X12| + [ Xa3] + | X123]
= (L1 + L1z — La3) + L12 + Las + Lia3
=Ly + Lia+ L13+ Lios = Ly, (114)
For Receiver 3: | X3| + | X13] + | Xa3| + | X123]
= (L1 + Lia — La3) + L1z + Lag + Lia3

=Li+ L+ L1z + Lizs = Lw.  (115)
The transmit signal size is
Lx = |Xu|+ |Xuo| + [X13| + [X123]
+ [ Xo| + | X5 + [Xas] (116)

= L1+ Lio+ Lig + Li2s + (L1 + L1 — L23)
+ (L1 + Lig — Log) + Log (117)

which matches the converse bound (100) for broadcast
bandwidth.

After the sizes are specified, the remaining proof is the
same as that presented above, where we set V as a full-rank
Cauchy matrix and the correctness and security constraints are
satisfied. The proof of §*(C') when K = 4 is thus complete.

E. Proof of Theorem 5: the N = 2, K = 4 Case

The converse of rate and broadcast bandwidth follows from
Theorem 1 and Theorem 2, and we present the achievable
scheme now. Set p = 2 (i.e., binary field) and L = 1 (i.e., one
key block). The idea is to decompose every instance into mul-
tiple component sub-networks, where the basic components
are listed in Fig. 6.

Next, we divide the problem instance into multiple cases,
where each case requires a different decomposition. As si2 is
only known to qualified Receiver 1 and Receiver 2, we can
easily use s12 to achieve rate H(s12) with broadcast band-
width H(s12), by one-time pad. Without loss of generality,
we assume H(s1) < H(sz), H(s124) < H(s123). As such,
for all cases we invoke Component 1 H (s124) times (i.e., use
H (s124) bits of s123, $124) and Component 2 H (s1) times (use

H(s71) bits of s1,s2). We write this succinctly as
H(8124) X Cmp 1 —|—H(81) X Cmp 2. (118)

We proceed next depending on the key configurations.
Specifically, all cases are divided as follows.
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(8123, 5124)

X = W + S123 + S124 w
(8123, S124)
(su) w (su)
w ~ S w
< ~dreos (123)
\ W)

Lw=1Lx=1

1) 2)
W+ n (814, 5123)
_ S14 + S123 %% W + S14 + S123
X <W+324+5123 XZ(

4) 5)

Fig. 6. The 6 basic components with (correct and secure) achievable schemes.

Case 1. H(sy) — H(s1) >
We further invoke

min(H (s13), H(s14)) x Cmp 3

min(H (s13), H(s14))-

(119)

where we can employ the scheme in Component 3 a
number of min(H (s13), H(s14)) times because we have
H(Sg) — H(Sl) bits left of sy and H(Sg) — H(Sl) >
min(H (s13), H(s14)). The remaining steps need further
division.

1) Case 1.1. H(s14) < H(s13). No further action is
needed. Tracing back, we have invoked one-time pad
of s19, (118), and (119). Therefore we have achieved

R = H(s12) + H(s124) + H(s1) + H(s14),
B(R) = H(s12) + H(s124) + 2H (s1) + 2H (514)

which match the converse (33) and (34). Note that the
converse bounds are minimum or maximum of several
terms and it suffices to show the achievability of one
term.

2) Case 1.2. H(s14) > H(s13). We need to further
consider the following cases.

3) Case 1.2.1. min(H(s14) — H(s13), H(s123) —
H(5124),H(824)) = H(814) — H(Slg). We further
invoke

(H(814) — H(Slg)) X Cmp 4 (120)

and the description of the scheme is complete for this
case. We trace back and find that

R = H(s12) + H(s124) + H(s1) + H(s14),
B(R) = H(s12) + H(s124) + 2H (s1) + 2H (514)

are achieved and they are optimal as the formulas match
the converse.

4) Case 1.2.2. min(H(sM) — H(Slg), H(Slgg) —
H(8124),H(524)) = H(Slgg) — H(5124). We further
invoke

(H(8123) — H(8124)) X Cmp 4 (121)

Lw=1,Lx =2
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X = W + s13 + S14
- W+52

(su) w
w NS (s13)
N\
N Rx 3 @

\Rx4 0 Lw=1Lx=2 * Ry 4 [ (814)
@ ) @

w X = W + s13 + S1a
W + S23 + S24

x 3

(5123) w : ~ (813, 523)
@ . @

and the description of the scheme is complete for this
case. We trace back and find that

R = H(si2)+ H(s1) + H(s13) + H(s123),
(122)
5(3) = H(Slg) — H(8124) —+ 2H(81)
+ 2H(813) +2 H(Slgg) (123)

are achieved and they are optimal as the formulas match
the converse.

Case 1.2.3. min(H(814) — H(Slg), H(Slgg) —
H(s124), H(s24)) = H(s24). We further invoke

H(s94) x Cmp 4 (124)

and need to consider the following cases.
Case 1.2.3.1. min(H(s2) — H(s1) —

H(s13), H(s14) — H(s13) — H(s24), H(s123) —
H(5124) — H(824)) = H(SQ) — H(Sl) — H(813)
We further invoke
(H(s2) — H(sy) — H(s13)) x Cmp 5
such that overall (125)
R = H(Slg) + H(8124) + H(824) + I{(Sg)7 (126)
ﬂ(R) = H(Slg) =+ H(5124) =+ 2H(SQ4) + 2H(82)
(127)
Case 1.2.3.2. min(H(s2) — H(s1) —
H(s13), H(s14) — H(s13) — H(s24), H(s123) —
H(8124) — H(SQ4)) = H(814) — H(Slg) — H(Sg4).
We further invoke
(H(s14) — H(s13) — H(s24)) x Cmp 5
such that overall (128)
R = H(s12) + H(s124) + H(s1) + H(s14), (129)
6(R) = H(Slg) =+ H(8124) =+ 2H(81) + 2H(814).
(130)
Case 1.2.3.3. min(H(s2) — H(s1) —
H(s13), H(s14) — H(s13) — H(s24), H(s123) —
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H(s124)—H (s24))
We further invoke
(H(s123) — H(s124) — H(s24)) x Cmp 5
such that overall (131)
R = H(s12) + H(s1) + H(s13) + H(s123),
(132)

= H(s123)—H (s124)—H (524).

B(R) = H(s12) — H(s124) + 2H (s1)
+ 2H(513)+2H(5123). (133)

Case 2. H(Sg) — H(Sl) S min(H(Slg),H(814)).
We further invoke

(H(s2) — H(s1)) x Cmp 3 (134)
and consider the following cases.
6) Case 2.1. min(H(s24),H(s14) — H(s2) +

H(Sl), H(Slgg) — H(8124)) = H(524). We further
invoke
H(s24) x Cmp 4 (135)

and the description of the scheme is complete for this
case. We trace back and find that

R = H(s12) + H(s124) + H(s2) + H(s24),
(136)
B(R) = H(s12)+ H(s124) +2H (s2) + 2H (524)
(137)

are achieved and they are optimal as the formulas match
the converse.

7) Case 2.2. min(H(524), H(814) —
H(s1),H(s123)—H(s124)) = H(s14)—
We further invoke

(H(814) —

H(SQ) +
H(Sg)—l—H(Sl).

H(s2) + H(s1)) x Cmp 4 (138)

and the description of the scheme is complete for this
case. We trace back and find that

R = H(si2) + H(s124) + H(s14) + H(s1),
(139)
B(R) = H(si2) + H(s124) +2H(s14) + 2H(s1)
(140)

are achieved and they are optimal as the formulas match
the converse.

8) Case 2.3. min(H(524), H(814) — H(Sg) +
H(s1), H(s123) — H(s124)) = H(s123) — H(s124).
We further invoke

(H(s123) —

H(s124)) x Cmp 4 (141)

and need to consider the following cases.

9) Case 2.3.1. min(H(s14) — H(s2) + H(s1) —
H(8123) +H(8124), H(Slg) — H(SQ) +H(81), H(824) —
H(8123) + H(8124),H(823)) = H(814) — H(SQ) +

4695

H(s1) —

(H(s14) — H(s2) + H(s1) —
x Cmp 6 such that overall (142)
R = H(s12) + H(s124) + H(s14) + H(s1), (143)

B(R) = H(s12) + H(s124) + 2H (s14) + 2H (51).
(144)

Case 2.3.2. min(H(s14) — H(s2) + H(s1) —
H(s123)+ H (s124), H(s13) — H(s2) + H (s1), H(s24) —
H(s123) + H(s124),H(s23)) = H(s13) — H(s2) +

H(s123) + H(s124). We further invoke

H(s123) + H(8124))

10)

H(s1). We further invoke
(H(Slg) —H(82)+H(Sl)) X Cmp 6
such that overall (145)
R = H(s12) + H(s123) + H(s13) + H(s1),
(146)
B(R) = H(s12) — H(s124) +2 H(s123)
+ 2H(s13) + 2H (s1). (147)
11) Case 2.3.3. min(H(s14) — H(s2) + H(s1) —
H(s123)+ H (s124), H(513) — H(s2) + H (s1), H(524) —

H(s123) + H(s124), H(s23)) =
H (s124). We further invoke

(H(s24) — H(s123) + H(s124)) X Cmp 6

such that overall (148)

R = H(s12) + H(s124) + H(s2) + H(s24) (149)

B(R) = H(s12) + H(s124) +2 H(s2) + 2H (s24)
(150)

H(s24) — H(s123) +

12) Case 2.3.4. min(H(s14) — H(s2) + H(s1) —

H(s123) +H(s124), H(s13) — H(s2)+ H(s1), H(s24) —
H(s123) + H(s124), H(s23)) = H(s23). We further
invoke

H(s23) x Cmp 6 such that overall (151)
R = H(s12) + H(s2) + H(s123) + H(s23), (152)
B(R) = H(Slg) — H(5124) +2 H(Sg)

—+ 2H(8123) -+ 2H(823). (153)

F. Proof of Theorem 6: the Symmetric Setting

The rate converse follows from Theorem 1, where among
u-keys, any qualified Receiver ¢ € [1 : N| knows (5:12 )
keys that are not known to any eavesdropping Receiver
e € [N+ 1 : K] because we may pick any u — 1 receivers
from any K — 2 receivers other than Receiver ¢ and Receiver
e to form a u-key (note that Receiver ¢ must be included).
The broadcast bandwidth converse follows from Theorem 2,
where we set @ = |1 N], ue = zx and obtain
B(C) > H(z1,- -, 2n|2K ). Among u-keys, we have (K 1)
(Kfivfl) keys in the term H(z1,---,2n|2K) because we
pick u-keys from receivers 1 to K — 1 and need to remove

the ones that are only known to receivers N + 1 to K — 1.
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To sum up for the converse part, we have proved that

K
K —2\ |,
C<Z<u_1)L[]log2 D,

u=1

rom (1) (572

(154)

We next show that the above rate and broadcast bandwidth are
achievable. Similar to Example 4, we consider u-keys sepa-
rately for different » values and then combine the decomposed
schemes using Lemma 1. Consider a fixed value of u € [1 : K]
and further consider the u-keys that are known to ¢ qualified
receivers and u — i eavesdropping receivers, where i € [1 : u].

We focus on one specific set of ¢ qualified receivers, say
receivers from the set Z where Z C [1 : NJ,|Z| = i. That
is, we consider the keys (sy : [1 : N|NU = Z,|U| = u)
and there are (IZ :iv ) such wu-keys. Further these (IZ i]iv )
keys are known to all qualified receivers from Z, and each
eavesdropping receiver knows (Ii :]i\i _11) keys from these keys.
Invoking generic linear codes similar to Example 4, we can

securely send ((%°1) — (K-N- 1)Ll = (K-N=1plul

7 u—i—1 i
generic message symbols to receivers from Z by transmitting

(K_N_l)L[“] symbols.

u—1
U:[L:N]|NU=T,|U|=u

where V¥ is a (K;Z_l)L[“] X (12[:11) (K;ﬂ_l)L[u] matrix
over [, and V7, is a (K;Z_l)L[“] x L") matrix over F,.
We now explain the dimension of V. The number of rows of
V¥ corresponds to the number of message symbols in X [u).Z,
which is set to be equal to the number of key symbols that
are known to all qualified receivers from 7 minus the number

of key symbols among these keys that are known to each
eavesdropper, i.e., ((lijv) - (Iijjiv:ll))L[“] = (K;ﬁ.—l)L[u].
The number of columns of V¥ corresponds to the total number
of message symbols that are sent under the protection of u-
keys (i.e., H(W)). Consider all sets of i qualified receivers
(i.e., all Z sets), there are (N ) choices and any particular

qualified receiver is picked (i:ll) times (i.e., each qualified

XM7T = vewld Visu — (155)

receiver appears in (12[:11) different X[} terms), so the size
of W is set as (1;[__1) (K_N._l)L[“].

Repeat the same clzoding Igrocedure for all sets Z such
that Z C [1 : N] and |Z|] = 4. Consider the row stack
of all the V¥ matrices appeared (denoted as Viulw)
and the column stack of all the V;;, matrices appeared
(denoted as V[:5) As a result, V% has dimension

(D RETHLM e (5 (P27 LM and VIhs - has
dimension (K;Z_l)LM X (]j) Zu:[1:1v]mu=z,|u|=uL[u]-
The field size p is chosen to be no smaller than the
sum of the number of rows and the number of columns

of Vv and Vs for all u, ie, p = max,ep.x
max (V) + () ()L, (L

(%) EL{:[I:N]OL{:I,|M|:uL[u])' Set. VI and VI as
two Cauchy matrices over I, generated by distinct field
elements (same as (85), (93)).
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Security and correctness on the message symbols W hold
by the generic property of Cauchy matrices, i.e., any square
sub-matrix of a full rank Cauchy matrix also has full rank.
Specifically, any qualified receiver can obtain H (W) inde-
pendent linear combinations of (" symbols (from H (W)
rows of the Cauchy matrix V[ so the rows are linearly
independent). Hence all W symbols can be decoded with
no error. For any eavesdropping receiver, consider X [Z,
The number of unknown key symbols in X7 is equal to
the number of rows of X[“Z and the linear combinations
of the unknown key symbols have full rank (as the columns
of V}, are from the Cauchy matrix VI4l5). Further, the key
symbols are independent for different U/, so the messages
symbols are perfectly hidden from any eavesdropping receiver.

Counting all sets of ¢ qualified receivers and all u-keys,
where ¢ € [1 : u],u € [1 : K|, we calculate the overall
performance as follows,

K u
R = Y > HWM)
u=1 i=1
K u
N—-1\/K-N-1
= ZZ(. )( ‘ )L[u]logQP (156)
; 1—1 u—1
u=1i=1
K u—1
N-1\/K-N-1
= 5 31 G | Gy V7
u=1 j=0 J w==1=J
K
_ Z(K )L[“]loggp (157)
u=1 u=
and
KL /N (K- N -1
= R VS| 1
B(R) ZI;(Z)( y ) ogp  (158)
B EK: z“: N\ (K—-N-1
N = \iD N\ u—%
N\/K-N-1
) o

()

(160)

where both rate and broadcast bandwidth match the converse
bounds. Note that we have used decompositions of schemes
with independent u-keys (refer to Lemma 1) and for each u,
we invoke the generic coding scheme (155). To ensure the
overall scheme operates over the same field, we have used
the maximum field size p required for all component schemes
(i.e., p is picked as the maximum over all v € [1 : K]). The
proof of Theorem 6 is thus complete.

G. Proof of Theorem 7: Rate Converse for the
N =2, K =5 Instance

The rate converse is split into two lemmas. Before present-
ing the lemmas, we first summarize the entropy identities from
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the problem description. We have

(Combinatorial Keys)  H(a,b,c,d,e) = H(a) + H(b)
+ H(c) + H(d) + H(e) (161)
(Same Key Sizes)  H(a) = H(b) = H(c)

=H(d)=H(e)=L (162)

(Correctness)  H(W|X,a,b,c) = HW|X,b,d,e)

=o(L) (163)

(Security) I(W;X,b) =1(W; X, ¢,d)

=I(W;X,c,e)=0(L). (164)

Lemma 3: For the secure groupcast instance in Fig. 4,
we have

H(d, e|W,X,b) < 2L — H(W) + o(L). (165)
Proof:
H(d, e|W, X, b)
= H(de|X,b) — I(d,e;W|X,b) (166)
Y oL HWIX,b)+ HOW|X,bde) (167)
(60 o HW) + o(L). (168)
| ]

Lemma 4: For the secure groupcast instance in Fig. 4,
we have
H(d,e|W,X,b) >2H(W) — 3L+ o(L). (169)

Proof: Consider eavesdropping Receiver 4 such that
X, ¢, d shall not reveal anything about . We have
H(W, X, c,d)

H(W)+ H(X,c,d) +
> HW)+ H(X,b,cd)

(164) o(L) (170)

— H(b) +o(L). (171)

Symmetrically, consider eavesdropping Receiver 5 such that
X, ¢, e shall not reveal anything about W. We have

H(W,X,c,e)
Y H(W) + H(X, e,e) + o(L) (172)
> HW)+4+ H(X,b,c,e)— H(b)+ o(L). (173)

Adding (171) and (173) and applying sub-modularity to
H(X,b,c,d)+ H(X,b,c,e), we have

(171) + (173)
= HW, X c,d)+HW,X,c,e)

> 2H(W) — 2H(b) + H(X, b, c,d,e)
+ H(X,b,¢) + o(L) (174)
(1§3) 2 HW)—=2H()+ HW,X,b,c,d,e)
+ H(X,a,b,c) — H(a) + o(L) (175)
L amW) = 2l (b) + HOW, X, ¢, d)
+ HW,X,a,b,¢) — H(a) + o(L). (176)
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Rearranging terms above and applying (162), we have

2H(W) — 3L + o(L)

< H(W,X,c,e)— HW,X,a,b,c) (177)

< HW,X,a,b,c,d,e)— H(W,X,a,b,c) (178)

= H(de|W,X,a,b,c) (179)

< H(d,e[W, X,b). (180)

| ]

Finally, combining Lemma 3 and Lemma 4, we have

2H(W)—3L+o(L) <2L— H(W)+o(L) (181)
H(W) 5 oL)
= < — B

R I =3 i3 (182)

and letting L — oo produces the desired bound R < 5/3.

H. Proof of Theorem 8: Multiple Messages

Let us start with the converse proof, which is a general-
ization of that in Theorem 1 and Theorem 2. Consider (54)
and (55) follows from symmetry. We have

(R1 + R12)L

= HWh)+ HWi2) (183)
O (Wi, Wi X, 81, S12) + o(L) (184)
1wy, Wia: 81, 12| X) + o(L) (185)
§ H(Sl,Sm) +0(L) = (H(Sl) +H(812))L+0(L)
(186)

Consider (56) and (57) follows from symmetry. We have

RL = HW) L 1(Wi;X,51,50) +o(L) (187)

D (W1 811X, S1) + o(L) (188)

< H(S1)+o(L) = H(s1)L + o(L). (189)

Consider (58). We have

6(R1)R27R12)L

> H(X)> H(X|S1, 52, 512) (190)

Z I(X;W17W2;W12|517525512) (191)

CLD B (W, Wa, Wis| Sy, Sa, Sia) + o(L) (192)

WO W) + HWa) + H(Wia) +o(L) (193

= (R1 + Ry + Ri2)L 4 o(L), (194)
6(R1)R27R12)L

= I(X;W17W2)W127Z1)ZQ) (195)

= (X Wy, Wha, Z1) 4+ 1(X; Wa, Za|W1, Wia, Z1)

(196)

> (X Wh, Wha|Zh) + I(X; Zo|Wh, Wa, Whg, Z1)

(197)

W 1(X, 20 Wy, Wha) + I(X, Wa, Wha; Zo|Wh, Z3)

(198)

(0 H(Wy,Wig) + 1(X, Wa, Wha, Z1; Z2|Wh)
—1(Z1; Za|Wh) + o(L) (199)
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(49)
> H(Wy, Wia) + I(Wa, Wia; Zo| X, W)
— I(Z1;Z3) + o(L) (200)
1
D (W, Waa) + H(Wa, Wis| X, W1)
— I(Z1;Z3) + o(L) (201)
2
) H(Wy,Wia) + H(Wo, Wia|[W7)
— I(Z1; Z>) + o(L) (202)
@ (Ri+Ri2+R2+ Ri2—H(s12))L+o(L). (203)

Next, we consider the achievability. Consider any rational
rate tuple (Rp, Ro, Ri2) € C, ie., (R1,Ro, R12) satisfies
(54) - (57). Without loss of generality, assume Ri, Ro, Ris
are integers (for rationals, we may consider blocks over the
least common multiple of the denominators so that the number
of bits becomes integers). We operate over the binary field
and consider L = 1 block. The transmit signal is designed
as follows. Denote by Wlaraz] the a1-th to ao-th bits in the

vector . We have two cases.
Case 1. R12 S H(Slg).

W2+8[21:R2]; Wia + 8[112:R12]).
(204)

X = (Wy+st

The broadcast bandwidth achieved is §(R1, Ro, R12) =
Ry 4+ Ra + Ria.
Case 2. Ri9 > H(Slg).

W1+8[11R1], W2+8[21R2], Wl[éH(Slz)]_’_SlQ
Wl[é{(slz)+1:R12] +S[R1+1:R1+R127H(812)]

X:
Wl[é{(slz)+1:R12] + SiRQH;RererH(m)]

(205)

Note that as (R1, Rz, R12) satisfies (54) — (57), the key

bits in the above scheme exist. The broadcast bandwidth

achieved is B(Rl, Rs, ng) =Ry +R2+2R12—H(512).
Thus any rational rate tuple in the capacity region is achievable
and as rational tuples are dense over the reals, the proof of
Theorem 8 is complete.

L. Proof of Theorem 9: Achievability Under Discrete
Memoryless Keys

Before presenting the achievability proof for Theorem 9,
we cite a lemma on privacy amplification,” which encapsulates
most technicalities of the achievability proof.

Lemma 5 (Lemma 5.18 in [32]): Consider random vari-
ables Z., Z., X. (with finite cardinality) such that Z., Z. are
L length extensions of z., ze and Lx, denotes the number of
bits in X.. Then there exists a random mapping (independent
of Z., X.) from Z. to a uniform random variable Z with Ly
bits such that

(206)
(207)

Ly = H(z.|ze)L — Lx, +o(L),
1(Z;Z.,X.) =o(L).

"Lemma 5 on secret key extraction suffices for our purposes over
long key block lengths. Stronger non-asymptotic results and more effi-
cient constructions of the random mappings are available in the literature
(see e.g., [30], [31]).
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In Lemma 5, we may interpret Z as the secret key to be
generated from a known variable Z. such that Z is almost
independent of an eavesdropped variable Z,. (that has certain
joint distribution with Z.) and a prior knowledge variable X,
(that is arbitrarily correlated with Z., Z.). The secret key size
turns out to be given by the conditional entropy value minus
the leaked prior knowledge.

Consider secure unicast first, whose achievability proof
follows immediately from Lemma 5. Set Z, = Zi, i.e., the
key for qualified Receiver 1, Z, as the key for eavesdropping
Receiver ¢ € [2 : K], and X, = (). From Lemma 5,
we know that Receiver 1 can generate a key Z that is
almost independent from any eavesdropping receiver. Note
that the random mapping used in Lemma 5 does not depend
on the eavesdropped variable Z. so that the secret key Z
generated is simultaneously independent of any eavesdropped
variable as long as we pick the key length to be Ly =
mingeo. ) H(21]2¢) L 4 o(L). We use the key to send the
desired message through one-time pad, i.e., X = W+ Z where
the length of W is the same as the length of Z. Correctness
and security are easy to verify (as Z is almost independent
of Z., see (207)). The rate and broadcast bandwidth achieved
are R = B(R) = min.ca.x] H(21]2) as L — oo.

Then consider secure multicast. In Lemma 5, we set

Z. = (Z1,Z3,---,Zk-1), Ze = Zg, and X. as
the random bin index of (Zy,Zs, -+ ,ZKk_1) of length
maxge:x—1] H(21, -, 2x-1|2¢, 25 )L + o(L). The key

7 is generated from Z. and has length as specified in
Lemma 5. The transmit signal sent by the transmitter is
X = (Zg,Xe,W + Z). From Zg,X., every qualified
Receiver ¢,q € [1 : K — 1] can recover Z.. This result (in
fact, in a more general form) was first proved in Theorem
2 of [33], where through Slepian Wolf coding (random
binning, see Section 10.3 of [34]), the overall information
seen by Receiver ¢, ie., Zk,X.,Z, has entropy whose
value is at least the joint entropy, H(Z1, -, Zk)), then
Zy,---,Zk can be successfully decoded with vanishing
error. Next every qualified receiver can generate Z with
the same random mapping used by the transmitter. After
extracting the common key Z, W can be decoded with
vanishing error by every qualified receiver. Security is
guaranteed by Lemma 5 as Z is almost independent of the
information available to the eavesdropping Receiver K, i.e.,
Zi,X.. The rate achieved is R = H(zy, - ,2K-1]2K) —
maXge:K—1] H(zy, -, 2k-1|2¢,2K) =
H(z4|2K) as L — oo.

MiNge1:K —1]

VI. CONCLUSION

We introduce the problem of secure groupcast, where a
transmitter wishes to securely communicate with a group
of selected receivers while ensuring the other illegitimate
receivers are fully ignorant of the desired communication,
through noiseless broadcasting and correlated keys.

The communication efficiency of secure groupcast is mea-
sured by the message rate (number of message bits securely
groupcast) and the broadcast bandwidth resource used (number
of bits in the transmit signal). The main emphasis is placed
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on the most elementary setting of combinatorial keys and one
common message, and limited extensions are also explored.
Complete answers are obtained for certain preliminary cases,
e.g., one legitimate receiver or one eavesdropping receiver,
symmetric cases, while other cases remain unsolved. Inter-
esting insights emerge out of this study, e.g., the necessity
of decomposition and both structured and generic coding, the
quest for tighter general converse bounds, and the potential of
alignment view of the correlated key, message and transmit
signal spaces. We find secure groupcast to be an interesting
and challenging information theoretic security primitive with
many open questions, and this work is a first step towards
understanding coding opportunities for group communications
under multiple correlated eavesdroppers.
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