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Abstract—A (K, N, T, K.;) instance of private information
retrieval from MDS coded data with colluding servers (in short,
MDS-TPIR), is comprised of K messages and N distributed
servers. Each message is separately encoded through a (K., N)
MDS storage code. A user wishes to retrieve one message,
as efficiently as possible, while revealing no information about
the desired message index to any colluding set of up to T
servers. The fundamental limit on the efficiency of retrieval,
i.e., the capacity of MDS-TPIR is known only at the extremes
where either T or K. belongs to {1, N}. The focus of this
work is a recent conjecture by Freij-Hollanti, Gnilke, Hollanti,
and Karpuk which offers a general capacity expression for
MDS-TPIR. We prove that the conjecture is false by presenting as
a counterexample a PIR scheme for the setting (K, N, T, K;) =
(2,4, 2,2), which achieves the rate 3/5, exceeding the conjectured
capacity, 4/7. Insights from the counterexample lead us to
capacity characterizations for various instances of MDS-TPIR,
including all cases with (K, N, T, K;) = 2, N, T, N —1), where
N and T can be arbitrary.

Index Terms— Capacity, private
colluding servers, MDS coded data.

information retrieval,

I. INTRODUCTION

RIVATE Information Retrieval (PIR) is the problem of

retrieving one out of K messages from N distributed
servers (each stores all K messages) in such a way that any
individual server learns no information about which message
is being retrieved. The rate! of a PIR scheme is the ratio of the
number of bits of the desired message to the total number of
bits downloaded from all servers. The supremum of achievable
rates is the capacity of PIR. The capacity of PIR was shown
in [2] to be

11 1 \!
Crr = 1+N+m+"'+m (1)

The capacity of several variants of PIR has also since been
characterized in [2]-[6].
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The focus of this work is on a recent conjecture by
Freij-Hollanti, Gnilke, Hollanti and Karpuk (FGHK conjec-
ture, in short) [7] which offers a capacity expression for
a generalized form of PIR, called MDS-TPIR. MDS-TPIR
involves two additional parameters: K. and 7', which general-
ize the storage and privacy constraints, respectively. Instead of
replication, each message is encoded through a (K., N) MDS
storage code, so that the information stored at any K. servers
is exactly enough to recover all K messages. Privacy must be
preserved not just from each individual server, but from any
colluding set of up to T servers. MDS-TPIR is a generalization
of PIR, because setting both T = 1 and K, = 1 reduces
MDS-TPIR to the original PIR problem for which the capacity
is already known (see (1)).

The capacity of MDS-TPIR is known only at the degenerate
extremes — when either 7 or K. takes the value 1 or N.
If either T or K. is equal to N then by analogy to the
single server setting it follows immediately that the user must
download all messages, i.e., the capacity is 1 /K. If K. = 1 or
T = 1, then the problem specializes to TPIR, and
MDS-PIR, respectively. The capacity of TPIR (K, = 1) was
shown in [3] to be

T T2 TK—I -1
CTPIR:(l'f‘N'FF"r"'-FW) (2)

The capacity of MDS-PIR (T =
Banawan and Ulukus in [6], as

1) was characterized by

K. K2 KE-1\"!
Cmps-PiR = 1+W+m+'“+m (3)

It is notable that K. and T play similar roles in the two
capacity expressions.

The capacity achieving scheme of Banawan and Ulukus [6]
improved upon a scheme proposed earlier by Tajeddine and
Rouayheb [8]. Tajeddine and Rouayheb also proposed an
achievable scheme for MDS-TPIR for the 7 = 2 setting.
The scheme was generalized by Freij-Hollanti et al. [7] to
the (K, N, T, K.) setting, T + K. < N, where it achieves the
rate 1 — % Remarkably, the rate achieved by this scheme

IpIR originated in theoretical computer science [1], where the focus is
typically on studying the growth rate of communication complexity (total
upload and download cost) for a large number (K — o00) of short (typically
one bit) messages that are stored on replicated servers. The information
theoretic capacity formulations of PIR focus on an arbitrary number (K)
of large messages (length of each message, L — 00), such that the download
cost dominates the communication complexity, often with coded storage. For
a detailed discussion, see the introduction of [2].

0018-9448 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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does not depend on the number of messages, K. In support of
the plausible asymptotic (K — o0) optimality of their scheme,
and based on the intuition from existing capacity expressions
for PIR, MDS-PIR and TPIR, Freij-Hollanti et al. conjecture
that if T + K. < N, then the capacity of MDS-TPIR is given
by the following expression.

FGHK CONJECTURE [7]:

—1

T+K,.—1 (T + K. — )K-1
> ST

CK/(I)BJS-TPIR = (1 +
4)

The conjecture is appealing for its generality and elegance as it
captures all four parameters, K, N, T, K. in a compact form.
T and K. appear as interchangeable terms, and the capacity
expression appears to be a natural extension of the capacity
expressions for TPIR and MDS-PIR. Indeed, the conjectured
capacity recovers the known capacity of TPIR if we set K, = 1
and that of MDS-PIR if we set T = 1. However, in all non-
degenerate cases where T, K. ¢ {1, N}, the capacity of MDS-
TPIR, and therefore the validity of the conjecture is unknown.
In fact, in all these cases the problem is open on both sides,
i.e., the conjectured capacity expression is neither known to
be achievable, nor known to be an outer bound. The lack of
any non-trivial outer bounds for MDS-TPIR is also recently
highlighted in [9]. This intriguing combination of plausibility,
uncertainty and generality of the FGHK conjecture motivates
our work. Our contribution is summarized next.

A. Summary of Contribution

As the main outcome of this work, we disprove the FGHK
conjecture. For our counterexample, we consider the setting
(K,N,T,K;) = (2,4,2,2) where the data is stored using
the (2,4) MDS code (x,y) — (x,y,x + y,x + 2y). The
conjectured capacity for this setting is 4/7. We show that the
rate 3/5 > 4/7 is achievable, thus disproving the conjecture.
As a converse argument, we show that no (scalar or vector)
linear PIR scheme can achieve a rate higher than 3/5 for this
MDS storage code subject to T = 2 privacy.

The insights from the counterexample lead us to charac-
terize the exact capacity of various instances of MDS-TPIR.
This includes all cases with (K, N, T, K.) = 2, N, T, N—1),
where N and T can be arbitrary. The capacity for these cases
turns out to be

c NN 5

2N2-3N+T ©)

Note that this is the information theoretic capacity, i.e., for

K = 2 messages, no (N — 1, N) MDS storage code and

no PIR scheme (linear or non-linear) can beat this rate,

which is achievable with the simple MDS storage code

(X1, x0, -+ ,xn—1) = (X1,X2, ", XN—1, vaz_ll xi)2 and a
linear PIR scheme.

The general capacity expression for MDS-TPIR remains

unknown. However, we are able to show that it cannot be
symmetric in K. and T, i.e., the two parameters are not

2The last symbol is the parity symbol and the code may be called the parity
code.
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interchangeable in general. Also, between K. and 7 the
capacity expression does not consistently favor one over the
other. These findings are illustrated by the following four cases
for which the capacity is settled.

(K,N,T, K¢)
2,4,2,3)] (2,4,3,2) [(2,4,1,3)](2,4,3,1)
Capacity| 6/11 4/7 4/7 4/7
Ref. |Theorem 3|Appendix E2 [6] [3]

The first two columns show that the capacity is not sym-
metric in K. and 7, since switching their values changes the
capacity. The first two columns also suggest that increasing K.
hurts capacity more than increasing 7. However, considering
columns 3 and 4 as the baseline where the capacities are
equal, and comparing the drop in capacity from column 3 to
column 1 when T is increased, versus no change in capacity
from column 4 to column 2 when K. is increased shows the
opposite trend. Therefore, neither 7 nor K. is consistently
dominant in terms of the sensitivity of capacity to these two
parameters.

Finally, taking an asymptotic view of capacity of
MDS-TPIR, we show that if T 4+ K. > N, then the capacity
collapses to 0 as the number of messages K — oo. This is
consistent with the restriction of T + K. < N that is required
by the achievable scheme of Freij-Hollanti et al. whose rate
does not depend on K.

Notation: For ni,np € 7, define the notation [n; : nj]
as the set {ny,n; + 1,---,n2}, Ap..n, as the vector
(An,s Any+1, -+ » Any), and S(nq : na, 1) as the submatrix of a
matrix S formed by retaining only the 7" to the nf}" rows. The
notation X ~ Y is used to indicate that X and Y are identically
distributed. The cardinality of a set Z is denoted as |Z|. The
determinant of a matrix S is denoted as |S|. For an index set
7T = {iy,--- ,ip} such that iy < --- < i,, the notation A1
represents the vector (A;,,---, A;,). (Vi; Va; -+ ; V) refers
to a matrix whose i’ row vector is V;,i € [1 : n].

II. PROBLEM STATEMENT

Consider’ K independent messages Wi, ---, Wk € Fé’d,
each represented as an L x 1 vector comprised of L
i.id. uniform symbols from a finite field F, for a prime p.
In p-ary units,

H(Wl):...zH(WK):L 6)

HWy, -+, Wg) = HW) + -+ H(Wg) (7

There are N servers. The rLz’ h server stores Win,

Won, -+, Wkn), where Wy, € Fxe <! represents L/K. sym-
bols from Wi,k € [1: K].

H(Win|Wi) =0, H(Win) = L/K, (8)

We require the storage system to satisfy the MDS property,
i.e., from the information stored in any K, servers, we can
recover each message, i.e.,

[MDS] H(Wi|Wiic,) =0, VK C[1:N], K| =Ke (9)

3While the problem statement is presented in its general form, we will
primarily consider cases with K = 2 messages in this paper (outer bounds
for larger K are presented in Section VII-A).
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Let us use F to denote a random variable privately generated
by the user, whose realization is not available to the servers.
F represents the randomness in the strategies followed by
the user. Similarly, G is a random variable that determines
the random strategies followed by the servers, and whose
realizations are assumed to be known to all the servers and to
the user. The user privately generates 6 uniformly from [1 : K]
and wishes to retrieve Wy while keeping ¢ a secret from each
server. F and G are generated independently and before the
realizations of the messages or the desired message index are
known, so that

HO,F,G, W, -, Wk)=HO)+ H(F) + H(G)
+HWy) +---+ HWg) (10)
Suppose € = k. In order to retrieve Wy, k € [1 : prlvatel{
the user privately generates N random queries, Q1 ot k
HEWY, - oA =0, vker:k1 (D

The user sends query Q,Ek] to the n'" server, n € [1 : NJ.
Upon receiving QL I the n' server generates an answering

string A , which is a function of the received query QLk]
the stored information Wy, ---, Wk, and G,
H(AMOW, Wi, Wk, G) =0 (12)

Each server returns to the user its answer A,Ek] 4

From all the information that is now available at the user
(A[llf}\,, 1 N, F, G), the user decodes the desired message Wy
according to a decoding rule that is specified by the PIR
scheme. Let P, denote the probability of error achieved with
the specified decoding rule.

To protect the user’s privacy, the K strategies must be
indistinguishable (identically distributed) from the perspec-
tive of any subset 7 C [I N] of at most T collud-
ing servers, i.e., the following privacy constraint must be

satisfied.’
[7-Privacy] (O, A, G, wir, -, Wg)
~ (Q’]’ 5A’]' 9g> WIT; ) WKT)’
Vk, k' e[1: K],YT C[l:N], |T|=T (13)

The PIR rate characterizes how many bits of desired infor-
mation are retrieved per downloaded bit and is defined as
follows.

R=L/D (14)

where D is the expected value (over random queries) of the
total number of bits downloaded by the user from all the
servers.

A rate R is said to be e-error achievable if there exists a
sequence of PIR schemes, indexed by L, each of rate greater
than or equal to R, for which P, — 0 as L — oo. Note that

4If the A,[qk] are obtained as inner products of query vectors and stored
message vectors, then such a PIR scheme is called a linear PIR scheme.

5The prlvacy constraint is equivalently expressed as [(6; Q[e] A[G]
G Wir,--,Wgr)=0.
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for such a sequence of PIR schemes, from Fano’s inequality,
we must have

HwW A, o F,.6) (15)
D g w Ak, 7. g) (16)

[Correctness] o(L) =

where any function of L, say f(L), is said to be o(L) if
limy o f(L)/L = 0. The supremum of e-error achievable
rates is called the capacity C.6

III. SETTLING THE CONJECTURE

Our main result, which settles the FGHK conjecture,
is stated in the following theorem.

Theorem 1: For the MDS-TPIR problem with K =
2 messages, N = 4 servers, T = 2 privacy and the (K., N) =
(2,4) MDS storage code (x,y) — (x,y,x + y,x + 2y),
a rate of 3/5 is achievable. Since the achievable rate exceeds
the conjectured capacity of 4/7 for this setting, the FGHK
conjecture is false.

Proof: ~ We divide the proof into 6 sections. In
Section III-A, we first specify the storage code. Then we con-
struct the queries in Section III-B. After receiving the queries
from the user, the servers produce the answers (described in
Section III-C) and return them to the user. Finally, we prove
that the scheme is correct in Section III-D, that the scheme is
private in Section III-E, and that the rate of the scheme is 3/5,
as desired, in Section III-F. Next we proceed to the details of
the proof.

We present a scheme that achieves rate 3/5. We assume that
each message is comprised of L = 12 symbols from I, for a
sufficiently’ large prime p. Define a € F&*! as the 6 x 1 vector
(a1; a2; - - - ; ag) comprised of i.i.d. uniform symbols a; € F,.
Vectors b, ¢,d are defined similarly. Messages Wi, W, are
defined in terms of these vectors as follows.

=(a;b) W2 =(c;d) (17)
A. Storage Code
The storage is specified as
(Wi, Wiz, Wiz, Wis) = (a,b,a+b,a+2b)  (18)
(Wai, Waa, Waz, Wog) = (¢,d,c+d,c+2d) (19)

Recall that Wy, is the information about message Wj
that is stored at Server n. Thus, Server 1 stores (a,c),
Server 2 stores (b, d), Server 3 stores (a+b,c+d), and
Server 4 stores (a + 2b, ¢ + 2d). In particular, each server
stores 6 symbols for each message, for a total of 12 symbols
per server. Any two servers store just enough information
to recover both messages, thus the MDS storage criterion is
satisfied.

6Alternatively, the capacity may be defined with respect to zero error
criterion, i.e., the supreme of zero error achievable rates where a rate R is
said to be zero error achievable if there exists (for some L) a PIR scheme of
rate greater than or equal to R for which P, = 0.

7 1t suffices to choose p = 349 for Theorem 1. In general, the appeal
to large field size, analogous to the random coding argument in information
theory, is made to prove the existence of a scheme, but may not be essential to
the construction of the PIR scheme. To underscore this point, Section VII-E
includes some examples of MDS-TPIR capacity achieving schemes over small
fields.
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B. Construction of Queries

The query to each server QE,k]g is comprised of two parts,
denoted as QLk](Wl), Q,Ek](Wz). Each part contains 3 row
vectors, also called query vectors, along which the server
should project its corresponding stored message symbols.

ol = (0 (wy), 0 (W) (20)

In preparation for the construction of the queries, let us denote
the set of all full rank 6x6 matrices over IF, as S. The user pri-
vately chooses two matrices, S and S’, independently and uni-
formly from S. Label the rows of S as Vi, Vo, V3, V4, Vs, Vg,
and the rows of S" as Uy, Uy, Ua, Uz, Uy, Us. Define’

Vi = {V1, V2, Va}, U = {Uo, Us, Us} (21)
Vo = {V1, V4, V5}, Uy = {Uo, Uz, Uy} (22)
Vi = {V2, V4, V6}, Uz = {Uo, Uy, Us} (23)
Vo = {V3, Vs, Ve}, Uy ={Uo, Uz, Us} (24)
Ug, U7, Ug, Ug are obtained as follows.
Us=U+Uz, U;=U+20; (25)
Us = Us+Us, Ug=U;+2U4 (26)

As a preview of what we are trying to accomplish, we note
that for Server n € [1 : 4], V), will be used as the query
vectors for desired message symbols, while U, will be used as
query vectors for undesired message symbols. Since K, = 2,
the same query vector V; sent to two different servers will
recover 2 independent desired symbols. Each V;,i € [1 : 6],
is used exactly twice, so all queries for desired symbols will
return independent information for a total of 12 independent
desired symbols. On the other hand, for undesired symbols
note that Up is used as the query vector to all 4 servers, but
because K. = 2, it can only produce 2 independent symbols,
i.e., 2 of the 4 symbols are redundant. The dependencies
introduced via (25),(26) are carefully chosen to ensure that the
queries along Uy, Ua, Ug, U7 will produce only 3 independent
symbols. Similarly, the queries along Us, U4, Ug, Uy will
produce only 3 independent symbols. Thus, all the queries
for the undesired message will produce a total of only 8 inde-
pendent symbols.!? The 12 independent desired symbols and
8 independent undesired symbols will be resolved from a total
of 12 + 8 = 20 downloaded symbols, to achieve the rate
12/20 = 3/5. To ensure T = 2 privacy, the U; and V; queries
will be made indistinguishable from the perspective of any
2 colluding servers. The key to the T = 2 privacy is that any
Vu, Vi, n # n’ have one element in common. Similarly, any
Uy, Uy, n # n’ also have one element in common. This is a
critical aspect of the construction.

Next we provide a detailed description of the queries and
downloads for message Wi,k € [1 : 2], both when W is
desired and when it is not desired. To simplify the notation,

8Throughout the proof, we consistently use k to refer to the desired message
index and k€ to refer to the other undesired message index.

9Similar assignments as these V; vectors have appeared in the distributed
storage repair literature [10].

10The intuition is to produce as few independent undesired symbols as
possible, subject to the constraint that the vectors overlap pairwise in one
dimension.
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we will denote Wy = (x;y). Note that when k = 1, (x;y) =
(a; b) and when k = 2, (x;y) = (c; d).

1) Cases 1 (Wi Is Desired): The query sent to Server n is a
3 x 6 matrix whose rows are the 3 vectors in V,. The ordering

of the rows is uniformly random,!! i.e.,

Server n : QLk](Wk) =a,(Vy), nell:4] 27

For a set V = {V;,V,,Vy}, 7,(V) is equally likely
to return any one of the 6 possibilities: (V;; Vi,; Vis),
(Vil; Vi3; Viz)» (Viz; Vil; Vi3)» (Viz; ‘/l’;’ Vi])? (Vi3; Vil; Viz)
and (Vi;; Viy; Viy). The m, are independently chosen for each
nell:4].

After receiving the 3 query vectors Q,Ek](Wk), Server n
projects its stored Wy, symbols along these vectors. This
creates three linear combinations of Wy, symbols (denoted
as A (Wp)).

AM (W) = O (W) Wiy (28)

Define k¢ = 3—k as the complement of k, i.e., k =1 if k =2
and vice versa. The answers ALk] to be sent to the user will be
constructed eventually by combining A,Ek] (W) and A,Ek] (Wie),
since separately sending these answers will be too inefficient.
The details of this combining process will be specified later.
Next we note an important property of the construction.
Desired symbols are independent: We show that if the user can
recover A[llfl(Wk) from the downloads, then he can recover all
12 symbols of W. From A[llf‘]‘(Wk) the user recovers the 12
symbols Vix, V»x, Vax, Viy, Vuy, Vsy, Va(x+y), Va(x +Yy),
Ve(x +y), V3(x+2y), Vs(x+2y), Ve(x + 2y). From these
12 symbols, he recovers V;x and V;y for all i € [1 : 6]. Since
S = (V1; Va; V3; Vi, Vs; V) has full rank (invertible) and the
user knows Vi.g, he recovers all symbols in x and y (thus Wy).

2) Case 2 (Wi Is Undesired): Similarly, the query sent to
Server n is a 3 x 6 matrix whose rows are the 3 vectors in
Uy,. The ordering of the rows is uniformly random for each n,
and independent across all n € [1 : 4].

Server n: QI (W) =x/Uy,), nell:4] (29

Each server projects its stored Wy, symbols along the 3 query
vectors to obtain,

AR W) = O N (W) Wi, (30)

Interfering Symbols Have Dimension 8: A[llf;](Wk) is
comprised of Upx, Ugx, Usx, Upy, U7y, Ugy, Up(x +Y),
Ui(x +y), Us(x+y), Up(x +2y), Uza(x+2y), Us(x +2y).
We now show that these 12 symbols are dependent and have
dimension only 8.12 Because of (25) and (26), we have

Uox + Upy = Up(x +y)
Uox + 2Upy = Up(x + 2y)
Usx + U7y — Ui(x +y) = Ua(x +2y)

Usx + Ugy — Us(x +y) = Us(x + 2y) (€29)

The permutation of the rows ensures that the relative order of the rows
does not carry any information.

lequivalently, the joint entropy of these 12 variables, conditioned on Uy.g
is only 8 p-ary units.
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Thus, of the 12 symbols recovered from A[llf;](Wk), at least 4
are linear combinations of the remaining 8. It follows that
A[llf;](Wk) contains no more than 8 dimensions (i.e., the joint
entropy of the symbols is only 8 p-ary units). The number
of dimensions is also not less than 8 because, the following
8 undesired symbols (two symbols from each server) are
independent,

Server 1: Upx, Usx = (U1 + Up)x

Server 2: Upy, Ugy = (Us + 2U4)y

Server 3: Uj(x+y), Usz(x+Yy)

Server 4: Ux(x+2y), Ua(x+ 2y) (32)

To see that the 8 symbols are independent, we add 4 new
symbols (U1x, Uzy, Usx, Usy) such that from the 12 symbols,
we can recover all 12 undesired symbols (S'x, Sy). Since the
4 new symbols cannot contribute more than 4 dimensions,
the original 8 symbols must occupy at least 8 dimensions.

C. Combining Answers for Efficient Download

Based on the queries, each server has 3 linear combinations
of symbols of Wj in AE,k](Wl) and 3 linear combinations
of symbols of W, in ALk](Wz) for a total of 12 linear
combinations of desired symbols and 12 linear combinations
of undesired symbols across all servers. However, recall that
there are only 8 independent linear combinations of undesired
symbols. This is a fact that can be exploited to improve
the efficiency of download. Specifically, we will combine
the 6 queried symbols (i.e., the 6 linear combinations) from
each server into 5 symbols to be downloaded by the user.
Intuitively, 5 symbols from each server will give the user a
total of 20 symbols, from which he can resolve the 12 desired
and 8 undesired symbols. Next we specify the details of the
combining function. Note that we have random permutations
of the query vectors and the combining function must work
regardless of the realization of the permutations.

The following function maps 6 queried symbols to 5 down-
loaded symbols.

L(X1,X2,X3,Y1,Y2,Y3) = (X1, X2, 11, Y2, X3+ Y3) (33)

Note that the first four symbols are directly downloaded and
only the last symbol is mixed. The desired and undesired
symbols are combined to produce the answers as follows.

AR = £(c, A (wy), €, AH (W) (34)

where C,, are deterministic 3 x 3 matrices, that are required to
satisfy the following two properties. Denote the first 2 rows
of C, as C,.

PI. All C, must have full rank.

P2. For all (3!)4 distinct realizations of 7, n € [1 : 41,13 the
8 linear combinations of the undesired message sym-
bols that are directlZ downloaded (2 from each server),
CrAN W), CrAY (Wie), C3AY (Wie), TuAl (Wie)
are independent.

13Note that the permutations ;, are not revealed to the servers so that C,
must be chosen independently of 7).
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As we will prove in the sequel, it is not difficult to find
matrices that satisfy these properties. In fact, these properties
are ‘generic’, i.e., uniformly random choices of C, matrices
will satisfy these properties with probability approaching 1
as the field size approaches infinity. The appeal to generic
property will be particularly useful as we consider larger
classes of MDS-TPIR settings. Those (weaker) proofs apply
here as well. However, for the particular setting of Theorem 1,
based on a brute force search we are able to strengthen the
proof by presenting the following explicit choice of C,,n €
[1 : 4] which satisfies both properties over [349.

1 2 3 1 7 3
Ci=(6 5 4|, C=|11 9 8},

0 0 1 0 0 1

1 10 8 I 3 5
CG=|7 5 4], C4=(12 9 3 (35)

0 0 1 0 0 1

Property P1 is trivially verified. Property P2 is verified by
considering one by one, all of the 6* distinct realizations
of 7, n € [1 : 4]. To show how this is done, let us consider
one case here. Suppose the realization of the permutations is
such that

m(Uy) = (Uo, Us, Us) (36)
my(Uz) = (Uo, Uy, U7) (37)
n3(Us) = (U1, Us, Up) (38)
n,Us) = (Uz, Us, Uy) (39)
then we have
1AM W) - T Al (We))
1 2 0 -3 0 3 0 3 Uox
6 5 0O -4 0 4 0 4 Usx
0o -3 1 7 3 0 3 0 Upy
10 -8 11 9 8 0 8 0 Ugy
18 0 8 0O 1 10 0 O Ui(x+y)
4 0 4 o 7 5 0 O Us(x+Yy)
5.0 10 0 0 0 1 3||tvhx+2y
30 6 0 0 0 12 9) \Usx+2y)
£c
(40)

The determinant of C over [F349 is 321. Since the determinant
is non-zero, all of its 8 rows are linearly independent. Note that
the test for property P2 does not depend on the realizations
of U; vectors. To see why this is true, note that the 8 linear
combinations of (x,y) in the rightmost column vector of (40)
are linearly independent. Therefore, if C is an invertible matrix
then the 8 directly downloaded linear combinations on the
LHS of (40) are also independent (have joint entropy 8 p-ary
units, conditioned on Ujy.9).

At this point the construction of the scheme is complete.
All that remains now is to prove that the scheme is correct,
i.e., it retrieves the desired message, and that it is 7 = 2
private.
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D. The Scheme Is Correct (Retrieves Desired Message)

As noted previously, the first 4 variables in the output
of the L function are obtained directly, i.e., flA[k](Wl),
EzA[zk](Wl), E3A[k](W1), E4A£k](W1) and flAglk](Wz),
EzA[zk](Wz), E3Agk (W), E4A4[‘k](W2) are all directly recov-
ered. By property P2 of Cn, CiAM(Wie), T2l (Wpe),
E3Agk] (Wie), E4A£k] (Wke) are linearly independent. Since the
user has recovered 8 independent dimensions of interference,
and interference only spans 8 dimensions, all interference is
recovered and eliminated. Once the interference is eliminated,
since C, matrices have full rank, the user is left with 12
independent linear combinations of desired symbols, from
which he is able to recover the 12 desired message symbols.
Therefore the scheme is correct.

E. The Scheme Is Private (to any T = 2 Colluding Servers)

To prove that the scheme is T = 2 private (refer to (13)),
it suffices to show that the queries for any 2 servers are
identically distributed, regardless of which message is desired.
Since each query is made up of two independently generated
parts, one for each message, it suffices to prove that the query
vectors for a message (say W) are identically distributed,
regardless of whether the message is desired or undesired,

(2 wo, o wo) ~ (ko). ol wo)
Vni,np €[1:4],n <np» (41
Note that
(@MW), QW) = (Vo). 0 (Vi) (42)
( K w), Q,E’;"](Wk)) = (n}, Un), 7}, Uny)

Therefore, to prove (41) it suffices to show the following.

(43)

(Vil; Viz» Vi3> Vi4> Vls) ~ (UO’ Uj1> Uj2’ Uj}’ U]4) (44)

where an = {Vil» Vig» Vi}}? Vng = {Vil; Vi4> Vis}’ unl =
{Uo, Uj,, Uj,}, Up, = {Up, Ujy, Uj,}. Because S is uniformly
chosen from the set of all full rank matrices, we have

(Vir, Viy, Vig, Vig, Vis) ~ (V1, Va, V3, Va4, Vs) (45)
Next we note that there is a bijection between
(U0, Uj,, Uj,, Ujy, Ujy) < (Up, Uy, Uz, Uz, Uy)  (46)

This is because (Up, Uj,, Uj,, Ujy, Uj,) always includes U,
two terms out of Uj, Us, Ug, U7 and two terms out of
Uz, Ua, Ug, Ug. But from any two terms of Uy, Uz, Ug, Uy
there is a bijection to Ujp, Uz, and from any two terms of
Uz, Us, Ug, Uy there is a bijection to Uz, Us. Now since
S" = (Uy; Uy; Ua; Us; Ug; Us) is picked uniformly from S,
conditioned on any feasible value of Us, (Uy, Uy, Uz, U3, Us)
is uniformly distributed over all possible values that preserve
full rank for §'. Since (Up, Uj,, Uj,, Uj;, Uj,) spans the same
space as (U, Uy, Uz, Uz, Us), they have the same set of
feasible values. The bijection between them then means that
(Uo,Uj,,Uj,, Uj;, Uj,) is also uniformly distributed over all
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possibilities that preserve full rank for S’, conditioned on any
feasible Us. That means'*

(Uo,Uj,, Uj,, Uy, Ujy) ~ (Uo, Uy, Up, U3, Us)  (47)

Finally, we note that S and S’ are identically distributed, so we
have

(V1, V2, V3, V4, Vs5) ~ (Up, Uy, Uz, U3, Uy) (48)

Combining (45), (47) and (48), we arrive at (44) and (41).

F. Rate Achieved Is 3/5

The rate achieved is 12/20 = 3/5, because we download
20 symbols in total (5 from each server) and the desired
message size is 12 symbols.

IV. OPTIMALITY OF RATE 3/5

We presented a scheme that achieves the rate 3/5 for the
setting (K, N, T,K.) = (2,4,2,2) with the MDS storage
code (x,y) — (x,y,x + y,x + 2y). But is the scheme
optimal? i.e., is the rate 3/5 the highest rate possible for
this setting? To settle this question we need an upper bound.
So far the best information theoretic upper bound that we are
able to prove is 8/131> (see Appendix A1), which leaves the
information theoretic capacity open for this setting. However,
let us define the notion of “linear capacity” as the highest
rate that can be achieved by any (scalar or vector) linear
PIR scheme. It turns out that we are able to settle the linear

capacity.
Theorem 2: For the  MDS-TPIR  problem  with
(K,N,T,K;) = (2,4,2,2) and the MDS storage code

(x,y) = (x,y,x +y,x 4+ 2y), the linear capacity is 3/5.
Proof: Since the achievability of 3/5 has already been
shown, we are left to prove the converse, i.e., the upper
bound.
Let a,b,¢,d € F5/**" be iid. uniform L/2 x 1 vectors
over IF,. Without loss of generality, the MDS storage code for
message Wy is represented as follows.

Wi =(a;b) W2 =(c;d) (49)
and the storage is specified as
(Wi, Wiz, Wiz, Wis) = (a,b,a+b,a + 2b)
(War, Wap, Wa3, W) = (¢, d,c+d,c+2d)  (50)

The scheme is linear so that the download from each server
consists of linear combinations of the stored symbols of both
messages. Furthermore, without loss of generality, we assume
that the scheme is symmetric'® and the download from each

14Note that the bijection by itself does not suffice to show the two
distributions are the same. We further need uniformity.

15Remarkably, 8/13 can be shown to be the capacity if the collud-
ing sets of servers are restricted to servers {l, 2}, {2, 3}, {3,4}, {4, 1} (see
Section VI-DI).

l(’Any scheme can be made symmetric, e.g., by repeating the original
scheme for each of the N! permutations of the servers to retrieve a corre-
spondingly expanded message of length L' = N!L.
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server is comprised of d < L/2 independent symbols from
each message. Therefore, the downloads can be expressed as

AR =y v, Vee (14l kel 2]
(51

rank(Vl[ﬁ]) = rank(Vz[ﬁ]) =d (52)

where Vl[,i‘] are D/4 x L/2 matrices that may be chosen
randomly by the user (functions of F). Clearly we must have
4d > L otherwise the L symbols of the desired message
cannot be recovered. Define € > 0 such that

4d = L(1 +¢) (53)

Without loss of generality, let us assume henceforth that W5 is
the desired message. For the next set of arguments, we focus
only on the downloads corresponding to W», i.e., set all W)
symbols to 0. Further, let us use the notation V to represent
the row span of the matrix V. The symbols downloaded from
Server n along V C Vgl], are called redundant if they can be
expressed as linear combinations of symbols downloaded from
other servers, i.e., they contribute no new information.

2 2
H (VW |Vasd Wan,, Vi)

Wany, Vit Wans, F V) =0 (54)

where n, ny, ny, n3 are distinct indices in [1 : 4]. Note that we
download no more than a total of L(14-€) (possibly dependent)
symbols of W, from all 4 servers, from which we must be
able to decode all L independent symbols of W>. Therefore,
we cannot have more than € L redundant symbols. Therefore,
for any V that satisfies (54) we must have

dim(V) < €L (55)
Next, let us consider the pairwise overlap between Vg] and
ngj], i < j,i,j €[l :4]. By the symmetry of the scheme,

there exist V;j, Vi, j € [1:4],i # j, and a > 0 such that

Vi =Viin vy

2j° dim(V,-j) =ad (56)

The following lemma formalizes the intuition that the over-
laps @ must be small enough to ensure that we have enough
independent symbols to recover W».

Lemma 1:
3ad < d+2¢L 57
1 8 €
Equivalently, a < — 4+ — 58
qu1vaenya_3+3(1+€) (58)
Proof: First, we show that
dim(V12 N V13) <el (59)

For any vector v € V12 N'Vy3 (note that v belongs simultane-
ously to ngl], V£22], V%]), the symbol » W3 (downloaded from
Server 3) is redundant because it is a linear combination of
downloads from servers 1 and 2,

v(c+d) =ovc+od (60)
oWz = oWa +0Wa (61)
= H@Wy V3] W1, Vi3 W, FL0) =0 (62)

From (62) and (55), we have (59).
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Second, we show that

dim ((V]z U V13) N V14) <el (63)

Consider any vector v € V3. Because v belongs to both ngl]
and ngz], we have downloaded v W), = ve and oWy = od
from servers 1 and 2. Similarly, for any vector o’ € Vi3,
we have downloaded v»’Ws; = v’c and o'Wy = v'(c +d) =
v'Wa1 + v'Way (from servers 1 and 3), from which we can
recover v'Wp; = v’c and v’Wsy = v’d. Consider now any
vector v* € (V2 U V13) N Vi4. Suppose v* = h; v +
hy v',v € Vip,v' € Vi3 for constants hy, hy. The symbol
0*Wa4 = v*(c 4+ 2d) (downloaded from Server 4) is redundant
because it is a linear combination of downloads from servers
1, 2 and 3,

0*Way = (hiv + hov')(c + 2d) (64)
= hive + 2h1od + hyv'c + 2ho0'd (65)
= hioWa + 2h1oWa + hoo'Way + 2hov' Wap  (66)

2 2 2
= H " Wa|VE War, VI Waa, VIS Was, F,0) = 0

(67)
From (67) and (55), we have (63). Next, consider
dim(Vi, U Vj3).
dim(Vi2 U Vi3) (68)
= dim(V12) + dim(Vi3) —dim(Vi2 N Vi3)  (69)
> 2ad — €L (from (56)(59)) (70)
Finally, consider dim(Vi2 U Vi3 U V1y).
d = dim(VE)) > dim(V12 U Vi3 U Vi) (71)
= dim(V12 U Vy3) + dim(V14)
— dim ((V12 UViz) N V14) (72)
> 20d — €L +ad —eL (from (70)(56)(63)) (73)
= 3ad < d + 2¢L (74)
]
We now proceed to complete the converse.
D +o(L)
> H(AF, G) +o(L) (75)
© HALL wiIF. ) (76)
O wwy) + HA Wy, F,0)
+ H (AL Wy, AVVE, G) (77)
> HW) + HAMw,, F,6)
+ HAL Wy, Wy, A F LGy (78)
O g wy) + B W, F,6)
+ H(AL Wi, War, F, G) (79)
V2w + HAP WL F,G)
+H (AW, Wy, F, §) (80)
@20 1 a, by + H (Ve F)
+HVS e+ d), Vi (e +2d) e, F)
31)
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= H(a,b)+ H(V}e|F)

+H VS, 2v)a|F) (82)

©Q L+ dim(V2) + dim(VZ U V2l (83)

G2y 4 4+ 2d — ad (84)
(58) 1 8 € (1+¢)L

> [ 3—— —— 85

=57 ( 373 (1 n e)) z >

= 5L/3 (86)

Letting L — oo, we have R =L/D < 3/5.

A more detailed derivation of (80) appears in (127) of
Lemma 2.

Remark: The assumption of linear schemes is useful for
bounding the term H(Agi]dWl, Wai, F, G) in (80), for which
a strictly tighter lower bound (compared to the information
theoretic converse in Appendix Al) is obtained. In particular,
we are able to separate the contribution of ¢ and d in Agﬂ as in
(81), (82), which may not be possible in general if the answers
depend on stored information in a non-linear fashion. [ |

V. CAPACITY OF A CLASS OF MDS-TPIR INSTANCES

Building upon the insights from the achievable scheme and
linear converse presented in the previous sections, we are able
to settle the information theoretic capacity of a non-trivial class
of MDS-TPIR instances.

Theorem 3: For the class of MDS-TPIR instances with
(K,N,T,K;) = (2,N,T,N — 1), with arbitrary T, N,
the capacity is C = 2,\,12\/373713/”

Remark: When N — oo, there is no redundancy in storage
(code rate % — 1). For code rate 1, it is shown by Banawan
and Ulukus [6] that the capacity of PIR is 1/K, i.e., the
optimal scheme is the trivial scheme which downloads all
K messages. This can also be seen from the capacity expres-
sion in Theorem 3 where C — 1/2 as N — oo.

The case T = N is trivial because if all servers collude
then the situation is equivalent to the single database scenario,
i.e., it is optimal to download everything, and the capacity
is 1/K = 1/2. For the remaining cases, T < N, and the
proof of converse is presented in Appendix A2. The proof
of achievability for 7 = 2 setting appears in Appendix B
where we present a scheme with zero error.!” The proof
of achievability for 7 > 2 settings appears in Appendix C
where we present a scheme with vanishing probability of
error. The remainder of this section presents two examples
(one with T = 2 and one with 7 = 3) to illustrate the key
ideas.

A. Example: Capacity Achieving Scheme for
(Ka N’ T) KC) = (2’492’3)

Let us present a scheme that achieves the rate 6/11, which
is the capacity for this setting according to Theorem 3.
As evident from the description below, the scheme builds upon
the ideas that were introduced for Theorem 1.

7Note that zero error schemes automatically satisfy e-error criterion.
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1) Message and Storage Code: Let each message be com-
prised of L = N(N — 1) = 12 independent symbols from a
sufficiently large finite field IF,. Define a € IE‘?,><1 as the vector
(a1; a2; az; as) comprised of i.i.d. uniform symbols a; € F,.
Vectors b, ¢, d, e, f are defined similarly. Messages Wi, W»

are defined in terms of these vectors as follows.
Wi =(a;b;e) Wy =(d;e;f) (87)

The (N — 1, N) = (3,4) MDS storage code is specified as
follows.
(W11, Wiz, Wiz, Wiy) = (a,b,c,a +b +¢)
(W21, Wa, Waz, Wag) = (d, e, f,d +e+f)

(88)
(89)

Note that each server stores 4 symbols for each message and
any three serves store just enough information to recover both
messages (MDS property is satisfied).

2) Construction of Queries: The query to each server con-
sists of 6 vectors, the first three for W (denoted as Q,Ek](Wl))
and the last three for W> (denoted as Q,Ek](Wz)). The queries
and downloads for Wi,k € [1 : 2] are described next.
We denote Wy = (x;y;z). When k = 1, (x;y;z) = (a; b; ¢)
and when k =2, (x;y;z) = (d; e; f).

Denote the set of all full rank 4 x 4 matrices over F, as S4.
The user privately chooses two matrices S, ', independently
and uniformly from Sy4. Label the rows of S as Vi, V2, V3, Vu,
and the rows of S’ as Uy, Ua, Uy, Up. Define the following
sets

Vi ={ Va, Vi, Ve, U ={U1, Uz, Ut}
V2 = {V1, V3, Va}, U ={U1, Uz, Us} (90)
Vi={Vi, Va, Vay, Uz = {U1, U, Us}
Veo=1{Vi, Vo, V3 b Uy = {U,U,, Uy}
where Us, Uy are obtained as follows.
Us = Uy + Uy, On
Uy = Uy + 20, (92)

A preview of the scheme is as follows. For Server n € [1 : 4],
the vectors in V), are for the desired message and the vectors
in U, are for the undesired message. Since K, = N — 1 = 3,
and each query vector V; is used no more than three times,
all queries for the desired message will return independent
symbols for a total of 12 desired symbols. For the undesired
message, the same query vector U is used 4 times such that
only 3 independent symbols are produced. Similarly the 4 uses
of U, produce only 3 independent symbols. Thus all queries
for the undesired message will produce at most 6 + 4 = 10
independent undesired symbols. The 12 independent desired
symbols and 10 undesired symbols will be resolved from a
total of 12410 = 22 downloaded symbols, to achieve the rate
12/22 = 6/11. Privacy is ensured by the observation that any
Vi, Vi, n # n’ have two elements in common and similarly
any Un, U, n # n’ have two elements in common. We now
proceed to the details.
When W is desired, we have Vn € [1 : 4],

Server n: QM(Wy) = 7,(Vy),

AWy = oM (W) Wi 93)
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a) Desired symbols are independent: From A[llfi(Wk),

the user can recover the 12 symbols Vox, V3x, Vix,

Viy, V3y, Vay, Viz, Vaz, Vaz, Vi(x +y + 2), Va(x +y + 2),

V3(x +y + z) and therefore all 12 symbols (x;y; z) of Wy,
since S = (Vy; Va; Va; Vy) has full rank.

When W is undesired, we have Vn € [1 : 4],
Server n: QXN (W) = 7 (Uy),
AW = O W We. (98)

b) Interfering symbols are dependent and have dimen-
sion at most 10: Consider the interfering symbols along the
common vectors Uy, U;. Note that

Uix+Uiy+Uiz=U (x+y+2)
Ux+Uyy+ Uz =Us(x+y+72)

95)
(96)

Since at least 2 interfering symbols are linear combinations
of the rest, the 12 interfering symbols cannot have more than
10 dimensions, i.e., their joint entropy is no more than 10 in
p-ary units.

3) Combining Answers, Correctness and Rate: The com-
bining process and correctness proof are similar to that in
Theorem 1. The difference is that in Theorem 1, we find
the explicit choice of combining matrices, here we will only
prove the existence of combining matrices over a sufficiently
large field. The details are deferred to the general proof in
Appendix B. We repeat the above query construction two
times independently such that each server has 6 x 2 =
12 symbols (6 in W} and 6 in W»). These 12 symbols at each
server are combined to 11 downloaded symbols, ALk] and it is
ensured that we can decode all interfering symbols and then
extract the desired symbols.

Thus, the rate achieved is 6/11.

4) Privacy Proof: The privacy proof is virtually identical to
that in Theorem 1, so the details are deferred to the general
proof in Appendix B.

B. Example: Capacity Achieving Scheme for
(K,N,T,K.)=1(2,4,3,3)

Let us present a scheme that achieves the rate 12/23, which
is the capacity for this setting according to Theorem 3. The
key distinction of this 7 = 3 case with the T = 2 case
presented in the previous section is that permutations of the
query vectors are no longer enough to ensure the privacy.
So we will resort to sending the space spanned by the query
vectors instead of the query vectors themselves. Furthermore,
instead of guaranteeing zero-error, we will only show that the
probability of error can be made arbitrarily small by choosing
a sufficiently large message size.

1) Message and Storage Code: The message construction
and storage code are the same as when 7 = 2. Let each
message be comprised of L = N(N — 1) = 12 independent
symbols from a sufficiently large finite field IF,. Define a €
IE‘}‘,X1 as the vector (ay; ap; az; as) comprised of i.i.d. uniform
symbols a; € F,. Vectors b,¢,d, e, f are defined similarly.
Messages Wi, Wy are defined in terms of these vectors as
follows.

Wi =(a;b;c) Wo=(d;ef) CH)
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The (N — 1, N) = (3,4) MDS storage code is specified as
follows.
(W1, Wi, Wi, W) = (a,b,¢,a+b +¢)
(W21, Wa, Waz, Wag) = (d, e, f,d +e+f)

(98)
99)

2) Construction of Queries: The query to each server con-
sists of two vector spaces, one for W; (span of the rows of
QE,k] (W1)) and one for W, (span of the rows of QE,k] (W3)). The
queries and downloads for Wy, k € [1 : 2] are described next.
We denote W, = (x;y;z). When k = 1, (x;y;z) = (a; b; ¢)
and when k =2, (x;y;z) = (d; e; f).

Denote the set of all full rank 4 x 4 matrices over I, as Sq.
The user privately chooses two matrices S, S’, independently
and uniformly from Sy. Label the rows of S as Vi, Vs, V3, V4,
and the rows of S’ as Uy, U;, Ua, Us. Define the following
sets

Vi={ Vo, Vi, V4}
Vo={Vi, V3, Vi
Vi={Vi, Vo, V4§
Vi={V1, Vo, V3 } (100)
U = (U1, 01,05} = (U1, Uy, Un}
Uy = {Uy,Us, Us} = {Uy, Us, Uy + Uz}
Us = {Uy, Us, Us} = {Uy, Uy + Us, U + U3}
Us = {Uy, Uy, Us)
={U,,U; + Uy + U3, Uy +2U, +2U3}  (101)
where Uy, --- , Ug are the rows of U, obtained as follows.
U = P(Ur; Uy; U3) (102)
U, 100
U> 0 1 0
l~]3 0 0 1 Uy
ezl =11 o 1 0 (103)
Us 01 1 3
l~]7 1 1 1
Us 1 2 2

A preview of the scheme is as follows. For Server n € [1 : 4],
the span of V), is the query space for the desired message and
the span of U, is the query space for the undesired message.
Since K, = N — 1 = 3, and each query vector V; is used no
more than three times, all queries for the desired message will
return independent symbols for a total of 12 desired symbols.
For the undesired message, the same query vector U is used
4 times such that only 3 independent symbols will be pro-
duced. Thus all queries for the undesired message will produce
at most 3 + 8 = 11 independent undesired symbols. The 12
independent desired symbols and 11 undesired symbols will
be resolved from a total of 12+ 11 = 23 downloaded symbols,
to achieve the rate 12/23. Privacy is ensured by choosing P
in such a way that it allows a bijective mapping between the
U, or V, spaces that may be observed by any set of up to
T = 3 colluding servers. The bijection shows that the
queries for both desired and undesired messages are uniformly
distributed, and therefore indistinguishable. While a specific P
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is chosen for this example, there are many choices of P that
will work. In fact, P only needs to be sufficiently generic,
so as the field size grows, almost all choices of P will work.
We now proceed to the details.

When W is desired, we have Vn € [1 : 4],

Server n : QEZk](Wk) = BWV,),

A (W) = QM (Wi) Wiy (104)

where B()) represents the reduced row echelon form of a
matrix whose rows are the elements of V. The reduced row
echelon form ensures that the queries reveal only the space
spanned by the corresponding V; vectors to each server, and
not directly the V; vectors themselves. Note that from the
space spanned by a set of vectors, we could not determine the
set of vectors because for a given space, there are multiple
choices of the vectors that constitute the same space.

a) Desired symbols are independent: From A[llfl(Wk),
we can recover the 12 symbols of Wj. Note that because the
user knows V.4, from Allfz]‘(Wk) he can recover the projections
along V;. For example, the row reduced echelon form for
V1 is a change of basis operation that can be represented as
B(V1) = B1(Va; V3; Va) for some invertible matrix Bj. Since
the user knows Bj, he can multiply A[lk](Wk) with (By)~! as
follows

B A (W) = By ol (Wi Wi (105)
= By 'Bi(Va; V3; Va)x (106)
= (Vax; Vax; Vsx) (107)

Thus, from A[llfz]‘(Wk) the user recovers the 12 symbols

Vox, V3x, Vux, Viy, V3y, Vay, Viz, Voz, Vaz, Vi(X + Yy + 2),

Vo(x +y + z), Va(x + y + z) and therefore all 12 symbols

(x;y; z) of Wy, since S = (Vy; Va; V3; V4) has full rank.
When W is undesired, we have Vn € [1 : 4],

Server n: QI (Wy) = BU,),

AR W) = O N (Wi) W, (108)

b) Interfering symbols are dependent and have dimen-
sion at most 11: Consider the interfering symbols along the
common vector UU. Note that

Uix+Uiy+Uiz=U(x+y+72) (109)

Since at least 1 interfering symbol is a linear combination of
the rest, the 12 interfering symbols cannot have more than
11 dimensions, i.e., their joint entropy is no more than 11 in
p-ary units.

3) Combining Answers, Correctness and Rate: The com-
bining process and correctness proof are similar to that in
Theorem 1 except that the combining matrices C,, are chosen
in a uniformly random manner now (so the matrices are
no longer deterministic). We will show in Appendix C that
independent and uniformly random choices of C, are enough
to guarantee that as the field size approaches infinity, i.e.,
p — 00, the probability of error, P, — 0. The reasoning for
the rate calculation is as follows. We repeat the above query
construction four times independently such that each server
has 6 x 4 = 24 symbols (12 in W; and 12 in W;). These
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24 symbols at each server are combined to 23 downloaded
symbols, ALk] and it is ensured that we can almost surely
decode all interfering symbols and then extract the desired
symbols. Thus, the rate achieved is 12/23.

4) Privacy Proof: Since the privacy proof is a bit more
involved now, let us use this example to introduce the key
ideas. To show that the scheme is private to any 77 = 3
colluding servers, it suffices to show that the queries for Wy
for any T = 3 servers are identically distributed, regardless
of which message is desired. Consider 3 distinct indices
i, j,l,i < j <lin [1:4], we require

(2w, 0w, ol wi)

~ (W, 0w, T wo) 10y
— (BOV).BYV;), BO)
~ (BWU). BU,), BU)) (111)

Note that

(BOV), B(V)), B(V))
= (BU{Vim, Vi, Vi), BUVin, Vi, Vi), B{ Vi, Vi, V1)
(112)

where m ¢ {i, j,I},m € [l : 4]. To prove (111), we wish
to transform the spaces on the RHS to the form that is the
same as (112). To this end, we first compute the vectors that
lie in the span of both B(l{;) and B({;), i < j. Note that
the matrix P is designed such that except U, we have only
one such vector (up to scaling), denoted as Uy; jy. Uy, j) are
computed explicitly as follows. Further, we fix the scaling
factor such that the Uy, j) vector is unique.

Uiy =U1+ U (113)
Unzy=U1— U (114)
Unay = Ui (115)
Upzy = U+ Uy +2U3 (116)
Upay=U1+Ux+Us (117)
Usgy = U+ Us (118)

It is easy to verify that Uy jy, Uiy, Ugjgys iy oL € [1:4],0 <
J <, are linearly independent, i.e.,
@, j,0) = (1,2,3) : rank(U{1,2); Upi 335 Upp,3y)
= rank(Uy + Up; Uy — Up; Uy + Uy +2U3) =3
@i, j, 1) = (1,2,4) : rank(Uy1,2); Ug1,41; Upp,4))
=rank(U; + Us; U; Uy + Us + U3) =3
@, j, 1) = (1,3,4) : rank(Uq1 3y; Uy1,4); Uz 4))
=rank(U; — Uy; U; Ua + U3) =3
@i, j,1) = (2,3,4) : rank(U2,3); Upp,41; U3 4))
= rank(U1+Uy+2U3; U1+ U + Us; Uy+0U3z)=3
(119)

As a result, we may equivalently represent Ql[kc](Wk) as
kC J—
0w = BU) =BT, Ugi . Uiy ).

Vi,j,l e [1:4Li#j,i#1,j#1 (120)
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Note that equipped with this representation,

(BW:), BU;),BUy)) is now of the same form as

(IB%(V,-),B(V]-),B(VI)) and we are now ready to prove

the privacy condition (111).

(111) <= BV, Vi, Vi), B{ Vi, Vi, Vi}), B({(Vin, Vi, V)
~ (BUU1, Ugi,jy, Uiy ) BUU 1, Ui gy, Uy,

-, BAUL, Ugigy, Ui ) (121)
Therefore, it suffices to show the following.
Vo, Vi, Vi, Vi) ~ (U1, Uiy, Uiy, Ui jy) - (122)

Because S is uniformly chosen from the set of all full rank
matrices, we have

(Vm’Via Vj’Vl) ~ (VI,VL V3’ V4) (123)
Based on (119), there is a bijection between
U1, Uy, Uiy, Ui jy) < (U1, UL Uz, Us) - (124)

Now since S’ = (Uy; Uy; Us; U3) is uniform in all
f%l rank matrices, the above bijection then means that
(U1; Ugjnys Ugiys Uy, jy) is also uniform in all full rank matri-
ces, i.e.,

(U1, Ujay, Ugigy, Ugijy) ~ (U1, Uy, U, U3) - (125)

Finally, note that S and S’ have the same distribution, so we
have

(Vi, V2, V3, V4) ~ (U1, Uy, Uz, U3)

Therefore, from (123), (125) and (126), we have proved (122)
and (111). [ |

(126)

VI. CONCLUSION

We settle a conjecture on the capacity of MDS-TPIR by
Freij-Hollanti et al. [7] by constructing a scheme that beats
the conjectured capacity for one particular instance of MDS-
TPIR. The rate achieved by the new scheme is shown to be the
best possible rate that can be achieved by any linear scheme
for the same MDS storage code. The insights from the achiev-
ability and converse arguments allow us to characterize the
capacity of a class of MDS-TPIR instances. Through another
counterexample, we are also able to prove that the capacity
expression cannot be symmetric in 7 and K. parameters,
i.e., these parameters cannot be interchangeable in general.
Nevertheless, the general capacity expression for MDS-TPIR
remains unknown.

APPENDIX
A. Converse for Arbitrary K

In this section, we consider the information theoretic
converse of MDS-TPIR, for two scenarios, one with
(K,N,T,K;) =(K,4,2,2) and the other with (K, N, T, K.)
such that N < T + K. For both scenarios, we provide outer
bounds that hold for arbitrary K.

Let us start with two useful lemmas that hold for arbitrary
K,N, T, K..
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Lemma 2: For all T C[1: N1,|7|=T and k, k' € [1: K],
H(A’[zli]|f(W19 s WK),J:ag)
= HAY |y (Wi, -, Wk), . G) (127)

where f(Wy,---, Wg) represents an arbitrary function of the
messages Wy, ---, Wg.
Proof: First, note that

10,6, F; Wi, -, Wk, G)
(n

= 10,F, Wi, -, Wg,G) (128)
19 4 (129)
= I(Q[;i]; Wi, -, Wk, G)
= 1(0W wi, -, Wk, GIO)
=0 (130)
Next, we have
10: Wy, Wk, G, Q%)
= 10:W,---,Wk,0G)
+10; QP \Wi, -+ Wk, Q) (131)
D 16; 0w, -, Wk, G) (132)
= HQEP W, -, Wk, G)
— HOW\Wy, -, Wk, G,0) (133)
D 1Y) — H(Y ) (134)
L) (135)
O 1@ W, -, Wk, G, 09, A% =0 (136)
— (Wi,---, Wk, G, 0%, A1)
~ (Wi, -, Wk, G, 0%, Ak (137)
= HAY W, -, wi), 0%, 9)
= HAKrowy, -, wi), 0% 6) (39
Further note that
HAR f(wy, -+, k), 0, 6)
=HAP fW, - Wi, 05, F,.6) (139)
= HAP (W1, -, Wk), F, G) (140)
where  (139)  follows from the equality that

1(A$]3 FIf (Wi, -, W), Q[Qk—], G) = 0, proved as follows.

LAY Firwn, - W), 0%, 6)
E I(A,[zli],W],,W[(,]:|f(W1,,WK),Q/[2]i],g)
(141)

I(Wi, - Wk FIfF(Wh, -, W), O, G)
+ 1A AWy, Wi, f(WLL -, W), O, 6)
(142)

8)(12
L2 1y, Wi FIEOW, -, Wi), 0 6)  (143)
< I(Wi, -, Wk, f(Wi,---, Wg); FIOW, G)  (144)

(Wi, -, Wg; FIOW, G) (145)
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< I(Wi,-- ,Wk; F, 08,0 (146)
IS (147)
Symmetrically, we have
HAF fwy, -, Wi), 051, 6)
— HAK fowy, -, Wh), F,G) (148)

Combining (138), (140) and (148), we have proved (127)

and the proof of Lemma 2 is complete. [ ]
Lemma 3: For all K. = {n1,n2, - ,ng.} C[1:NJ,
HAR W, F,6)= > HAMW, F,G)  (149)
nell.

Proof: From (8) and (9), we know that for any K. servers,
the stored information is independent.

H(Wi,) = D H(Win). Yk € [1: K] (150)
nelC.
(1:0; H(WZICC’ Y WK}CCIbe’ g)
K
= > D HWi|Wi, F, Q) (151)
nekl. k=2

As answers are functions of the storage, the answers from any
K. servers are independent as well. Consider two arbitrary
subsets of /. that have no overlap, K1, Ky C K, 1N, = 0.

1 1
1A Al iwi, 7,9)

< AR AR Wake,, - Wik, IWHL FL Q) (152)
an(z

X2 1 AR Wiy, -, Wi, W1, F, G) (153)
(11)(12)

=< I(WZICI""’WKICl;WQICz""’WKICzlwl»F;g)

(154)

w3 (155)

Using (155) repeatedly, we obtain (149). [ |

Next we proceed to the two scenarios. To highlight the
parameter K, in this section, the capacity C and the download
cost D are denoted as C(K) and D(K), respectively.

1) (K,N,T,K;) = (K,4,2,2): For the setting with
(K,N,T,K.) = (K,4,2,2), we obtain a recursive upper
bound that holds for arbitrary K. This result is stated in the
following theorem.

Theorem 4: For the class of MDS-TPIR instances with
(K,N,T,K.) = (K,4,2,2), with arbitrary K, the following
recursive relation on the capacity outer bound C(K) > C(K)
holds.

e (102 (=) (- () )E)
- 8\C(K —1) 3 4] -

VK > 2
cy=1 (156)
Proof: ~ Consider an MDS-TPIR instance with

(K,N,T,K.) = (K,4,2,2). When K = 1, C(1) = 1
is a trivial bound on C(1). Next we consider K > 2. Define

C(K) = L/H(AV)|IF,6) (157)
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C(K —1)=L/HAZ Wi, F,0) (158)
C(K) is a valid outer bound on C(K), since
C(K)=L/H(AY)F,G) > L/D(K) = C(K) (159)

Similarly, C(K — 1) is a valid outer bound on C(K —1). Now,
substituting (157) and (158) to (156), we have

3
HAIF.G)/L = 1+ SHARIWL F.G)/L

2\*1\3
1—(Z= -
We proceed to prove (160). To simplify the notation,

we define (Wy;, Wai, -+, Wk;) = Wy, i €[1: NI].
H(AIF, G)

(160)

O gl wiF,0)+o(L) (161)
O gwy) + AW, F.0)

+HAY Wi, A F 6y +o(L) (162)
> HW) +HAMwy, 7, 6)

+HAL W, W, A F G o) (163)
(6)(2(12) L+ H(A[ll]IWl,f, 3)

+HAL WL, W, F,G) +o(L) (164)
OLD 1+ H AP\ wy, F,0)

+ HAP W, War, F,G) + o(L) (165)

Advancing the databases indices, from (165), we have
HAWF, G) = L+ HAP Wy, F,G)
+ H(ARL Wi, War, F.G) + o(L)  (166)
Adding (165) and (166), we have
H(AVLF, G) +o(L)
> L+ HA W, F,6)
1

+ 5 (H(AS W, Wt 7. G)
+ H(AD W1, War, ., §))
L+ HAY W, F,6)

(167)

IV

1
+5(H(A[§ilwl, W1, F, Q)

+HAY W, W, F, 9)) (168)

WL Ly maPiw, 7,9)

1
+§H(A[32]|W1,f, G)

1
+5H(A5%1|W1,w*1,f,g> (169)

where we use the sub-modular property of entropy functions to
obtain (168). Now consider the term H (AL} |Wy, Wi, F, G).
This corresponds to the total download for the setting where
we have 3 servers (servers 2, 3 and 4), K — 1 messages
(Wp, W3, --- , Wk), each message is of length L/2 and the
MDS code is fully replicated (conditioning on W,j, each
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other server contains the other half information of entropy
L/2 about each message), i.e., the TPIR setting. W> is the
desired message. As the capacity of this TPIR setting is

% (1 — (%)K_l)_1 [3], we have!$

2] AV
H(A54IW1, W, F,G) 23 1 - 3 5

Substituting back to (169) and advancing database indices,
we have Vi, j € [1:4],i #j,

(170)

H(AYF, )+ o(L)
1
> L+ HAP W, F.G) + S H(AT| Wi, F.0)

()

Adding (171) for all i, j € [1 : 4], we have

(171)

H(AF, g) +o(L)

4
1
> L—i—ZZ HAPWL F.G) + 5 > HAP Wi, 7.9)
i=1 Jj=1

X 2\ 51\ 3L
* ‘(3) r

K—1
>L4+2 H(A[ |W1,]-'Q)+( (%) )%L

Normalizing both sides by L, we arrive at (160). [ ]
Two observations from the converse argument are listed
below.

(172)

(173)

1) When we set K = 2, we obtain the information theoretic
bound 8/13.

c@2 < C@

(156) — -1
< (1+3/8x1/C(1)+ (1 —-2/3) x3/4)

(175)
(1+3/8x 1+ (1—-2/3)x3/4)"' =8/13
(176)

(174)

(156)

2) As K — oo, the capacity upper bound con-
verges to 5/14. Since the MDS-TPIR scheme of
Freij-Hollanti er al. [7] achieves the rate 1/4 for this
setting as K — 00, we note that the asymptotic
optimality of the scheme remains open.

2) (K,N,T,K:) With N < T + K.: For the setting with
(K,N,T,K.) and N < T + K., we obtain a recursive upper
bound that holds for arbitrary K. This result is stated in the
following theorem.

Theorem 5: For the class of MDS-TPIR instances
(K,N,T,K;) such that N < T + K. with
arbitrary K, N, T, K., the following recursive relation
on the capacity outer bound C(K)> C(K)

18The proof follows from that in [3] by noting that all definitions for the
TPIR problem are satisfied.
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holds.

E(K)<(1+N_T( ! )
- N C(K -1
1

+(1<—1)(1—NK_CT)), VK >2

177)

Cc(l)=1

Therefore, for constant N, T, K., when K — oo, C(K) <

C(K) < W, which decays o« 1/K such that
—n(1-Nr

downloading everything (rate 1/K) is order optimal.

Proof: Consider an MDS-TPIR instance (K, N, T, K.)
such that N < T + K.. When K = 1, C(1) = 1 is a trivial
bound on C(1). Next we consider K > 2. Define

C(K) = L/H(A\|1F,0) (178)
C(K — 1) = L/H(ACY Wi, F, ) (179)

C(K) is a valid outer bound on C(K), since
C(K) = L/H(A\NIF,G) = L/D(K) = C(K) (180)

Similarly, C(K — 1) is a valid outer bound on C(K —1). Now,
substituting (178) and (179) to (177), we have

HARWF.9) | N=THAR W, F.0)
L - N L
+(K -1 N-T (181)
K.
We proceed to prove (181). Consider an index set N' C

[1 : N] with cardinality [N| = N — T < K,.. Denote the
complement of N as N°.

H(ALLIF, 9)

O mal'l, wi|7,6) +o(L)
HW)) + H(A W, 7, )
+H(A Wi, AR F.6) +o(L)

(6)(149)
+ > H@AM W, F,6)
neN
+ H (AN AW, Wy, AL FG) + o(L)

8)(11)(12
ORI L LS H@AM WL FG)
neN
+HAWL W, Won, F,G) + o(L)

8)(127
OLD LS H AW, F,G)
neN
+ H(ARLIW1, Wan, F,G) + o(L)

8)(11)(12
O LS =@ W, F,0)
neN
+ H(AZL WL, W, F,G) + o(L)

(16)
> L+ Y HAMW, F.6)

neN
2
+ HARL, wawy,

(182)
(10)

(183)

(184)

(185)

(186)

(187)

Wen, F,G) +o(L) (188)
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> L+ > HAMW, F.0)
neN
+H(W2|W1,W*N,f,g)

+ H(AN Wi, Wa, Wor, F, G) + o(L) (189)

OO L+ > HAP Wi, F.G) + LK. — IN])/Ke
neN

+ HAR WL, Wa, Wonr, F,G) + o(L) (190)
8)(11)(12
@®UDa2) ;- > H@AMW,, F,G)
neN
+L(Kc—N+T)/K.
+ H(ARL W1, Wa, Wonr, 7., G) + o(L) (191)

To bound the term H(AE\zf]clwl, Wa, Wenr, F, G), we repeat
(185) to (191) for messages W3, ---, Wk. This gives us

HALMF. O = L+ 3 HARIW, F.6)
neN

+L(K—1)(1—N_

c

T) +o(L) (192)

Consider (192) for all subsets of [1 : N] that have exactly
N — T elements and average over all such subsets. We have

H(ALNIF, G)
1

>L+—— > > H@AMwW,F.0)
(NfT) N:N|=N-T neN
N-T
+L(K-1) (1 — ) +o(L) (193)
c
N-—-T
> L+ ——H(AGL W1, F.G)
N-T
+L(K—-1) (1 — ) +o(L) (194)
c
Letting L — oo and normalizing by L, we have proved (181)
and (177). [ |

Based on Theorem 5 the following observations are relevant.

1) When we set K = 2, K. = N — 1, we obtain the
information theoretic bound for Theorem 3, i.e., (N 2_
N)/(2N? —3N +T).

c2) =< CQ (195)
(177) ( N-T 1
< 1+ X =
c()
+2-1) (1 N T))l (196)
N —1
(177) N-T T-1\""
— 1\/2——N (198)
2N2 —-3N+T

2) As K — oo, Theorem 5 shows that the capacity
decays as 1/K, so that it converges to 0. As a sanity
check, we note that indeed, the MDS-TPIR scheme of
Freij-Hollanti et al. [7], which does not depend on the
number of messages K, does not apply when N <
T 4+ K.. Thus, in this case the asymptotic optimality
as K — oo is trivially settled.

1013

B. Achievability Proof for Theorem 3 When T = 2

The proof for the general setting (arbitrary N) follows the
same route as the N = 4 example presented earlier. We assume
that each message is comprised of L = N(N — 1) independent
symbols from a sufficiently large finite field IF,.

1) Storage Code: The (N — 1, N) MDS storage code is as
follows.

Win € FN*'ke[1:2],ne[l:N] (199)
Wi = (Wer: Wi -+ s Wav—1y) € FE*1 - (200)
Wiv = Wit + Wio + - - + Wiv—1) (201)

2) Construction of Queries: The query to each server
consists of 2(N — 1) vectors, the first N — 1 vectors for
741 (Q,Ek](Wl)) and the last N — 1 vectors for W, (QLk](Wz)).
The queries and downloads for Wi, k € [1 : 2] are described
next.

Denote the set of all full rank N x N matrices over F, as Sy .
The user privately chooses two matrices S, ', independently

and uniformly from SN._Label t}E rows of S as Vi,---, Vy,
and the rows of S’ as Uy, ---,Un_2, Uy, Up. Define Vn €
[1:N]
Vn:{Vl»"',Vn—l;Vn+1»"',VN} (202)
Uy ={U1, -+ ,Un-2, Uy} (203)

where U,, n € [1 : N] are the rows of U, obtained as follows.

U = MDSy 2 (U1; Ua) (204)
where MDSy 2 is an N x 2 matrix such that any two of its
rows are linearly independent.

When W; is desired, we have Vn,

Server n: QM(Wy) = 7,(Vy),

A (W) = O (W) Wi (205)

a) Desired Symbols are independent: From A[llf}\,(Wk),
we can recover all N(N — 1) symbols of W. This is easily
seen because the storage is an (N —1, N) MDS code, no query
dimension is repeated more than N — 1 times and the matrix
S has full rank.

When W is undesired, we have Vn,

W(Wy) =z, Uy),
AR W) = O (W) Wi

Server n :
(206)

b) Interfering symbols are dependent and have dimension
at most N(N —1) — (N —2): Consider the interfering symbols
along the common vectors U;,i € [l : N — 2]. Note that

UiWii + -+ UiWin—1y) = Ui Win (207)

Therefore (N —2) interfering symbols are linear combinations
of the other N> — 2N + 2 symbols.
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3) Combining Answers for Efficient Download: Based on
the queries, each server has 2(N — 1) symbols, N — 1
in Wi, AX(W)) and N — 1 in Wa, A (W») for a total of
L = N(N —1) desired symbols and L = N(N — 1) undesired
symbols. Note that there are at most N> — 2N + 2 £ [
independent undesired symbols. Exploiting this fact, we will
combine the 2(N — 1) queried symbols from each server into
(I + L)/N symbols to be downloaded by the user. Intuitively,
(L+1)/N symbols from each server will give the user a total
of L + I symbols, from which he can resolve the L desired
and / undesired symbols.

Define the following function that maps 2L/N € Z input
symbols to (L + I)/N € Z4 output symbols.

E*(X19X299XL/N9Y15Y299YL/N)
:(Xl""’XI/N’Yl;"
<, XN+ YN)

S YN, XpN+1 + YN+,
(208)

We formalize the combining process in the following
lemma.

Lemma 4: Suppose each server has L/N desired symbols
and L/N undesired symbols. Across all servers, the L desired
symbols are independent, while the L undesired symbols have
dimension at most /I, i.e., all L undesired symbols can be
expressed as linear combinations of symbols in s, where s is
a set of / symbols. Further, each server contains //N distinct
symbols in s.

The desired and undesired symbols are combined to produce
the answers as follows.

AW — 22, AR (wy), €, A (W) (209)

where C, are deterministic L/N x L/N matrices, that are
required to satisfy the following two properties. Denote the
first /N rows of C, as Cp.

PI. All C, have full rank.

P2. For all (N — 1)!V distinct realizations of T,n €
[l : N], the I symbols of the undesired message
that are directly downloaded (//N from each server),
ElA[lk](ch), EzA[zk](ch), e ENA%](WI{‘:) are inde-
pendent in variables in s.

Then we have the following claim.

Claim: The C, satisfying the two required properties exist
over [F,, for a sufficiently large prime .

The proof of Lemma 4 is deferred to Appendix B7.

Next we prove that the scheme retrieves the desired mes-
sage, and that it is 7" private.

4) The Scheme Is Correct (Retrieves Desired Message):
Note that from (207), independent undesired message
symbols distribute evenly across the databases, such that
Lemma 4 applies. Note that the first 2//N variables in the

output of the L* function are obtained directly,
ie, CiAMwy), CAYwy),....cyaAlYw)  and

ElA[lk](Wz), EzA[zk](Wz), e ENA%](Wz) are  all
directly recovered. By property P2 of C,, ElA[lk] (Wke),
EzAgk] (Wie)y oo, ENA%] (Wke) are linearly independent.

1 fact, the properties are generic, i.e., they are satisfied by almost all
matrices over large fields.
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Since we have recovered [ independent dimensions of
interference, and interference only spans at most / dimensions,
all interference is recovered and eliminated. Further, since the
L desired symbols are independent and since the C, matrices
have full rank, the user is able to recover the L desired
message symbols after the interference symbols are recovered
and subtracted from the downloaded equations. Therefore the
scheme is correct with zero error.

5) The Scheme Is Private (to any T = 2 Colluding Servers):
To prove that the scheme is T = 2 private (refer to (13)),
it suffices to show that the queries for any 2 servers are
identically distributed, regardless of which message is desired.
Since each query is made up of 2(N—1) vectors, N—1 for each
message and the vectors for W and the vectors for W, are
generated independently, it suffices to prove that the vectors
for one message (say Wj) are identically distributed, i.e.,

(QMwo), o wo) ~ (kI we), 0 (wp)) .

Vni,no €[1:4],n1 <ny (210)

Note that
(2 Wo, QW) = (20, V), 70 Vi) 211
(2T wo, QW) = (2, W), 71, W) 212)

Therefore, to prove (210) it suffices to show the following.
(V1>"' 5‘/1‘”1715
] VN’ Vi

iny >

‘/i711+1’ o Vinzfl’ Vin2+l’

‘/inl) ~ (Ulﬂ e ,UN—L 0}11; 0}12) (213)

Because S is uniformly chosen from the set of all full rank
matrices, we have

(Vl’ Y Vinl_p ‘/inl-H’ R ‘/inz—lﬂ ‘/in2+1a
VN Vi, Vi) ~ S (214)

Recall that S = (Vq,---, Vn). Next we note that there is a
bijection between

(vla"' 9UN729 ﬁnlaﬁnz) <~ S/ (215)
because of (204) so that there is a bijection between (7,,1 , (7,,2
and Uj, U,. Recall that §' = (Ul, <o, Un_p, Uy, Uz).
Now as _S’ is _uniform over all full rank matrices,
(Ui,+++ ,Un-2, Uy, Uy,) is also uniform over all full rank
matrices,

(U19 5UN—29ﬁn19l7n2) ~ S/ (216)
Finally, we note that S and S’ are identically distributed, so we
have

s~ (217)

Combining (214), and arrive  at
(213) and (210).

6) Rate Achieved Is (N> — N)/(2N? — 3N + 2): The rate
achieved is (N> — N)/(2N? —3N 4+ 2), because we download
2N? — 3N + 2 symbols in total and the desired message size

is N(N — 1) symbols.

(216) (217), we
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7) Proof of Lemma 4 (Existence of C,): This proof of exis-
tence of C, will use Schwartz-Zippel lemma [11], [12] about
the roots of a polynomial. The variables for the polynomial
are the coefficients of the C, matrices. Let us start with an
arbitrary choice of z;,n € [1 : N]. Since all A,Ek](ch) can
be expressed in terms of the I/ symbols in the vector s with
constant coefficients, we can express

C AWy - TyaAl W) = Cras (218

Now consider the polynomial given by the determinant of C.
This is not the zero polynomial®® because we can easily assign
values to C, to make C = I, the identity matrix. This is
because the queried symbols from each server include 7/N
distinct symbols in s.

Next do the same for every realization of z,,n € [1 : N].
As there are N permutations involved, and each can take
(N — 1)! different values, so we have a total of (N — 1)!" dif-
ferent possibilities. We will consider each of them separately.
Each time we find a different C, which gives us a different
non-zero polynomial.

Next consider the determinant of each C,. This gives us
another N non-zero polynomials.

For each of these (N — 1)V 4+ N polynomials, Schwartz-
Zippel lemma guarantees that a uniformly random choice of
C, produces a non-zero evaluation with high probability over
a large field (probability approaching 1 as p — ©0). Since the
intersection of finite number of high probability events is also
a high probability event, there must exist a realization of C,
over a large field for which all (N — 1)!¥ + N polynomials
simultaneously evaluate to non-zero values, i.e., a realization
that satisfies both properties. Hence, the claim is true.

C. Achievability Proof of Theorem 3 When T > 2

The proof for the general setting follows the same route as
the N =4, T = 3 example presented earlier. We assume that
each message is comprised of L = N(N — 1) independent
symbols from a sufficiently large finite field IF),.

1) Storage Code: The (N — 1, N) MDS storage code is as
follows.

Win € TN, kell:2], ne[l:N] (219
Wi = (Weis Waai -+ s Wav—n) € FE*1 - (220)
Win = Wit + Wia + - - + Wrv—1) (221)

2) Construction of Queries: The query to each server con-
sists of two vector spaces, one for W; (span of the rows of
QE,k](Wl)) and one for W, (span of the rows of QE,k](Wz)).
The queries and downloads for Wi, k € [1 : 2] are described
next.

Denote the set of all full rank N x N matrices over I, as Sy.
The user privately chooses two matrices S, S’, independently

and uniformly from Sy. Label the rows of S as Vi,---, Vi,
and the rows of S as Uy, --,Un_7,Uyq,---,Ur. Define
Vn e [l:N]

Vrl:{vl,""Vn719Vn+19"'9VN} (222)

204 polynomial is a zero polynomial if all its coefficients are zero.
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Uy = (U1, UN-1, Up—1yT-1)+1> - » Unr—1)}  (223)
where (71,--- ,(71\/(7,1) are the rows of U, obtained as
follows.

U=PUi;-:Ur) (224)

P is a deterministic N(7 —1) x T matrix that is chosen in such
a way that it allows a bijective mapping between the U, or V,
spaces that may be observed by any set of up to 7' colluding
servers. Intuitively, the only requirement on this matrix is that
it is sufficiently ‘generic’, so that almost all N(T' — 1) x T
matrices over large finite fields are acceptable. Here unlike the
previous example where we explicitly construct the matrix P,
we will specify (later) the properties of this matrix and prove
that such a matrix exists.
When W; is desired, we have Vn,

Wwe) = B0,
AR (W) = QI (W) Wiy

Server n :
(225)

a) Desired symbols are independent: From A[llf}\,(Wk),
we can recover all N(N — 1) symbols of W. This is easily
seen because the storage is an (N — 1, N) MDS code and the
matrix S has full rank.

When W is undesired, we have Vn,

Server n : QE,kC](Wk) = BUy),

AR W) = O N (W) We.  (226)

b) Interfering symbols are dependent and have dimension
at most N(N —1)— (N —T): Consider the interfering symbols
along the common vectors U;,i € [l : N — T]. Note that

UiWii + -+ UiWin—1y) = Ui Win (227)

Therefore (N —T) interfering symbols are linear combinations
of the other N> — 2N + T symbols.

3) Combining Answers for Efficient Download: The idea of
combining is the same as the T = 2 setting. That is, we will
combine the 2(N — 1) queried symbols from each server into
(2N?—=3N+T)/N = (L+1)/N symbols to be downloaded by
the user. We will use the same combining function £* defined
in (208). The difference lies in the combining matrices C,,. For
T = 2, C, are deterministic and the scheme has zero-error,
while here C,, are random?' and the scheme has e-error, with
€ approaching zero as the message size approaches infinity.
The combining process is described in the following lemma,
which corresponds to Lemma 4 (with differences brought by
random C, accounted).

Lemma 5: Suppose each server has L/N desired symbols
and L/N undesired symbols from F,. Across all servers,
the L desired symbols are independent, while the L undesired
symbols have dimension at most I, i.e., all L undesired
symbols can be expressed as linear combinations of symbols

21The reason for choosing random Cj, is that the queries are vector spaces
(permutations of vector sets no longer suffice) and the number of vector spaces
depends on the field size (the number of permutations does not depend on
the field size) so that we cannot directly guarantee the existence of one single
Cy, that works for all vector spaces.
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in s, where s is a set of I symbols. Further, each server contains
I/N distinct symbols in s.

The desired and undesired symbols are combined to produce
the answers as follows.

AN = £ C A (W), CL AL (W) (228)
where C, are random L/N x L/N matrices, that are required
to satisfy the following two properties. Denote the first //N
rows of C, as C,,.

PI. All C, are full rank.

P2. The I symbols of the undesired message that are directly
downloaded (I/N from each server), ElA[lk](ch),
EzA[zk](ch), e ENA%](ch) are independent in vari-
ables in s.

Then the following claim must be true.

Claim: The probability that C,,n € [l : N] with each
element chosen independently and uniformly over I, satisfy
the two required properties, approaches 1 as p — oo.

The proof of Lemma 5 is deferred to Appendix C7.

Next we prove that the scheme retrieves the desired mes-
sage, and that it is 7 private.

4) The Scheme Is Correct (Retrieves Desired Message):
Note that from (227), independent undesired message symbols
distribute evenly across the databases, such that Lemma 5
applies. Note that the first 2/ /N variables in the output
of the L£* function are obtained directly, i.e., flA[k](Wl),
CAl ), -, Syl and Cr Al W), Cralloms),
N ENAEI\;](WZ) are all directly recovered. By property P2 of
Cy, ElAEk](Wk‘:), EQA[Zk](ch), cee ENA%](WH) are linearly
independent with probability approaching 1 as p — o0. Since
we have recovered / independent dimensions of interference,
and interference only spans at most / dimensions, all interfer-
ence is recovered and eliminated. Further, since the L desired
symbols are independent and since the C,, matrices have full
rank, the user is able to recover the L desired message symbols
after the interference symbols are recovered and subtracted
from the downloaded equations. Therefore the scheme is
correct with a probability of error ¢ that approaches O as the
field size p approaches infinity. Note that since each message
is comprised of L independent and uniformly random symbols
in F,, as p approaches infinity, the size of each message
also approaches infinity. So, given any € > 0, we can find
a sufficiently large p, and a correspondingly large message
size value such that the probability of error of the scheme
described above, is less than €.

5) The Scheme Is Private (to any T Colluding
Servers): To prove that the scheme is T private (refer
to (13)), it suffices to show that the queries for any T
servers are identically distributed, regardless of which
message is desired. Since each query is made up
of two vector spaces, one for each message and the
two vector spaces are generated independently, it suffices
to prove that the query spaces for one message (say

Wy) are identically distributed whether it is desired
or undesired. Consider an index set 7 = {iy,i2,---,iT}
C[l:N]such that i <ip <---<iyp. For all 7, we
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require

(eBawo, -, 0w ~ (el -+, 0w

(229)
= BV, -, BVip)) ~ (BU), -, BU;))
(230)
Note that
BVi), BVy), -+, BVip))
= (B({VT‘, Viza Tt ViT })a B({VT‘a Vi1 ) Vi3, Tt ViT })9
X B({VT‘» Vi] 5T Virfl})) (231)

Next we transform the spaces on the RHS of (230) to the form
that is the same as (231). In particular, any V;,,t € [1 : T]
vector appears in 7 — 1 terms in (231). We wish to find such
vectors in the U;, spaces. To do this, we require the matrix P
to satisfy the following properties.

Pl. Forall 7* ={ji, jo, -+, jr—1} C[1: N,,|T*| =T —
1, j1 < jo <--+ < jy—1, there exists a function m7=(P)
that returns a non-zero vector which lies simultaneously
in the spans of each of Pj, = P((j, — I)(T — 1)+ 1:
Ji(T —1),:),t € [1: T —1]. Note that m7=(P) is a
1 x T row vector that only depends on P (it does not
depend on U).

P2. For each 7 = {iy,ip,---,ir} C [1 : NJ], the vectors
mr«(P),NT* C 7T,|7* = T — 1 (found in PI)
are linearly independent. Equivalently, we require the
following T x T matrix to have full rank.

Pr £ (m{i[l:T]/(T)}(P); m{i[l:T]/(T—l)}(P);

: ;m{i[l:T]/(l)}(P)) (232)

Claim: The P satisfying the two required properties exists
over IF, for a sufficiently large p.

The proof of this claim on the existence of P is deferred to
Appendix C8.

Because of the two properties, we may equivalently repre-
sent Ql[tkL](Wk),t e[l:T] as

Ql[t](L](Wk) = B(ul) = B({U» U{i[];]‘]/{])]»

) U{i[l:T]/{t—l)}’ U{i[l:T]/(t+l)}’ S U{i[l:T]/{T)}})'
(233)

We are now ready to prove the privacy condition (230).

(230) <= (B({Vze, Vi, -+, Vig D)s
x B((Vze, Viys Vigs -+, Vie D BUVe, Vi, Vip D)
~ (B({U’ Utieryes = » Ytiperyen D
xB({U, Utiryids Utiperyey> - U{iU:TJ/(Tl}})’
x -+, B({U, Ulirymbs - »U{i[lzrmr—l)}})) (234)

Therefore, it suffices to show the following.

(VTC’ Vi] 5 ‘/iz, Y ViT)
~ (U, U{i[I:TJ/(I]}’ U{i[I:TJ/(Z]}’ T U{iu:TJ/(T]}) (235)
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Because S is uniformly chosen from the set of all full rank
matrices, we have

(V’]'L‘, ‘/ila ‘/iz,"‘,ViT)N(V],Vz,"',VN) (236)

Because of Property P2, there is a bijection between

(U’ U{i[l:T]/{l)}’ U{i[l:T]/{2)}’ BT U{i[l:T]/{T)}) < (U» U) (237)
Now since §' = (U;U) is uniform in _all full rank
matrices, the bijection implies that (U, Ufiy.p)q)s
Utinry)s - - - Uliperyry)) 18 also uniform in all full rank
matrices, i.e.,

, Utinaryms Ytinrymds - Ytinarpr) ™~ (U,U) (238)

Finally, note that S and S’ have the same distribution, so we
have

(Vi, Va, -+, Vy) ~ (U, U) (239)

Therefore, from (236), (238) and (239), we have proved (235)
and (230).

6) Rate Achieved Is (N?> — N)/(2N? — 3N + T): The rate
achieved is (N2 — N)/(2N? —3N +T), because we download
2N? —3N + T symbols in total and the desired message size
is N(N — 1) symbols.

7) Proof of Lemma 5 (Existence of C,): Without loss of
generality, we assume that //N is an integer. There is no
loss of generality because if /N is not an integer, we may
repeat the scheme a number of times (say M) such that IM /N
becomes an integer.

The proof relies on Schwartz-Zippel lemma [11], [12] about
the roots of a polynomial. The variables for the polynomial
are the coefficients of the C, matrices. Consider an arbitrary
realization of the query spaces U,. Generate uniformly ran-
dom C,, independent of I4,. Given U,,n € [1 : N], since all
ALk](ch) can be expressed in terms of the / symbols of the
vector s with constant coefficients, we can express

CrAT Wee)s - s ChAY (Wie)) = Crars (240)
Now consider the polynomial given by the determinant of C.
This is not the zero polynomial because we can easily assign
values to C, to make C = I, the identity matrix. This is
because each server contains //N distinct symbols in s. By the
Schwartz-Zippel lemma, a non-zero polynomial evaluates to a
non-zero value with probability approaching 1 as the field size
p increases and C, are chosen uniformly over ). Therefore
Property P2 is satisfied with high probability.

Next consider the determinant of each C,. This gives
us another N non-zero polynomials. When we choose C,
uniformly, the determinant of C, is not zero almost surely for
large p, so that C, have full rank and Property P1 is satisfied
with high probability.

Now, because Property P1 and P2 are each satisfied with
probability approaching 1, the probability that the two are
simultaneously satisfied also approaches 1 (union bound).
Since this is true conditioned on every possible realization
of U,,n € [l : NJ, it is also true unconditionally.
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8) Proof of Existence of P: Similar to the proof of existence
of C, matrices presented earlier, this proof of existence
will use Schwartz-Zippel lemma [11], [12] about the roots
of a polynomial. The variables for the polynomial are the
coefficients of the P matrix. Since P is a N(T —1) x T matrix,
we have a total of NT (T — 1) variables. Define a set P that
is comprised of all non-zero polynomials with NT(T — 1)
variables of P as its variables, and coefficients from IF),.

We first consider Property P/. Recall that there are (TIX 1)
choices for 7*. Let us start with an arbitrary choice of
T* = {j1, ja, =+, jr—1} such that j; < jo» < -+ < jpr_1.
The required non-zero vector m7+(P) is found as follows.

mr«(P)
Py Py Py
—Pj2 0 0
= [Hl Hy --- HT—l]
—Pj 0
0 0 0 —Pj_,
Lp,
—[0 0 - 0] (242)

where Pj,,t € [1:T — 1] are (T — 1) x T matrices, 0 is the
(T —1) x T matrix with all elements equal to 0 and P7 is a
(T — 1)> x T(T — 2) matrix. Note that the left null space of
P is exactly of one dimension if Py has full rank. Consider
the matrix P}, which is a square matrix formed by the last
T(T —2) rows of Py. We claim that the determinant of P’
is a non-zero polynomial, i.e., |P}| € P. This is because we
can identify a specific choice of Pj, such that |P}| is not
zero, as follows. We set Pj, to be the matrix obtained by
inserting an all zero column as the (7 + 1 — 7)"" column of
the (T — 1) x (T — 1) identity matrix Ir_;. Equivalently, this
means that

Pi,U = (U - ;Ur—; Urga—gs -3 Ur), tell:T—1]
(243)
Since Uy, ---,Ur are independent, m7+(P)U can only be

some scaled version of the U; vector. This means that P}
has full rank (which is also easily verified by plugging the
vaules of Pj, in P}). Therefore, |P}| € P. To make m7+(P)
a function, i.e., to remove ambiguity due to scaling factors, let
us normalize the vector [Hy, --- , Hr_1] by its first element,
h, such that this vector is unique (scaling is fixed). Note that
h € P because if we use the same special choice of Pj,
as above, we find that # = 1 (non-zero). With normalized
[Hy, -+, Hr—1], we obtain m7x(P). Note that each element
of m7+(P) also belongs to P.

Now do the same for every possible choice of 7*. There are
(TIX 1) possibilities. We will consider each of them separately.
Each time we obtain different |P:k7|, h € P and find a different
m7+(P). Putting all of these together, we have a set of 2(T1X1)
non-zero polynomials.

Next consider Property P2. Similarly, we consider all
choices of 7 separately. For each choice of 7 =
{i1,io,--- ,ir} such that i; < ip--- < iy, we consider the
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determinant of P7. This determinant polynomial is non-zero
because we may set P;,,t € [1: T] to be the matrix obtained
by inserting an all zero column as the (7 4 1 — )" column of
I7_1, such that the common vector m7=(P),VI* € T, |T*| =
T — 1 can be computed explicitly

PitU = (Ul, cee UTft; UT+27t; cee UT)
m{i[l:T]/m}(P) =erq1—¢, Vie[l:T]

(244)
(245)

where e; represents the 1 x T unit row vector with a 1 in the
i"" location and O at all other locations. Therefore, Py is an
identity matrix and the determinant is 1 (non-zero). With all
choices of 7, we have another (}}/) non-zero polynomials.

By Schwartz-Zippel lemma, as the field size grows, for each
of the polynomials mentioned above, a uniform choice of P
produces a non-zero evaluation with probability approaching 1.
By the union bound, the probability that all polynomials
simultaneously produce a non-zero value also approaches 1.
In particular, for a sufficiently large field this probability is
not zero, so there must exist a P matrix that satisfies both
properties.

D. Restricted Colluding Sets

Recall that for the setting of our counterexample,
ie., (K,N,T,K;) = (2,4,2,2), while the linear capacity
is settled, the information theoretic capacity remains open.
In particular, the best information theoretic capacity upper
bound that we were able to obtain is 8/13. To gain insights
into the potential tightness of this bound, here we look into
the capacity of this setting with restricted colluding sets, a line
of inquiry recently initiated by Tajeddine et al. in [13]. Our
motivation for studying restricted colluding sets comes from
the following observation.

Consider TPIR, for which the capacity is known [3]. The
TPIR formulation allows the possibility that any set of up to T
servers may collude. However, suppose we relax the privacy
constraint, by allowing only collusions between cyclically
contiguous servers, i.e., the colluding servers must belong to
the set of servers indexed {n,n+1,--- ,n+ T — 1} for some
n € [1 : N], with the indices interpreted modulo N. Because
of the symmetry that is still maintained across servers, it is
readily verified that the converse proof for TPIR in [3] still
goes through unchanged. Thus, even though the restriction
on colluding sets to cyclically contiguous servers relaxes the
privacy constraint, it does not affect the capacity of TPIR.

This leads us to question if a similar property might hold
for MDS-TPIR. If so, then we could gain insights into the
capacity of MDS-TPIR by imposing similar restrictions on the
colluding sets. This line of thought leads us to two somewhat
contrasting observations, that are presented in the following
two subsections.

1) (K,N, T, K.) = (2,4,2,2) With Cyclically Adjacent Col-
luding Sets: Our first observation is in favor of the tightness of
the upper bound 8/13. Indeed, if colluding sets were restricted
to cyclically contiguous sets then 8/13 is the capacity for
the MDS-TPIR setting (K, N,T,K;) = (2,4,2,2). This
observation is summarized in a bit more detail next.
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For our counterexample we considered the MDS-TPIR
setting (K, N,T,K.) = (2,4,2,2) where any 2 servers
may collude. Suppose, now we restrict the colluding sets
of servers to cyclically adjacent pairs, i.e., any one of
{1,2},{2, 3}, {3,4}, {4, 1}. Essentially we have relaxed the
privacy constraint by eliminating the possibilities that Server 1
might collude with Server 3, or that Server 2 might collude
with Server 4. For this setting, we show that the capacity
is 8/13.

The converse is similar to that with 7 = 2, presented in
Section VI-A1l. (170) holds with restricted colluding sets when
K = 2, because we are left with only K — 1 = 1 message.
All other steps follow similarly because the assumption of
symmetry across servers holds under cyclically adjacent col-
luding sets. As a result, the capacity upper bound of 8/13
(refer to (176)) holds here.

Next, we summarize the achievable scheme. The message
construction and the storage code are specified as follows.

Win € F)', kell:2,nell:4] (246)
Wi = (Wia: Wip) € B! (247)
Wiz = Wit + Wiz, Wia = Wi +2Wia (248)

The construction of queries is similar to that with 7 = 2 in
Section III. The quer]y to each server QLk] is comprised of two
parts, QLk](Wl), ,[1k (W>). Each part contains 2 row vectors,
along which the server should project its corresponding stored
message symbols. To generate the query vectors, the user
privately chooses two matrices, S = (Vi; Va; V3; V4) and
S" = (Uo; Uy; Up; Us), independently and uniformly from Sy,
the set of all full rank 4 x 4 matrices over IF,,. Define

Vi = {(Vi, Va}, U = {Uo, U1 + Us} (249)
Vo = {V2,Va}, U ={Up, Uy +2Us} (250)
Vi = {V3, Va}, Uz ={Uo, Ui} (251)
Vi = {V4, Vi}, Uy = {Up, Uz} (252)

Independent random orderings of the rows in ), are the
queries to Server n for the desired message and independent
random orderings of the rows in U4, are the queries to Server n
for the undesired message. The rate achieved is 8/13 because
the 8 desired symbols along the V; vectors are all independent
and the 8 undesired symbols occupy only 5 dimensions (the
4 symbols along Uy contribute only 2 independent dimensions
and the remaining 4 symbols contribute only 3 independent
dimensions). Privacy follows from the observation that for
each cyclically adjacent colluding set of servers, say Server 1
and Server 2, the sets V1, V) intersect in one of their elements,
as do the sets Uj,Us, and both are otherwise uniformly
random, thus making the distinction of I/, V invisible to the
colluding servers. Note that this scheme is not private to the
non-adjacent colluding servers, say Server 1 and Server 3,
because, V1, V3 contain no common vectors, while U}, U3 do
share a common vector. The remaining details are virtually
identical to the settings already covered in Section III and
Appendix B and are omitted.

2) Disjoint Colluding Sets of T Servers Each: Our second
observation provides a counterpoint to the first observation.



SUN AND JAFAR: PRIVATE INFORMATION RETRIEVAL FROM MDS CODED DATA WITH COLLUDING SERVERS

The first observation favored the tightness of 8/13 bound based
on the insight originating from TPIR, that certain restrictions
on colluding sets may not affect capacity. The second obser-
vation challenges this viewpoint by showing that insights from
TPIR do not carry over to MDS-TPIR.

Consider again the TPIR problem. Suppose T divides N,
ie., mT = N for some m € Z,, and we partition the
N servers into the m disjoint sets of 7 elements each:
o= {1,2,---,T}, L ={T+1,T+2,---,2T}, ---,
T ={m—-1DT+1,(m—1)T 42, ---, N}. Further, suppose
we relax the privacy constraint and allow collusions between
only those servers that belong to the same 7;, i € [1 : m].
Then, note that the TPIR problem with restricted colluding
sets becomes equivalent to the PIR problem with N/T = m
servers.”> However, the capacity of PIR with N/T servers is
the same as the capacity of TPIR with N servers. Therefore,
relaxing the privacy constraint by restricting the colluding sets
to disjoint sets of cardinality T each, in the manner described
above, does not affect the capacity of TPIR. However, as we
will show next, the same is not true for MDS-TPIR.

Consider MDS-TPIR with (K, N,T,K.) = (2,4,3,2),
where any T = 2 of the N = 4 servers may collude. From
Theorem 3 we know that the capacity of this setting is 6/11.
However, now suppose we partition the servers into disjoint
sets 71 = {1,2}, T = {3,4}, each of cardinality T = 2.
Now we allow collusions only between servers in the same
7; set, i.e., Server 1 can only collude with Server 2, while
Server 3 can only collude with Server 4. Then, in contrast to
TPIR where such a restriction on colluding sets does not affect
the capacity, we now show that with these restricted colluding
sets, the capacity of MDS-TPIR changes — it increases from
6/11 to 4/7.

The converse for rate 4/7 is trivial, because the rate can not
be higher than that of MDS-PIR with (K, N, K.) = (2,4, 3),
where privacy needs to be ensured only to each individual
server. From [6], we know that the capacity of MDS-PIR with
(K,N,K.) = (2,4,3) is 4/7. Therefore, the upper bound
follows.

Next, we consider the achievable scheme. Each message
consists of 12 symbols. The storage code is specified as
follows.

Win € Fy<', kell:2], ne[l:4]  (253)
Wi = (Wiis Wi Waa) € B! (254)
Wia = Wi + Wiz + Wi (255)

The query to each server Q,Ek] is comprised of vectors in V),
and U, given as follows.

Vi = {V1, V3, Vs}, U ={Uo, Uy, Uz} (256)
Vo = {V1, V3, Vs}, U ={Uo, U, U} (257)
Vi = {V2, Va, V6}, Uz = {Up, Uy, Uz} (258)
Vo = {V2, V4, V6}, Uy = {Uo, Uy, Uz} (259)

and S’ =

where S = (Vi; Va; V3; Vi Vs; Vi) =
and uniform

(Uo; Uy; Ua; Us; Ug; Us)  are  independent

22This is because storage is fully replicated, so that each disjoint set of T
colluding servers may be equivalently replaced with 1 server.
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from the set of all full rank 6 x 6 matrices. The rate achieved
is 12/(12 4+ 9) = 4/7 because the 12 desired symbols along
the V; vectors are all independent and the 12 undesired
symbols occupy only 9 dimensions (the symbols along each
U;, i € {0,1,2}, occupy only K. = 3 dimensions). Privacy
follows from the observation that for either colluding set
{1,2} or {3,4}, the vectors in }V and U/ are both the same.
The remaining details can be filled in based on Section III
and Appendix B and are omitted.

In light of the two contrasting observations, the tightness
of the 8/13 upper bound, as well as the general impact
of restricted colluding sets on the capacity of MDS-TPIR
remain intriguing open problems for future work. For readers
interested in the latter problem, we conclude this section with
two simple examples of such capacity characterizations.

3) Examples of Capacity of MDS-TPIR Under Restricted
Colluding Sets: As usual in this section, we will omit details
of achievability arguments that follow directly from Section III
and Appendix B.

a) Example 1: Consider the setting (K,N,K.) =
(2,4,2) and let the restricted colluding sets be {1, 2}, {3, 4}.
Alternatively, let the restricted colluding sets be {1, 2}, {3}, {4}.
In either case, the capacity is 2/3, same as that of MDS-PIR
with (K, N, K.) = (2, 4,2) [6] so that the converse is implied.
The scheme that achieves rate 4/6 = 2/3 is as follows.

Win € X!, ke[l:2], ne[l:4] (260)
Wi = (Wia: Wep) € B! (261)
Wiz = Wit + Wi, Wig = Wi +2Wpo (262)
Vi = {Vi}, U = {Uo} (263)
Vo = {Vi}, U = {Uop} (264)
Vi = {Va}, Us = {Uo} (265)
Vi = {Va}, Uy = {Uo} (266)

where § = (Vi; V) and S’ = (Up; U)) are independently and
uniformly chosen from the set of all full rank 2 x 2 matrices.

b) Example 2: Suppose (K, N, K.) = (2,3,2) and the
colluding sets are either {1, 2}, {2, 3}. Alternatively, suppose
the colluding sets are {1, 2}, {3}. In both cases, the capacity is
4/7. The scheme that achieves rate 4/7 is as follows.

Win € F2X', kell:2], ne[l:3]  (267)
Wi = (Wia: Wip) € T} (268)
Wiz = Wi1 + Wi (269)
Vi ={vi}, Ui ={Uo} (270)
Vo = {(Vi, Va}, Up = {Uop, Ui} (271)
V3 = {Va}, Uz = {Uo} (272)

where § = (V; V) and S’ = (Uy; Uy) are independent and
uniformly chosen from the set of all full rank 2 x 2 matrices
over IF),.

For the converse, consider (190). Plugging in K =2, K, =
2,N = {3}, N = 3, we have

D

v

(273)
(274)

H (A7, 9)
L+ HAY W, F,G) + L/2+o(L)

\



1020

Note that (190) still holds when |N| = K. Plugging in
K=2K.=2,N={1,2}, N =3, we have

D > HAUF, G (275)
> L+ HAP Wy, F,6) + HAP Wi, F,6) + o(L)
(276)

Adding the two inequalities above, we have

2D = 5L2+HAY, AP, AP W, F G 1oLy (277)

(16)
> S5L)2+ HW W, F,G)+o(L)

297002 4 o(L)

(278)
(279)

Normalizing by L and taking limits as L approaches infinity,
gives us the upper bound on the rate L/D as 4/7, which
completes the converse.

E. Examples of Optimal Schemes over Small Fields

To highlight that the assumption of large field size (which
was made convenience) may not be essential, in this section,
we provide two examples of explicit MDS-TPIR capacity
achieving schemes over small fields.

1) Example 1: Consider the MDS-TPIR instance with
(K,N,T,K;) = (2,3,2,2). Note that the capacity of this
setting is 6/11, as established in Theorem 3. We provide
an alternative achievable scheme for rate 6/11. In particular,
the scheme operates over the binary field and the upload is
4 bits per server (the query to each server takes values in a
set with cardinality 2* = 16).

We assume that each message is L = 6 bits. Denote
ai,--- ,ae, b1, -+ ,bg as 12 i.i.d. uniform bits, a;, b; € IF».
Messages Wi, W, are defined in terms of these bits as
follows.

Wi = (a1; a2; az; aa; as; ag), Wa = (by; ba; b3; by; bs; be)

(280)
The storage is specified as
Server 1 : Wii = (a1 az; az), War = (bi; ba; b3)  (281)
Server 2 : Wiy = (as; as; ag), Wi = (bs; bs; bg)  (282)
Server 3: Wiz = (a1; a2; a3), Waz = (B1; B2 f3)  (283)
where a1, a2, a3, B1, p2, f3 are obtained as follows.
a1 =ai+a+as, pi=>bi+by+bs (284)
ay = ay +az +ae, P2 =Dby+ b3+ bg (285)
a3 = ay + a4+ as, P3 = by + by + bg (286)
Further define
o4 =01 +o2+03 =a3+as+as (287)
Pa = Pr+ P2+ p3 = b3+ bs+ bs (288)

Note that each server stores 3 bits of each message and
the storage at any 2 servers is just enough to recover both
messages (MDS storage property is satisfied).

Define a function that maps 4 input bits to 3 output bits as
follows.

L3(X1, X2, V1, n)=X1+ 1, Xo+ 1, V1 +12) (289)
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We now describe the PIR scheme. F is a uniform random
variable in [1 : 16]. Depending on the value of F and the
desired message index @ € [1 : 2], the user’s query is specified
by Table I. The double-quotes notation around a random
variable represents the guery about its realization. Note that
the queries to Server 1 and Server 2 are the same, regardless
of the value of € and the query to Server 3 is a deterministic
function of that to Server 1 and Server 2.

We show that the scheme is both correct and private. The
schemes is correct because our scheme satisfies the important
property (PI) that from the answers Agk], A[zk], we always
know one undesired bit in Agk] and then we can extract the
2 desired bits in Agk] (because if any 1 of the 4 input bits of
the £3 function is known, the remaining 3 input bits can be
solved from the 3 output bits). Combining these 2 desired
bits with the other 4 desired bits (2 from Server 1 and 2
from Server 2), we obtain the desired message (easy to verify
that these 6 bits are independent). The property (P1) is easy
to verify. For example, consider k = 1 and F = 8. From
A AN we obtain by, b3, ba, bs, from which we further
obtain f4 = bz + bs + b5 and f4 appears in Agl]. The
scheme is private because it is easy to verify that for any
2 servers, the queries are identically distributed no matter
which message is desired and then the privacy condition (13) is
satisfied.

The scheme downloads 4 bits from Server 1, 4 bits from
Server 2 and 3 bits from Server 3. It retrieves 6 desired

message bits. Therefore the rate is 6/11.
2) Example 2: Consider the MDS-TPIR instance with

(K,N,T,K.)=(2,4,3,2). The capacity of this setting turns
out to be 4/7. The rate can not be more than 4/7 because
the capacity of TPIR with (K, N,T) = (2,4,3) is 4/7 as
shown in [3] and reducing K, from 2 to 1 can not hurt.23
We provide an achievable scheme for rate 4/7. In particular,
the scheme operates over the finite field Fy3 and the upload
is 6 bits per server (the query to each server takes values in a
set with cardinality 20 = 64).

We assume that each message is L = 4 symbols.
Denote ay, az, a3, a4, b1, by, b3, bs as 8 i.i.d. uniform symbols,
ai, b; € F13. Messages W1, W, are defined in terms of these
symbols as follows.

Wi = (a1; az; az; as), Wa = (b1 ba; b3y ba)  (290)
The storage is specified as
Server 1: W11 = (a1;a2), War = (b1;b2)  (291)
Server 2 : Wip = (a3z; as), Wi = (b3; bs) (292)
Server 3: Wiz = (a1; a2), Waz = (B1; f2)  (293)
Server 4 : Wiq = (a3; as), Was = (f3; 1) (294)

where a1, a2, a3z, a4, p1, 2, B3, P4 are obtained as follows.

a1 = 3ay +2ax +4az + as, p1 =3b1 4 2br 4+ 4b3 + by

23Reducing K. from 2 to 1 amounts to increasing the storage at each
server so that every server stores every message. Since the queries are
independent of message realizations, any achievable scheme for MDS-TPIR
with (K, N, T, K:) = (2,4, 3,2) continues to be a valid achievable scheme
for TPIR with (K, N, T) = (2,4, 3). Thus, the capacity in the TPIR setting
cannot be smaller than the capacity in the corresponding MDS-TPIR setting.
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TABLE I
THE SCHEME FOR MDS-TPIR WITH (K, N, T, K.:) = (2,3,2,2)

1021

JF | Prob. Q[le] (Server 1) Q[20] (Server 2) le] (Server 3) Q[32] (Server 3)
1 | 1/16 | “a1,a2,b1,b2” | “as,as,b4,b5” | “Ls(as, o, b1, 52)” | “Ls(ar,az, B3, a)”
2 | 1/16 | “a1,as3,b1,b2” | “a4,as5,b4,b5” | “L3(a1, a2, b1, 52)” “£3(0437 oy, 3, 54)”
3 | 1/16 | “a1,a2,b1,b3” | “a4,as5,b4,b5” | “L3(asz, o4, B3,84)" | “La(ar,az, B, P2)”
4 | 1/16 | “a1,a3,b1,b3” | “a4,a5,b4,b5” | “L3(a1, 2, P3,54)” | “L3(asz, oy, B1,82)”
5 1/16 “al,GQ,bl,bQ” “a47a67b47b5” (a17a2;51752)” “£3(a37a47637ﬁ4)”
6 | 1/16 | “ay,as3,b1,b2” | “a4,ae,bs,bs” “/33(0637 ayg, b1, 02)” | “Ls(ar, a2, B3, 54)”
7 1/16 “al,CLQ,bl,b?,” “a‘4aa‘6ab47b5” (Oél,(lg,ﬂg,ﬁ;l)” “‘63(05 (14,,61,ﬁ2)”
8 | 1/16 | “a1,a3,b1,b3” | “a4,a¢,bs4,b5” | “L3(as, oy, B3, 84)” (0417 as, b1, B2)”
9 | 1/16 | “a1,a2,b1,b2” | “aa,as,bs,b6” | “Ls(as,au,Bs,Ba)” | “Lslar, a2, B, P2)”
10 | 1/16 | “a1,a3,b1,02" | “a4,a5,bs,b6" | “L3z(ar,az, f3,4)” “£3(a ag, 1, B2)”
11| 1/16 | “ay,a2,b1,b3” | “a4,as,bys,bs” ‘53(0437 ay, b1, f2)” (a17 as, B3, B4)”
12 1/16 “Cll,a3,b1,b3” “CL4,CL5,b4,b6” (0170‘2351752)” “[.:3(0437014,637ﬁ4)”
13 1/16 “a’l’a’Q’bl?bQ” “a47a67b47b6” (041,0[2,53754)” “£3(a37a47617ﬁ2)”
14 | 1/16 | “a1,a3,b1,b2” | “a4,a6,bs,bs” “£3(a37 oy, B3, 84)” | “La(ar, g, B, P2)”
15 | 1/16 | “a1,a2,b1,b3” | “a4,a6,b4,06” | “L3(o1,az,B1,02)” “£3(a oy, f3,4)”
16 | 1/16 | “ay,a3,b1,b3” | “a4,a6,b4,b6” | “L3s(as,ou,P1,2)” /.33(0417 as, B3, B4)”
TABLE I
THE SCHEME FOR MDS-TPIR WITH (K, N, T, K;) = (2,4,3,2)
[0] [0] [0] 1] [2]
Prob. | Q7" (Server 1) | Q5" (Server 2) | Q5" (Server 3) | Q, (Server 4) | QQ; (Server 4)
1/64 “a/il ; b]l D) “aiz ; bjzn “041'3 , /BjS” “ai4 + ﬂj4 “aié + ﬂjé”

i1, J1, %3, j3 are 1.i.d. and uniform in {I,2}. i3, j3 are i.i.d. and uniform in {3,4}.
i1,142,13, J1, j2, j3 are independent. i4, j4, %}, j; are determined as follows.

(i1,42,13) = (1,3,1) = iy = 4,1} = 3,
(i1,12,13) = (1,3,2) = iq = 3,1y = 4,
(i1,12,43) = (1,4,1) = iqy = 3,1y = 4,
(i1,12,13) = (1,4, 2):>i4:4,i21:3,
(i1,42,13) = (2,3,1) = iy = 3,1} = 4,
(i1,42,13) = (2,3, 2)=>Z'4=4,i2=3,
(i1,12,13) = (2,4,1) = iy = 4,7} = 3,
(i1,12,13) = (2,4,2) = iy = 3,1} = 4,

oy = 2a; + 3ay + a3 + 4ay,
o3 = 3a; + 12a + 4a3 + 6aq,
o4 = 12a1 + 3a + 6az + 4aq,

f2 = 2by + 3by + bz + 4by
p3 = 3b1+12b2+4b3+6b4
fa = 12b1+3br+6b3+4by
(295)

Note that each server stores 2 symbols of each message and
the storage at any 2 servers is just enough to recover both
messages (MDS storage property is satisfied).

We now describe the PIR scheme. F is a uniform random
variable in [1 : 64]. The user’s query is uniform over 64
choices and is specified by Table II. Note that the queries
to servers 1, 2 and 3 are the same, regardless of the value of
6 and the query to Server 4 is a deterministic function of that
to servers 1, 2 and 3.

(J1,J2,03) = (1,3,1) = ja = 3,55, = 4
(J1:72,53) = (1,3,2) = ju = 4,75 =3
(J1:d2,d3) = (1,4,1) = ja = 4,55 = 3
(J1,d2,03) = (1,4,2) = ju = 3,55, = 4
(J1,J2,03) = (2,3,1) = ja = 4,55 = 3
(J1,72,J3) = (2,3,2) = ju = 3,55, = 4
(J1:J2:73) = (2,4,1) = ja = 3,55 = 4
(J1,d2,03) = (2,4,2) = ja = 4,55 = 3

The key to the scheme is that the undesired symbol down-
loaded from Server 4 is known based on what is downloaded
from servers 1, 2 and 3, while desired symbols are all inde-
pendent. To satisfy this property, the storage code (i.e., the lin-
ear combining coefficients in a;, ;) is carefully designed.
In particular, it is guaranteed that if we arbitrarily choose one
of ay,ap and one of a3, as and set the chosen variables to
zero, a3 (o4) is linearly independent of one of aj, o> and is
a scaled version of the other one of aj, ap. Now, in the PIR
scheme, we first download one arbitrary stored symbol from
the first three servers. Then the o symbol downloaded from
the last server is the independent one (when a; is desired)
and is the dependent one (when a; is undesired). The same
property applies to b; and f; as the same code structure
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is used. This observation is formalized in the following
lemma.

Lemma 6: For all values of i1, i2, i3, i4, i}y, j1, j2. J3, J4» J4
in Table II, we have

dim(ail s iy, Uiz ai4) = 4» dim(ail s iy Ajs aii) =3
(296)

dim(bjpbjz’ﬂj}a ﬁj4) = 3’ dlm(b]pbjza ﬁjw ﬁjf‘) =4
297)

Lemma 6 is proved by brute force, i.e., verifying (296) and
(297) hold for each case.

We show that the scheme is both correct and private. The
schemes is correct because as Lemma 6 has proved, the 4
undesired symbols only have dimension 3 and it is easy to
see that the 3 undesired symbols in answers from the first
3 servers have dimension 3. Therefore, from the answers
A[lk] , A[k], Agk], we always know the undesired symbol in Az[tk].
Subtracting the undesired symbol out from Aé[lk], we obtain
the desired symbol interference freely. Lemma 6 has proved
that the 4 desired symbols are independent such that we can
recover the desired message. The scheme is private because
it is easy to verify that for any 3 servers, the queries are
identically distributed no matter which message is desired and
then the privacy condition (13) is satisfied.

The scheme downloads 2 symbols from Server 1, Server 2
and Server 3 each, and 1 symbol from Server 4. It retrieves 4
desired message symbols. Therefore the rate is 4/7.

Let us conclude this example with the observation that
this MDS-TPIR instance with (K, N, T, K.) = (2,4,3,2) is
not covered by Theorem 3, but we were still able to find
its capacity. Let us also note that we are able to cast this
example into a similar framework as Theorem 3 and prove
the existence of PIR schemes that achieve the same capacity
for the (x,y) — (x,y,x + y,x + 2y) MDS storage code,
subject to the assumption of a sufficiently large finite field.
The details are repetitive, and therefore omitted. However,
we believe this example may provide useful insights for further
generalizations.
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