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Abstract— Private information retrieval (PIR) is the problem
of retrieving one message out of K messages from N non-
communicating replicated databases, where each database stores
all K messages, in such a way that each database learns no
information about which message is being retrieved. The capacity
of PIR is the maximum number of bits of desired information
per bit of downloaded information among all PIR schemes.
The capacity has recently been characterized for PIR as well
as several of its variants. In every case it is assumed that all
the queries are generated by the user simultaneously. Here we
consider multiround PIR, where the queries in each round are
allowed to depend on the answers received in previous rounds.
We show that the capacity of multiround PIR is the same
as the capacity of single-round PIR. The result is generalized
to also include T -privacy constraints. Combined with previous
results, this shows that there is no capacity advantage from
multiround over single-round schemes, non-linear over linear
schemes or from ε-error over zero-error schemes. However,
we show through an example that there is an advantage in terms
of storage overhead. We provide an example of a multiround,
non-linear, ε-error PIR scheme that requires a strictly smaller
storage overhead than the best possible with single-round, linear,
zero-error PIR schemes.

Index Terms— Private information retrieval, multiple rounds,
capacity, storage overhead.

I. INTRODUCTION

PRIVATE information retrieval (PIR) [1], [2] is one of
the canonical problems in theoretical computer science

and cryptography. The PIR setting involves K messages that
are assumed to be independent, N distributed databases that
are replicated (each database stores all K messages) and non-
colluding (the databases do not communicate with each other),
and a user who desires one of the K messages. A PIR scheme
is any mechanism by which a user may retrieve his desired
message from the databases privately, i.e., without revealing
any information about which message is being retrieved, to any
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individual database. An information theoretic formulation of
PIR guarantees the user’s privacy even if the databases are
computationally unbounded.1 The “rate” of a PIR scheme is
defined as the ratio of the number of bits of desired information
to the total number of bits downloaded by the user from all
the databases. The supremum of achievable rates is defined
to be the capacity of PIR. For K messages and N databases,
the capacity of PIR was characterized recently in [6] as

C =
(

1 + 1/N + 1/N2 + · · · + 1/N K−1
)−1

(1)

The capacity has also been determined for various con-
strained forms of PIR such as LPIR [7] – where mes-
sage lengths can be arbitrary, TPIR [8] – where any set of
up to T databases may collude, RPIR [8] – where robustness
is required against unresponsive databases, SPIR [9] – which
extends the privacy constraint symmetrically to protect both the
user and the databases, MDS-PIR [10] and MDS-SPIR [11] –
variants of PIR and SPIR, respectively, where each message
is separately MDS coded.2

A common theme in these results is that there is no capacity
advantage of non-linear schemes over linear schemes, or of
�-error schemes over zero-error schemes. This is a matter
of some curiosity because the necessity of non-linear coding
schemes has often been a key obstacle in network coding
capacity problems [13]–[16], and the capacity benefit of �-
error schemes over zero-error schemes for network coding
problems in general [17] remains one of the key unresolved
mysteries — with direct connections to the edge-removal
question [18] and the existence of strong converses [19] in
network information theory. Motivated by this curiosity, in this
work we explore another important variant of PIR – multiround
PIR (MPIR). Our contributions are summarized next.

The classical PIR setting assumes that all the queries are
simultaneously generated by the user. This assumption is also
made in [6]. However, such a constraint is not essential to
PIR. What if this constraint is relaxed, i.e., multiple rounds
of queries and answers are allowed, such that the queries

1There is also a widely studied cryptographic formulation of PIR, where
the user’s privacy is guaranteed only against computationally bounded data-
bases [3]–[5].

2As a caveat, we note that separate MDS coding of each message is a
restrictive assumption. Consider the setting with K = 2 messages, N = 3
databases and the storage size of each database is equal to the size of one
message. If separate MDS codes are employed for each message, then the
maximum rate (capacity) is equal to 3/5 [10]. However, [12, Example 2]
shows that rate 2/3 (> 3/5) is achievable with a storage code that jointly
encodes both messages.
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in each round of communication are generated by the user
with the knowledge of the answers from all previous rounds?
The resulting variant of the PIR problem is the multiround
PIR (MPIR) problem (also known as interactive PIR [20],
[21]). Multiround PIR has been noted as an intriguing possi-
bility in several prior works [2], [20], [21]. However, it is not
known whether there is any benefit of MPIR over single-round
PIR. Answering this question from a capacity perspective
is the first contribution of this work. Specifically, we show
that the capacity of MPIR is the same as the capacity of
PIR, i.e., both are given by (1). Combined with previous
results, this shows that there is no capacity advantage from
multiround over single-round schemes, non-linear over linear
schemes or from �-error over zero-error schemes. Furthermore,
we show that this is true even with T -privacy constraints.

To complement the capacity analysis, we consider another
metric of interest – storage overhead. Classical PIR assumes
replicated databases, i.e., each database stores all the messages.
For larger datasets, replication schemes incur substantial stor-
age costs. Coding has been shown to be an effective way to
reduce the storage costs in distributed data storage systems.
Applications of coding to reduce the storage overhead for
PIR have attracted attention recently [10]–[12], [22]–[28].
In this context, our main contribution is an example (N = 2
databases, K = 2 messages) of a multiround, non-linear,
�-error PIR scheme that achieves a strictly smaller storage
overhead than the best possible with a single-round, linear,
zero-error scheme. The simplicity of the scheme and the
N = K = 2 setting makes it an attractive point of reference
for future work toward understanding the role of linear versus
non-linear schemes, zero-error versus �-error capacity, and
single-round versus multiround communications. Interestingly,
the scheme reveals that coded storage is useful not only for
reducing the storage overhead, but also it has a surprising
benefit of enhancing the privacy of PIR.

Notation: For n1, n2 ∈ Z, n1 ≤ n2, define the notation
[n1 : n2] as the set {n1, n1 + 1, · · · , n2}, A(n1 : n2) as
the vector (A(n1), A(n1 + 1), · · · , A(n2)) and An1:n2 as the
vector (An1, An1+1, · · · , An2). In this paper, we follow the
convention that for queries and answers, sub-scripts denote
the database index, super-scripts denote the message index
and parentheses denote the communication round index. When
n1 > n2, [n1 : n2] is a null set and A(n1 : n2), An1:n2 are
null vectors. For an index set T = {i1, i2, · · · , in} such that
i1 < i2 < · · · < in, the notation AT represents the vector
(Ai1 , Ai2 , · · · , Ain ). The notation X ∼ Y is used to indicate
that X and Y are identically distributed.

II. PROBLEM STATEMENT

Let us start with a general problem statement that can
then be specialized to various settings of interest. Consider
K independent messages W1, · · · , WK , each comprised of L
i.i.d. uniform bits.

H (W1, · · · , WK ) = H (W1) + · · · + H (WK ), (2)

H (W1) = · · · = H (WK ) = L . (3)

There are N databases. Let Sn denote the random variable that
represents the information stored at the nth database.

H (Sn|W1, W2, · · · , WK ) = 0, ∀n ∈ [1 : N]. (4)

Define the storage overhead α as the ratio of the total amount
of storage used by all databases to the total amount of data.3

α
�=

∑N
n=1 H (Sn)

K L
. (5)

For replication based schemes, each database stores all K
messages, so Sn = (W1, W2, · · · , WK ), H (Sn) = K L, and
the storage overhead, α = N .

A user privately generates θ uniformly from [1 : K ] and
wishes to retrieve Wθ while keeping θ a secret from each
database.

Prior works on capacity of PIR and its variants make cer-
tain (implicitly justified) assumptions of deterministic behav-
ior, e.g., that the answers provided by the databases are
deterministic functions of queries and messages. Here we will
follow, instead, an explicit formulation. We allow randomness
in the strategies followed by the user and the databases. This
is accomplished by representing the actions of the user and
the databases as functions of random variables. Let us use
F to denote a random variable privately generated by the
user, whose realization is not available to the databases (the
distribution of F could be made public to all databases).
Similarly, G is a random variable that determines the random
strategies followed by the databases, and whose realizations
are assumed to be known to all the databases4 and the user
without loss of generality. F and G take values over the set of
all deterministic strategies that the user or the databases can
follow, respectively, associating each strategy with a certain
probability. F and G are generated offline, i.e., before the
realizations of the messages or the desired message index are
known. Since these random variables are generated a-priori,
we must have

H (θ, F, G, W1, · · · , WK )

= H (θ) + H (F) + H (G) + H (W1) + · · · + H (WK ). (6)

The multiround PIR scheme proceeds as follows. Suppose
θ = k. In order to retrieve Wk , k ∈ [1 : K ] privately,
the user communicates with the databases over � rounds.
In the first round, the user privately generates N random
queries, Q[k]

1 (1), Q[k]
2 (1), · · · , Q[k]

N (1).

H (Q[k]
1 (1), Q[k]

2 (1), · · · , Q[k]
N (1)|F) = 0, ∀k ∈[1 : K ]. (7)

The user sends query Q[k]
n (1) to the nth database, ∀n ∈ [1 : N].

Upon receiving Q[k]
n (1), the nth database generates an answer-

ing string A[k]
n (1). Without loss of generality, we assume

3Perfect compression may not be possible for arbitrary L , especially when
L is small. However, since in this work we consider the Shannon theoretic
formulation where the message size is large, i.e., L → ∞, we have defined
storage overhead using the entropy of Sn which is achievable in this regime.

4One might wonder if we could allow each database to have its own random
strategy (determined by a random variable Gi ). We note that in this case,
we can define G = (G1, · · · GN ) such that the constraints in this paper all
continue to hold (i.e., (8), (10), (11), (13)) and the converse in Theorem 1
still applies. Thus, there is no potential gain of localized Gi .
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that the answering string is a function of Q[k]
n (1), the stored

information Sn , and the random variable G.

H (A[k]
n (1)|Q[k]

n (1), Sn, G) = 0. (8)

Each database returns to the user its answer A[k]
n (1).

Proceeding similarly,5 over the γ th round, γ ∈ [2 : �],
the user generates N queries Q[k]

1 (γ ), · · · , Q[k]
N (γ ), which are

functions of previous queries and answers and F,

H (Q[k]
1:N (γ )|Q[k]

1:N (1 : γ − 1), A[k]
1:N (1 : γ − 1), F) = 0. (9)

The user sends query Q[k]
n (γ ) to the nth database, which

generates an answer A[k]
n (γ ) and returns A[k]

n (γ ) to the user.
The answer is a function of all queries received so far,
the stored information Sn , and G,

H (A[k]
n (γ )|Q[k]

n (1 : γ ), Sn, G) = 0. (10)

At the end of � rounds, from all the information that is now
available to the user (A[k]

1:N (1 : �), Q[k]
1:N (1 : �), F), the user

decodes the desired message Wk according to a decoding
rule that is specified by the PIR scheme. Let Pe denote the
probability of error achieved with the specified decoding rule.

To protect the user’s privacy, the K possible values of
the desired message index should be indistinguishable from
the perspective of any subset T ⊂ [1 : N] of at most T
colluding databases, i.e., the following privacy constraint must
be satisfied.

[T -Privacy] (Q[k]
T (1 : �), A[k]

T (1 : �), G, ST )

∼ (Q[k
 ]
T (1 : �), A[k
 ]

T (1 : �), G, ST ) (11)

∀k, k 
 ∈ [1 : K ], ∀T ⊂ [1 : N], |T | = T .

The PIR rate characterizes how many bits of desired infor-
mation are retrieved per downloaded bit and is defined as
follows:6

R = L

D
(12)

where D is the expected value7 of the total number of bits
downloaded by the user from all the databases over all �
rounds.

5One might wonder if the setting can be further generalized by allowing
sequential queries, i.e., allowing the query to each database to depend not
only on the answers received from previous rounds, but also on the answers
received from other databases queried previously within the same round.
We note that sequential queries are already contained in our multiround
framework, e.g., by querying only one database in each round (sending null
queries to the remaining databases).

6In this work, the metric we consider is rate (download cost), while the
upload cost is ignored. We note that in the single round setting [6], the upload
cost is negligible in the large message size regime because the same query can
be reused multiple times. However, in the multi-round setting as considered in
this work, the queries depend on previous answers so that the same query may
not be reused. Therefore, as a caveat we note that for multi-round schemes
the upload cost may not be negligible.

7Alternatively, D may be defined as the maximum download needed by the
PIR scheme which (similar to choosing zero-error instead of �-error) weakens
the converse and strengthens the achievability arguments in general. The
capacity characterizations in this work, as well as previous works in [6], [8],
and [9] hold under either definition. This is because in every case, the upper
bounds allow average download D, while the achievability only requires
maximum download D.

A rate R is said to be �-error achievable if there exists a
sequence of PIR schemes, indexed by L, each of rate greater
than or equal to R, for which Pe → 0 as L → ∞.8 Note that
for such a sequence of PIR schemes, from Fano’s inequality
we must have ∀k ∈ [1 : K ] :
[Correctness]

o(L) = H (Wk|A[k]
1:N (1 : �), Q[k]

1:N (1 : �), F, G)

(7)(9)= H (Wk|A[k]
1:N (1 : �), F, G), (13)

where any function of L, say f (L) is said to be o(L) if
limL→∞ f (L)/L = 0. The supremum of �-error achievable
rates is called the �-error capacity C� .

A rate R is said to be zero-error achievable if there
exists (for some L) a PIR scheme of rate greater than or equal
to R for which Pe = 0. The supremum of zero-error achievable
rates is called the zero-error capacity Co. From the definitions,
it is evident that

Co ≤ C�. (14)

III. RESULTS

There are two main contributions in this work, summarized
in the following sections.

A. Capacity Perspective

We first consider the capacity benefits of multiple rounds
of communication in the classical setting where each data-
base stores all messages, i.e., storage is unconstrained.
We present our result in the general context of multiround
PIR with T -privacy constraints (MTPIR). The MTPIR setting
is obtained from the general problem statement by relaxing
the storage overhead constraints, i.e.,

Sn = (W1, W2, · · · , WK ),∀n ∈ [1 : N]
α = N

i.e., each database stores all the messages (replication). The
following theorem presents the main result.

Theorem 1: The capacity of MTPIR

Co = C� =
(

1 + T/N + T 2/N2 + · · · + T K−1/N K−1
)−1

.

The converse proof of Theorem 1 is presented in Section IV.
Achievability follows directly from [8]. The following obser-
vations place the result in perspective.

1) The capacity of MTPIR matches the capacity of TPIR
found in [8], i.e., multiple rounds do not increase
capacity.

2) Setting T = 1 gives us the capacity of multiround
PIR (MPIR) without T -privacy constraints. The capacity
of MPIR matches the capacity of PIR found in [6],
i.e., multiple rounds do not increase capacity.

3) Since the achievability proofs in [6] and [8] only require
linear and zero-error schemes, there is no capacity

8Equivalently, for any � > 0, there exists a finite L� such that Pe < � for
all L > L� .
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benefit of multiple rounds over single-round schemes,
non-linear over linear schemes, or �-error over zero-error
schemes.

4) For all N, K , T, � the converse proof of Theorem 1
generalizes the converse proofs of [6] and [8]. Remark-
ably, it requires only Shannon information inequalities,
i.e., sub-modularity of entropy.

5) Since the capacity metric focuses only on the download
cost, it does not penalize multi-round PIR schemes for
their potentially non-negligible upload cost relative to
single-round PIR schemes. Theorem 1 shows that even
with the ability to have unlimited uploads for free (which
particularly favors multi-round schemes) multi-round
PIR offers no capacity advantage over single-round PIR.

B. Storage Overhead Perspective

As summarized above, our first result shows that in a broad
sense – with or without colluding databases – there is no
capacity benefit of multiple rounds over single-round commu-
nication, �-error over zero-error schemes or non-linear over
linear schemes for PIR. This pessimistic finding may lead one
to believe that there is little reason to further explore interactive
communication, non-linear schemes or �-error schemes for
PIR. As our main contribution in this section, we offer
an optimistic counterpoint by looking at the PIR problem
from the perspective of storage overhead instead of capacity.
The counterpoint is made through a counterexample. The
counterexample is quite remarkable in itself as it shows from
a storage overhead perspective not only the advantage of a
multiround PIR scheme over all single-round PIR schemes, but
also of a non-linear PIR scheme over all linear PIR schemes,
and an �-error scheme over all zero-error schemes.

For a counterexample the simplest setting is typically the
most interesting. Therefore, in this section we will only
consider the simplest non-trivial setting, with K = 2 messages,
N = 2 databases, and T = 1, i.e., no collusion among
databases. Recall that for this setting the capacity is C = 2/3.
For our counterexample we explore the minimum storage
overhead that is needed to achieve the rate 2/3.

Theorem 2: For K = 2, N = 2, T = 1, and for rate 2/3,

1) there exists a multiround, non-linear and �-error PIR
scheme with storage overhead

α = 3/4 + 3/8 log2 3

which is less than 3/2.
2) the storage overhead of any single-round, linear and

zero-error PIR scheme is

α ≥ 3/2

The achievability arguments, including the multiround, non-
linear and �-error PIR scheme that proves the first part
of Theorem 2 are presented in this section. The proof of
the second claim notably utilizes Ingleton’s inequality, which
goes beyond submodularity, and is presented in Section V.

1) A Multiround, Non-Linear, and �-Error PIR Scheme for
K = 2, N = 2, T = 1: Define w1, w2 as two independent
uniform binary random variables. Further, define

x1 = w1 ∧ w2 (15)

x2 = (¬w1) ∧ (¬w2) (16)

y1 = w1 ∧ (¬w2) (17)

y2 = (¬w1) ∧ w2 (18)

where ∧ and ¬ are the logical AND and NOT operators. Note
the following,

x1 = 1 ⇒ (w1, w2) = (1, 1) (19)

x2 = 1 ⇒ (w1, w2) = (0, 0) (20)

x1 = 0 ⇒ (w1, w2) = (y1, y2) (21)

x2 = 0 ⇒ (w1, w2) = (¬y2,¬y1) (22)

For ease of exposition, consider first the case where each
message is only one bit long. In this case, the messages
W1, W2, directly correspond to w1, w2, respectively. Denote
the first database as DB1 and the second database as DB2.
Regardless of whether the user desires W1 or W2, he flips a pri-
vate fair coin, and requests the value of either x1 (head) or x2
(tail) from DB1. If the answer is 1, then according to (19)
and (20) the user knows the values of both w1, w2 and no
further information is requested from DB2. If the answer is 0,
then the user proceeds as follows.

• If x1 = 0 and W1 is desired, ask DB2 for the value of
y1. Retrieve w1 = y1.

• If x1 = 0 and W2 is desired, ask DB2 for the value of
y2. Retrieve w2 = y2.

• If x2 = 0 and W1 is desired, ask DB2 for the value of
y2. Retrieve w1 = ¬y2.

• If x2 = 0 and W2 is desired, ask DB2 for the value of
y1. Retrieve w2 = ¬y1.

Note that in order to answer the user’s queries, DB1 only
needs to store (x1, x2), and DB2 only needs to store
(y1, y2). This observation is the key to not only the reduced
storage overhead, but also the enhanced privacy of this
scheme.

Further, in preparation for the proofs that follow, let us
define another binary random variable u, which takes the value
u = 0 if no response is needed from DB2, and the value u = 1
otherwise. Note that u = 0 implies that (y1, y2) = (0, 0).
On the other hand, if u = 1, then (y1, y2) takes the values
(0, 0), (1, 0), (0, 1), each with probability 1/3. Therefore,

H (y1, y2|u)

= 1/4 × H (y1, y2|u = 0) + 3/4 × H (y1, y2|u = 1) (23)

= 1/4 × 0 + 3/4 × H (1/3, 1/3, 1/3) = 3/4 log2 3 (24)

The correctness of the scheme is obvious from (19)-(22).
Let us verify that the scheme is private. Start with DB1. The
query to DB1 is equally likely to be x1 or x2, regardless of the
desired message index and the message realizations. There-
fore, DB1 learns nothing about which message is retrieved.
Next consider DB2. Let us prove that (Q[1]

2 , y1, y2) ∼
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(Q[2]
2 , y1, y2).

(θ = 1) (θ = 2)

(Q[1]
2 , y1, y2) Prob.
(∅, 0, 0) 1/4

(“y1”, 0, 0) 1/8
(“y2”, 0, 0) 1/8
(“y1”, 0, 1) 1/8
(“y2”, 0, 1) 1/8
(“y1”, 1, 0) 1/8
(“y2”, 1, 0) 1/8

∼

(Q[2]
2 , y1, y2) Prob.
(∅, 0, 0) 1/4

(“y1”, 0, 0) 1/8
(“y2”, 0, 0) 1/8
(“y1”, 0, 1) 1/8
(“y2”, 0, 1) 1/8
(“y1”, 1, 0) 1/8
(“y2”, 1, 0) 1/8

where the double quote notation around a random variable
represents the query about its realization. The computation of
the joint distribution values is straightforward. We present the
derivation here for one case. All other cases follow similarly.
From the law of total probability, we have

Pr
(

(Q[1]
2 , y1, y2) = (“y1”, 0, 1)

)

= Pr
(

(Q[1]
2 , y1, y2) = (“y1”, 0, 1)| (Q[1]

1 , w1, w2)

= (“x1”, 0, 1)
)

× Pr
(

(Q[1]
1 , w1, w2) = (“x1”, 0, 1)

)

+ Pr
(

(Q[1]
2 , y1, y2) = (“y1”, 0, 1)| (Q[1]

1 , w1, w2)

= (“x2”, 0, 1)
)

× Pr
(

(Q[1]
1 , w1, w2) = (“x2”, 0, 1)

)
(25)

= 1 × 1/8 + 0 × 1/8 = 1/8 (26)

Similarly,

Pr
(

(Q[2]
2 , y1, y2) = (“y1”, 0, 1)

)

= Pr
(

(Q[2]
2 , y1, y2) = (“y1”, 0, 1)| (Q[2]

1 , w1, w2)

= (“x1”, 0, 1)
)

× Pr
(

(Q[2]
1 , w1, w2) = (“x1”, 0, 1)

)

+ Pr
(

(Q[2]
2 , y1, y2) = (“y1”, 0, 1)| (Q[2]

1 , w1, w2)

= (“x2”, 0, 1)
)

× Pr
(

(Q[2]
1 , w1, w2) = (“x2”, 0, 1)

)
(27)

= 0 × 1/8 + 1 × 1/8 = 1/8 (28)

Thus, Pr
(

(Q[1]
2 , y1, y2) = (“y1”, 0, 1)

)
=

Pr
(

(Q[1]
2 , y1, y2) = (“y1”, 0, 1)

)
. All other cases are

verified similarly. Then, since the distribution of (Q[θ]
2 , y1, y2)

does not depend on θ , and the answers are only deterministic
functions of the query and the stored information, it follows
that the scheme is private.

Next consider the L length extension of this PIR
scheme, where each desired bit is retrieved indepen-
dently as described above. Under the L length extension,
W1, W2, X1, X2, Y1, Y2, U are sequences of length L, such
that the sequence of tuples [(W1(l), W2(l), X1(l), X2(l),
Y1(l), Y2(l), U(l))]L

l=1 is i.i.d. ∼ (w1, w2, x1, x2, y1, y2, u).

Since the extension is obtained by repeated independent appli-
cations of the PIR scheme described above for retrieving each
message bit, it follows trivially that the extended PIR scheme
is also correct and private. The purpose for the L length
extension, with L → ∞, is to invoke fundamental limits of
data compression which optimize both the data rates and the
storage overhead as explained next.

Let us show that the rate 2/3 is achieved asymptotically
as L → ∞. We take advantage of the fact that the answers
from the databases are not uniformly distributed, and therefore
the sequence of answers from each database is compressible
(i.e., each database codes over the sequence of answers and
returns the compressed answer to the user). With optimal
compression, the user downloads H (1/4, 3/4) bits per desired
message bit from DB1. This is because, for each retrieved
bit, the answer from DB1 takes the value 1 with probability
1/4 and 0 with probability 3/4. From DB2, we download
1/4 × 0 + 3/4 × H (1/3, 2/3) = 3/4 H (1/3, 2/3) bits per
desired message bit, because with probability 1/4 (when
the answer from DB1 is 1), no response is requested from
DB2 and otherwise within the remaining space of probability
measure 3/4 (when the answer from DB1 is 0), the answer
from DB2 is 1 with conditional probability 1/3 and 0 with
conditional probability 2/3. Therefore the total download
is H (1/4, 3/4) + 3/4 H (1/3, 2/3) = 3/2 bits per desired
message bit and the rate achieved is 2/3.

Next let us determine the storage requirements of this
scheme. DB1 needs (X1, X2) to answer the user’s queries,
so with optimal compression, it needs to store H (x1, x2) =
H (1/4, 1/4, 1/2) = 3/2 bits per desired message bit. One
might naively imagine that the same storage requirement also
applies to DB2, because DB2 similarly needs the values
(Y1, Y2) to answer the user’s queries. However, this is not
true, because the query sent to DB2 already contains some
information about the message realizations,9 and this side-
information allows DB2 to reduce its storage requirement by
taking advantage of Slepian Wolf coding [29], [30] (distributed
compression with decoder side information).

The key is to realize that DB2 does not need to know
(Y1, Y2) until after it receives the query from the user. The
query from the user includes U as side information. There-
fore, using Slepian Wolf coding, DB2 is able to optimally
compress the i.i.d. sequence (Y1, Y2) to the conditional entropy
H (y1, y2|u) bits per desired message bit and still decode the
(Y1, Y2) sequence when it is needed, i.e., after the query
is provided by the user. Thus, the total storage required by
this PIR scheme is 3/2 + 3/4 log2 3 bits per bit of desired
message. Since there are two messages, the storage overhead
is 3/4 + 3/8 log2 3.

The following observations are useful to place the new PIR
scheme in perspective.

1) The optimal compression guarantees (Slepian Wolf
coding) are only available in the �-error sense.
Therefore, this PIR scheme is essentially an �-error
scheme.

9Note that the query sent to DB2 is independent of the desired message
index but not the message realizations.
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2) The multiround scheme is in fact a sequential PIR
scheme that utilizes only one round of queries for
each database (two rounds total since there are two
databases).

3) The scheme is essentially non-linear because, e.g.,
the logical AND operator is non-linear.

4) Since the multiround, non-linear and �-error aspects are
all essential for this scheme to create an advantage in
terms of storage overhead, it is an intriguing question
whether all three aspects are necessary in general or if
it is possible to achieve storage overhead less than 3/2
through another scheme while sacrificing at least one of
the three aspects.

5) A key insight from this PIR scheme is the surpris-
ing privacy benefit of storage overhead optimization.
By not storing all the information at each database,
and by optimally compressing the stored information,
not only do we reduce the storage overhead, but also
we enable stronger privacy guarantees than would hold
otherwise. Note that if each database stores all the
information (both W1 and W2), then the scheme is not
private. To see this, suppose (w1, w2) = (1, 1). This
would be known to DB2 because it stores both messages.
Under this circumstance, DB2 knows that if the user asks
for y2, then his desired message must be W1 and if the
user asks for y1 then his desired message must be W2.
Thus, storing all the information at each database would
result in loss of privacy. As another example, we note
that if w1 and/or w2 are not uniformly distributed then
again the PIR scheme would lose privacy. To see this,
suppose Pr(w1 = 1)=Pr(w2 = 1) > 1/2. Then DB2 is
more likely to be asked for y1 if the desired message is
W2 than if the desired message is W1. On the other hand,
note that optimal data compression is a pre-requisite
in any case for the optimization of rate and storage
overhead.10

6) Let us consider momentarily the restricted message size
setting, where each message is only L = 1 bit long.
Then it is easy to see that any single-round scheme (all
queries generated simultaneously) must download at
least 2 bits on average, but our multiround scheme
requires an expected download of only 1 + 3/4 = 7/4
bits. Thus, when storage is not constrained, even though
the download advantage of multiround PIR disappears
under unconstrained message lengths, for constrained
message lengths there are benefits of multiround PIR.

7) A key limitation of our PIR scheme is its upload cost.
We need to send queries for each message bit so the
upload cost scales linearly with the message size L. This
observation points to an interesting tradeoff between
the storage overhead and upload cost. In particular the
possibility of storage overhead improvements subject to
negligible upload cost is intriguing.

10Since optimal compression limits are typically achieved asymptotically,
if the data is not assumed to be uniform a-priori, then as noted by [20] and [21]
the privacy guarantees would also be subject to �-leakage that approaches zero
as message length approaches infinity.

2) A Single-Round, Linear, and Zero-Error Scheme for
K = 2, N = 2, T = 1: For comparison, the corre-
sponding scheme from [6] which also achieves rate 2/3 is
reproduced below. This will be shown to be the optimal
single-round, linear, zero-error scheme for storage overhead
in Section V. Denote the messages, each comprised of 4 bits,
as W1 = (a1, a2, a3, a4), W2 = (b1, b2, b3, b4). The down-
loaded information from each database is shown at the top of
the next page.
The scheme achieves rate 2/3 and is linear, single-round, and
zero-error. A total of 6 bits are stored at each database

S1 = (a1, a3, b1, b3, a2 + b2, a4 + b4) (29)
S2 = (a2, a4, b2, b4, a3 + b1, a1 + b3) (30)

Thus, the storage overhead is 3/2.

IV. PROOF OF THEOREM 1

We first present two useful lemmas. Note that in the proofs,
the relevant equations needed to justify each step are specified
by the equation numbers set on top of the (in)equality symbols.

Lemma 1: For all k ∈ [2 : K ],

I (Wk:K ; Q[k−1]
1:N (1 : �), A[k−1]

1:N (1 : �), F|W1:k−1, G)

≥ T

N
I (Wk+1:K ; Q[k]

1:N (1 : �), A[k]
1:N (1 : �), F|W1:k , G)

+ LT

N
(1 − o(L)

L
). (31)

Proof: The proof is shown at the top of the next
page.

Here, (32) follows from the non-negativity of mutual infor-
mation. In (33), we have used the privacy constraint (11) and
in this storage unconstrained setting, the stored information
ST in (11) is W1:K . (34) is due to the chain rule and the fact
that mutual information is non-negative. In (37), we use Han’s
inequality [30, Th. 17.6.1] with conditioning on common
random variables.

Remark: Intuitively, Lemma 1 recursively relates the inter-
ference (information about other messages that is contained in
the answers for message Wk−1) in the K − k + 2 messages
setting to the interference in the K − k + 1 messages setting.
Note that Lemma 1 is a generalization of the corresponding
lemma in the single round PIR setting (see [6, Lemma 5]).
In the proof, the intuitive idea is to reduce the interference
contained in answers from all N databases to that from T
databases and then bound the interference using the privacy
and correctness constraints. Note that in the multi-round
setting, when expanding the interference term, the causality
constraint must not be violated.

Lemma 2:

I (W2:K ; Q[1]
1:N (1 : �), A[1]

1:N (1 : �), F|W1, G)

≤ L(1/R − 1) + o(L). (45)
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Prob. 1/2 Prob. 1/2
Want W1 Want W2 Want W1 Want W2

Database 1 a1, b1, a2 + b2 a1, b1, a2 + b2 a3, b3, a4 + b4 a3, b3, a4 + b4
Database 2 a4, b2, a3 + b1 a2, b4, a1 + b3 a2, b4, a1 + b3 a4, b2, a3 + b1

N I (Wk:K ; Q[k−1]
1:N (1 : �), A[k−1]

1:N (1 : �), F|W1:k−1, G)

≥ N(N
T

)
∑

T ⊂ [1:N],|T |=T

I (Wk:K ; Q[k−1]
T (1 : �), A[k−1]

T (1 : �)|W1:k−1, G) (32)

(11)= N(N
T

)
∑

T ⊂ [1:N],|T |=T

I (Wk:K ; Q[k]
T (1 : �), A[k]

T (1 : �)|W1:k−1, G) (33)

= N(N
T

)
∑

T ⊂ [1:N],|T |=T

�∑
γ=1

I (Wk:K ; Q[k]
T (γ ), A[k]

T (γ )|Q[k]
T (1 : γ − 1), A[k]

T (1 : γ − 1), W1:k−1, G)

≥ N(N
T

)
∑

T ⊂ [1:N],|T |=T

�∑
γ=1

I (Wk:K ; A[k]
T (γ )|Q[k]

T (1 : γ ), A[k]
T (1 : γ − 1), W1:k−1, G) (34)

(8)(10)= N(N
T

)
∑

T ⊂ [1:N],|T |=T

�∑
γ=1

H (A[k]
T (γ )|Q[k]

T (1 : γ ), A[k]
T (1 : γ − 1), W1:k−1, G) (35)

≥ N(N
T

)
∑

T ⊂ [1:N],|T |=T

�∑
γ=1

H (A[k]
T (γ )|Q[k]

1:N (1 : γ ), A[k]
1:N (1 : γ − 1), W1:k−1, F, G) (36)

≥ T
�∑

γ=1

H (A[k]
1:N(γ )|Q[k]

1:N (1 : γ ), A[k]
1:N (1 : γ − 1), W1:k−1, F, G) (Han’s inequality [30]) (37)

(8)(10)= T
�∑

γ=1

I (Wk:K ; A[k]
1:N (γ )|Q[k]

1:N (1 : γ ), A[k]
1:N (1 : γ − 1), W1:k−1, F, G) (38)

(7)(9)= T
�∑

γ=1

I (Wk:K ; Q[k]
1:N (γ ), A[k]

1:N (γ )|Q[k]
1:N (1 : γ − 1), A[k]

1:N (1 : γ − 1), W1:k−1, F, G) (39)

= T I (Wk:K ; Q[k]
1:N (1 : �), A[k]

1:N (1 : �)|W1:k−1, F, G) (40)
(13)= T I (Wk:K ; Wk, Q[k]

1:N (1 : �), A[k]
1:N (1 : �)|W1:k−1, F, G) − o(L)T (41)

= T I (Wk:K ; Wk|W1:k−1, F, G) − o(L)T

+ T I (Wk+1:K ; Q[k]
1:N (1 : �), A[k]

1:N (1 : �)|W1:k, F, G) (42)
(3)(6)= LT − T o(L) + T I (Wk+1:K ; Q[k]

1:N (1 : �), A[k]
1:N (1 : �)|W1:k , F, G) (43)

(6)= LT − T o(L) + T I (Wk+1:K ; Q[k]
1:N (1 : �), A[k]

1:N (1 : �), F|W1:k , G) (44)

Proof:

I (W2:K ; Q[1]
1:N (1 : �), A[1]

1:N (1 : �), F|W1, G)

(6)= I (W2:K ; Q[1]
1:N (1 : �), A[1]

1:N (1 : �), W1, F, G) (46)
(7)(9)= I (W2:K ; A[1]

1:N (1 : �), W1, F, G) (47)

= I (W2:K ; A[1]
1:N (1 : �), F, G)

+ I (W2:K ; W1|A[1]
1:N (1 : �), F, G) (48)

(6)(13)= I (W2:K ; A[1]
1:N (1 : �)|F, G) + o(L) (49)

= H (A[1]
1:N (1 : �)|F, G)

− H (A[1]
1:N (1 : �)|F, G, W2:K ) + o(L) (50)

(12)≤ L/R − H (A[1]
1:N (1 : �)|F, G, W2:K ) + o(L) (51)

(13)= L/R − H (W1, A[1]
1:N (1 : �)|F, G, W2:K ) + o(L)

(52)

≤ L/R − H (W1|F, G, W2:K ) + o(L) (53)
(6)= L/R − L + o(L)L = L(1/R − 1) + o(L) (54)

Remark: The intuition of Lemma 2 is that among the total
download (L/R symbols), to leave L symbols for the desired
message, the interference about all other messages must have
size no more than L/R − L symbols.
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With Lemma 1 and Lemma 2, we are ready to prove the
converse.

Rate Outerbound: Starting from k = 2 and applying (31)
repeatedly for k ∈ [3 : K ],

I (W2:K ; Q[1]
1:N (1 : �), A[1]

1:N (1 : �), F|W1, G)

(31)≥ T

N
I (W3:K ; Q[2]

1:N (1 : �), A[2]
1:N (1 : �), F|W1, W2, G)

+ LT (1 − o(L)/L)

N
(31)≥ · · · (55)
(31)≥ T K−2

N K−2 I (WK ; Q[K−1]
1:N (1 : �), A[K−1]

1:N (1 : �), F| . . .
. . . W1:K−1, G)

+ LT (1 − o(L)/L)

N
+ · · · + LT K−2(1 − o(L)/L)

N K−2

(31)≥ T K−2

N K−2

LT (1 − o(L)/L)

N
+ LT (1 − o(L)/L)

N

+ · · · + LT K−2(1 − o(L)/L)

N K−2 (56)

= (L − o(L))(T/N + · · · + T K−1/N K−1) (57)

Combining (57) and (45), we have

L(1/R − 1)+o(L)≥ (L − o(L))(T/N +· · · + T K−1/N K−1)

(58)

Normalizing by L and letting L go to infinity gives us

1/R − 1 ≥ T/N + · · · + T K−1/N K−1 (59)

⇒ R ≤ (1 + T/N + · · · + T K−1/N K−1)−1 (60)

thus, the proof is complete.

V. PROOF OF THEOREM 2 – STATEMENT 2.

We show that when K = 2, N = 2, T = 1, � = 1 and the
rate equals 2/3, the storage overhead of all zero-error,11 linear,
and single-round PIR schemes is no less than 3/2. Since we
only consider single-round schemes in this section, we will
simplify the notation, e.g., instead of Q[1]

2 (1) we write simply
Q[1]

2 . In addition, without loss of generality, let us make the
following simplifying assumptions.

1) We assume that the PIR scheme is symmetric, in that

H (A[1]
1 |F, G) = H (A[1]

2 |F, G) = H (A[2]
2 |F, G) (61)

H (S1) = H (S2) (62)

Given any (asymmetric) PIR scheme that retrieves mes-
sages of size L, a symmetric PIR scheme with the same
rate and storage overhead that retrieves messages of
size N L is obtained by repeating the original scheme
N times, and in the nth repetition shifting the database
indices cyclically by n. This symmetrization process is
described in Lemma 4 (see Section V-A).

2) We assume that Q[1]
1 = Q[2]

1 , i.e., the query for the
first database is chosen without the knowledge of the
desired message index. There is no loss of generality in

11Our converse proof extends to the �-error case.

this assumption because of the privacy constraint, which
requires that Q[θ]

1 is independent of θ .12 Note that this
also means that A[1]

1 = A[2]
1 .

Our goal is to prove a lower bound on the storage overhead.
Since the PIR scheme is symmetric by assumption, the storage
overhead is (H (S1) + H (S2))/2L = H (S2)/L. Furthermore,
H (S2) ≥ H (A[1]

2 , A[2]
2 |F, G), so we will prove a lower bound

on H (A[1]
2 , A[2]

2 |F, G) instead.
Let us start with a useful lemma that holds for all linear

and non-linear schemes.
Lemma 3:

H (A[1]
1 |W1, F, G) = H (A[2]

2 |W1, F, G)

= H (A[2]
2 |W2, F, G)

= L/2 (63)

H (A[2]
2 |W1, A[1]

2 , F, G) = H (A[2]
2 |W2, A[1]

2 , F, G)

= L/2 (64)

Proof: We prove (63) first. On the one hand, we substi-
tute13 R = 2/3 in Lemma 2. Then from (47) - (54), we have

L/2 ≥ I (W2; A[1]
1 , A[1]

2 , W1, F, G) (65)
(6)= I (W2; A[1]

1 , A[1]
2 |W1, F, G) (66)

(7)(8)(4)= H (A[1]
1 , A[1]

2 |W1, F, G) (67)

⇒ L/2 ≥ H (A[1]
1 |W1, F, G) (68)

and

L/2 ≥ H (A[1]
2 |W1, F, G) (69)

On the other hand, from (32) - (44), as shown at the top of
the previous page, in Lemma 1, we have

L ≤ I (W2; Q[1]
1 , A[1]

1 |W1, G)

+ I (W2; Q[1]
2 , A[1]

2 |W1, G) (70)

≤ I (W2; Q[1]
1 , A[1]

1 , F|W1, G)

+ I (W2; Q[1]
2 , A[1]

2 , F|W1, G) (71)
(6)= I (W2; Q[1]

1 , A[1]
1 |W1, F, G)

+ I (W2; Q[1]
2 , A[1]

2 |W1, F, G) (72)
(7)(8)(4)= H (A[1]

1 |W1, F, G) + H (A[1]
2 |W1, F, G) (73)

Combining (68), (69) and (73), we have shown that

H (A[1]
1 |W1, F, G) = H (A[1]

2 |W1, F, G) = L/2 (74)

Symmetrically, it follows that H (A[2]
2 |W2, F, G) = L/2. We

are left to prove H (A[2]
2 |W1, F, G) = L/2. On the one hand,

12Note that instead of Q[1]
1 = Q[2]

1 , we could equivalently assume that

Q[1]
2 = Q[2]

2 without of loss of generality (because privacy also requires

that Q[θ ]
2 is independent of θ ). However, if we simultaneously assume both

Q[1]
1 = Q[2]

1 and Q[1]
2 = Q[2]

2 , then there is a loss of generality because

together (Q[θ ]
1 , Q[θ ]

2 ) is not required to be independent of θ by the privacy
constraint.

13Since we are considering only zero-error schemes, the o(L) term in
Lemma 2 is exactly 0.
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from (68) and (69), we have

L/2 ≥ H (A[1]
1 |W1, F, G)

= H (A[2]
1 |W1, F, G) (Using A[1]

1 = A[2]
1 ) (75)

L/2 ≥ H (A[1]
2 |W1, F, G) (76)

(7)= H (A[1]
2 |W1, Q[1]

2 , F, G) (77)
(8)(6)= H (A[1]

2 |W1, Q[1]
2 , G) (78)

(11)= H (A[2]
2 |W1, Q[2]

2 , G) (79)
(8)(6)= H (A[2]

2 |W1, Q[2]
2 , F, G) (80)

(7)= H (A[2]
2 |W1, F, G) (81)

where (79) follows from the fact that for single-round PIR,
the desired message index is independent of the messages,
queries and answers. Its detailed proof is presented as follows.
Note that14

I (Q[θ]
2 , θ, F; W1, W2, G)

(7)= I (θ, F; W1, W2, G)

(6)= 0 (82)

�⇒ I (Q[θ]
2 ; W1, W2, G) = I (Q[θ]

2 ; W1, W2, G|θ)

= 0 (83)

Next,

I (θ; W1, W2, G, Q[θ]
2 )

= I (θ; W1, W2, G) + I (θ; Q[θ]
2 |W1, W2, G) (84)

(6)= I (θ; Q[θ]
2 |W1, W2, G) (85)

= H (Q[θ]
2 |W1, W2, G) − H (Q[θ]

2 |θ, W1, W2, G)

(86)
(83)= H (Q[θ]

2 ) − H (Q[θ]
2 |θ) (87)

(11)= 0 (88)

�⇒ W1, W2, Q[1]
2 , G ∼ W1, W2, Q[2]

2 , G (89)
(8)(4)�⇒ A[1]

2 , W1, W2, Q[1]
2 , G ∼ A[2]

2 , W1, W2, Q[2]
2 , G

(90)

�⇒ A[1]
2 , W1, Q[1]

2 , G ∼ A[2]
2 , W1, Q[2]

2 , G (91)

(78) and (80) are due to the Markov chain F− (W1, Q[k]
2 , G)−

A[k]
2 , k = 1, 2, which is proved as follows.

I (A[k]
2 ; F|W1, Q[k]

2 , G)

≤ I (A[k]
2 , S2; F|W1, Q[k]

2 , G) (92)

= I (S2; F|W1, Q[k]
2 , G)

+ I (A[k]
2 ; F|W1, Q[k]

2 , G, S2) (93)
(8)= I (S2; F|W1, Q[k]

2 , G) (94)

≤ I (S2, W2; F|W1, Q[k]
2 , G) (95)

= I (W2; F|W1, Q[k]
2 , G)

14The distribution of Q[θ ]
2 is a mixture of the distributions of Q[1]

2 and

Q[2]
2 . Conditioned on θ = 1, Q[θ ]

2 = Q[1]
2 . Conditioned on θ = 2.

Q[θ ]
2 = Q[2]

2 . The privacy condition (11) can be equivalently expressed as

I (θ; Q[θ ]
n , A[θ ]

n , G, Sn) = 0, n ∈ {1, 2}, in this case.

+ I (S2; F|Q[k]
2 , G, W1, W2) (96)

(4)≤ I (W2; F, W1, Q[k]
2 , G) (97)

(7)(6)= 0 (98)

On the other hand, from (70), we have

L ≤ I (W2; Q[1]
1 , A[1]

1 |W1, G)

+ I (W2; Q[1]
2 , A[1]

2 |W1, G) (99)
(11)= I (W2; Q[2]

1 , A[2]
1 |W1, G)

+ I (W2; Q[2]
2 , A[2]

2 |W1, G) (100)

≤ I (W2; Q[2]
1 , A[2]

1 , F|W1, G)

+ I (W2; Q[2]
2 , A[2]

2 , F|W1, G) (101)
(6)= I (W2; Q[2]

1 , A[2]
1 |W1, F, G)

+ I (W2; Q[2]
2 , A[2]

2 |W1, F, G) (102)
(7)(8)(4)= H (A[2]

1 |W1, F, G) + H (A[2]
2 |W1, F, G) (103)

Combining (75), (81) and (103), we have shown that
H (A[2]

2 |W1, F, G) = L/2. The proof of (63) is complete.
Next we prove (64). On the one hand,

H (A[2]
2 |W1, A[1]

2 , F, G) ≤ H (A[2]
2 |W1, F, G)

(63)= L/2 (104)

On the other hand, from sub-modularity of entropy functions
we have

H (A[2]
2 , A[1]

2 |W1, F, G)

≥ −H (A[1]
2 , A[1]

1 |W1, F, G)

+ H (A[1]
1 , A[2]

2 , A[1]
2 |W1, F, G)

+ H (A[1]
2 |W1, F, G) (105)

(67)(13)(74)≥ −L/2 + H (A[1]
1 , A[2]

2 , A[1]
2 , W2|W1, F, G)

+ L/2 (106)

≥ H (W2|W1, F, G)
(6)= L (107)

⇒ H (A[2]
2 |W1, A[1]

2 , F, G)

= H (A[2]
2 , A[1]

2 |W1, F, G) − H (A[1]
2 |W1, F, G)

(74)≥ L/2 (108)

Note that the second term of (106) follows from the assump-
tion that A[1]

1 = A[2]
1 so that from A[1]

1 , A[2]
2 , we can decode

W2 just as from A[2]
1 , A[2]

2 , we can decode W2. Combin-
ing (104), (108), we have proved H (A[2]

2 |W1, A[1]
2 , F, G) =

L/2. Symmetrically, it follows that H (A[2]
2 |W2, A[1]

2 , F, G) =
L/2. Therefore, the desired inequality (64) is obtained.

To proceed, we need Ingleton’s inequality, which is stated
as follows.

Theorem 3 (Ingleton’s Inequality [31]): For four subspaces
of a given finite vector space, A, B, C, D, the following
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inequality holds.15

I (A; B) ≤ I (A; B|C) + I (A; B|D) + I (C; D) (109)

For a given value of F, G, A[1]
2 , A[2]

2 are linear combinations
of W1, W2 with constant coefficients as we consider linear
schemes. So we set A = A[1]

2 , B = A[2]
2 , C = W1, D =

W2 (for given F, G). Note that from Lemma 3, we know
that I (A[1]

2 ; A[2]
2 |W1, F, G) = I (A[1]

2 ; A[2]
2 |W2, F, G) = 0.

Plugging in (109) that holds for linear schemes but not for
non-linear schemes, we have

I (A[1]
2 ; A[2]

2 |F, G)

≤ I (A[1]
2 ; A[2]

2 |W1, F, G) + I (A[1]
2 ; A[2]

2 |W2, F, G)

+ I (W1; W2|F, G)︸ ︷︷ ︸
=0, from (6)

= 0 (110)

�⇒ H (A[1]
2 , A[2]

2 |F, G)

= H (A[1]
2 |F, G) + H (A[2]

2 |F, G) (111)
(61)= H (A[1]

2 |F, G) + H (A[1]
1 |F, G) (112)

≥ H (A[1]
1 , A[1]

2 |F, G) (113)
(13)= H (W1, A[1]

1 , A[1]
2 |F, G) (114)

= H (W1|F, G) + H (A[1]
1 , A[1]

2 |W1, F, G) (115)
(6)≥ L + H (A[1]

1 |W1, F, G)
(63)= 3L/2 (116)

�⇒ α = H (S2)/L

≥ H (A[1]
2 , A[2]

2 |F, G)/L ≥ 3/2 (117)

A. Symmetrization

Lemma 4: 16Consider the single-round PIR
problem with K = 2 messages and N = 2
databases. Suppose we have a scheme described by
L̄, W̄1, W̄2, S̄1, S̄2, Q̄[1]

1:2, Q̄[2]
1:2, Ā[1]

1:2, Ā[2]
1:2, F̄, Ḡ. Then we can

construct a symmetric PIR scheme, also for K = N = 2,
described by L, W1, W2, S1, S2, Q[1]

1:2, Q[2]
1:2, A[1]

1:2, A[2]
1:2, F, G

such that

H (A[1]
1 |F, G) = H (A[1]

2 |F, G) = H (A[2]
2 |F, G) (118)

H (S1) = H (S2) (119)

L = 2L̄ (120)

such that the symmetric PIR scheme has the same rate and
storage overhead as the original PIR scheme.

Proof: Consider two independent implementations of the
asymmetric PIR scheme. Let us use the ‘bar’ notation for the
first implementation and the ‘tilde’ notation for the second
implementation. In the first implementation, there are two

15For subspaces A, B , we follow the convention that H (A) represents
the dimension of subspace A, and H (A, B) represents the dimension of
the vector space spanned by the union of the subspaces A, B . Using this
convention, inequalities on the dimensions of subspaces can be expressed
using information theoretic measures, such as (joint) entropy and (conditional)
mutual information. Ingleton’s inequality has been stated in this form in prior
work in information theory literature, e.g., [32], [33].

16Extensions of this symmetrization lemma to multiple rounds, arbitrary
number of messages and databases may be similarly obtained.

messages W̄1, W̄2, each of length L̄, two databases ¯DB1 and
¯DB2 which store S̄1, S̄2, respectively. In the second implemen-

tation, there are two messages W̃1, W̃2, each of length L̃ = L̄,
two databases ˜DB2 and ˜DB1 which store S̃1, S̃2, respectively.
Note the critical detail that the database indices are switched
in the second implementation. The asymmetric PIR scheme
specifies the queries for each implementation such that the
user can privately retrieve an arbitrarily chosen message from
each implementation.

The symmetric PIR scheme is created by combining the
two implementations. In the combined scheme, there are two
messages W1 = (W̄1, W̃1) and W2 = (W̄2, W̃2), each of length
L = 2L̄ , two databases DB1 and DB2 which store (S̄1, S̃2)
and (S̄2, S̃1), respectively. Retrieval works exactly as before.
For example, if the user wishes to privately retrieve W1 =
(W̄1, W̃1), then it retrieves W̄1 exactly as in the first imple-
mentation, and W̃1 exactly as in the second implementation.

Since the symmetric scheme is comprised of two indepen-
dent implementations of the original PIR scheme, the message
size, total download size, total storage size, are all doubled
relative to the original PIR scheme. As a result the rate and
storage overhead, which are normalized quantities, remain
unchanged in the new scheme. Symmetry is achieved because
each database from the original PIR scheme is equally repre-
sented within each database in the new PIR scheme.

Mathematically,

W1 = (W̄1, W̃1), W2 = (W̄2, W̃2) (121)

S1 = (S̄1, S̃2), S2 = (S̄2, S̃1) (122)

F = (F̄, F̃), G = (Ḡ, G̃) (123)

Q[k]
n = (Q̄[k]

n , Q̃[k]
3−n), n = 1, 2, k = 1, 2 (124)

A[k]
n = ( Ā[k]

n , Ã[k]
3−n) (125)

where each random variable with a bar symbol is independent
of and identically distributed with the same random variable
with a tilde symbol. We are now ready to prove the first
equality in (118).

H (A[1]
1 |F, G) = H ( Ā[1]

1 , Ã[1]
2 |F, G) (126)

= H ( Ā[1]
1 |F̄, Ḡ) + H ( Ã[1]

2 |F̃, G̃) (127)

= H ( Ã[1]
1 |F̃, G̃) + H ( Ā[1]

2 |F̄, Ḡ) (128)

= H ( Ā[1]
2 , Ã[1]

1 |F, G) (129)

= H (A[1]
2 |F, G) (130)

where (127) and (129) follow from the fact that the two copies
of the given scheme are independent and (128) is due to
the property that the two copies are identically distributed.
Consider the second equality in (118).

H (A[1]
2 |F, G)

(7)= H (A[1]
2 |Q[1]

2 , F, G) (131)

= H (A[1]
2 |Q[1]

2 , G) (132)
(11)= H (A[2]

2 |Q[2]
2 , G) (133)

= H (A[2]
2 |Q[2]

2 , F, G) (134)
(7)= H (A[2]

2 |F, G) (135)
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where (132) and (134) are due to the Markov chain
F − (Q[k]

2 , G) − A[k]
2 , k = 1, 2, which is proved as follows.

I (A[k]
2 ; F|Q[k]

2 , G)

≤ I (A[k]
2 , S2; F|Q[k]

2 , G) (136)

= I (S2; F|Q[k]
2 , G) + I (A[k]

2 ; F|Q[k]
2 , G, S2) (137)

(8)= I (S2; F|Q[k]
2 , G) (138)

≤ I (S2, W1, W2; F|Q[k]
2 , G) (139)

= I (W1, W2; F|Q[k]
2 , G)

+ I (S2; F|Q[k]
2 , G, W1, W2) (140)

(4)≤ I (W1, W2; F, Q[k]
2 , G) (141)

(7)(6)= 0 (142)

Finally, we prove (119).

H (S1) = H (S̄1, S̃2) (143)

= H (S̄1) + H (S̃2) (144)

= H (S̃1) + H (S̄2) (145)

= H (S̄2, S̃1) (146)

= H (S2) (147)

where (144) and (146) follow from the fact that the two copies
of the given scheme are independent and (145) is due to the
property that the two copies are identically distributed.

VI. CONCLUSION

We showed that the capacity of MPIR is equal to the
capacity of PIR, both with and without T -privacy constraints.
Our result implies that there is no advantage in terms of
capacity from multiround over single-round schemes, non-
linear over linear schemes, or �-error over zero-error schemes.
We also offered a counterpoint to this pessimistic result
by exploring optimal storage overhead instead of capacity.
Specifically, we constructed a simple multiround, non-linear,
�-error PIR scheme that achieves a strictly smaller storage
overhead than the best possible with any single-round, linear,
zero-error PIR scheme. The simplicity of the scheme makes it
an attractive point of reference for future work toward under-
standing the role of linear versus non-linear schemes, zero-
error versus �-error capacity, and single-round versus multiple
round communications. Another interesting insight revealed by
the scheme is the privacy benefit of reduced storage overhead.
By not storing all the information at each database, and by
optimally compressing the stored information, not only do we
reduce the storage overhead, but also we enable privacy where
it wouldn’t hold otherwise.
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