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Opportunistic Treating Interference as Noise

Xinping Yi

Abstract— We consider a K-user interference network with
M states, where each transmitter has up to M messages and
over State m, Receiver k wishes to decode the first wm;(m) €
{1,2,-.-, M} messages from its desired transmitter. This prob-
lem of channel with states models opportunistic communications,
where more messages are decoded for better channel states. The
first message from each transmitter has the highest priority as it
is required to be decoded regardless of the state of the receiver;
the second message is opportunistically decoded if the state allows
a receiver to decode 2 messages; and the M-th message has the
lowest priority as it is decoded if and only if the receiver wishes to
decode all M messages. For this interference network with states,
we show that if any possible combination of the channel states
satisfies a condition under which power control and treating
interference as noise (TIN) are sufficient to achieve the entire
generalized degrees of freedom (GDoF) region of this channel
state by itself, then a simple layered superposition encoding
scheme with power control and a successive decoding scheme
with TIN achieves the entire GDoF region of the network with
M states for all KM messages.

Index Terms— Gaussian interference channel, generalized
degrees of freedom (GDoF), opportunistic communications, treat-
ing interference as noise (TIN).

I. INTRODUCTION

PPORTUNISTIC communication refers to the oppor-
tunistic utilization of channel resources and the adap-
tation to network dynamics for efficient data transmission.
The early study in this regard dates back to downlink multi-
user scheduling in time-varying wireless channels [1], [2].
By opportunistically beamforming towards the user with the
best channel, the base station exploits the multiuser diversity
gain [1] so as to maximize the overall system throughput [2].
A similar idea has also been explored in cognitive
radio systems for dynamic spectrum management [3], [4],
in which the secondary users are assisted to access
the spectrum licensed to the primary users opportunisti-
cally, in order to ensure efficient communication of sec-
ondary users without worsening the performance of primary
users.
While existing opportunistic communication techniques are
mainly placed at the transmitter side, the focus of this work is
on opportunistic decoding at the receiver side, exploiting the
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benefits of varying decoding capabilities in dynamic networks.
When the channel condition is better, we wish to take this
advantage and achieve a higher communication rate, while
if the channel condition turns out to be bad, we will lower
the expectation but a certain basic communication rate is
still guaranteed. From the information theoretic perspective,
this problem is typically modeled as communicating several
message sets over a channel with states, where the base
message set (corresponding to the basic communicate rate)
must be transmitted successfully regardless of the state, and
the opportunistic message set (corresponding to the higher
communication rate) will also go through for a better channel
state. Such formulations have been previously studied in the
context of a broadcast strategy over a slow fading chan-
nel for single-user multiple-antenna [5] and multiple-access
communications [6], [7] from an achievable rate perspective,
a single-user slow fading channel with multiple antennas
from an outage probability perspective (diversity-multiplexing
tradeoff) [8], and a two-user bursty interference channel
(where interference is not present for the better channel state)
from an approximate capacity perspective [9]-[11].

In this work, we go beyond two users and consider a general
K-user Gaussian interference network, albeit with specific
restrictions on the channel strength. In particular, we are
interested in a broad regime where the simple and practical
strategy of treating interference as noise (TIN) has been shown
to be approximately optimal in the sense that the generalized
degrees of freedom (GDoF) region is achieved by TIN [12].
The optimality of TIN has since been explored beyond the
regular interference channel, to X message sets [13] (where
each transmitter has a message for each receiver), to the
parallel channel setting [14], [15] (where each user pair is
connected by a number of parallel channels), to the com-
pound channel setting [16] (where there is only one mes-
sage for each user pair and the message must be reliably
decoded regardless of the realization of the compound state),
to the interfering multiple access channel setting [17], [18]
(where each receiver has multiple paired transmitters carry-
ing independent messages), and to the interfering broadcast
channel setting (where each transmitter has multiple paired
receivers requesting messages). Besides the characterization
of GDoF regions, another important problem on power con-
trol has been considered in [16], [20], where a number of
low-complexity power allocation algorithms were proposed.
Inspired by the TIN optimality conditions, efficient distrib-
uted link scheduling mechanisms were proposed in [21], [22]
for spectrum sharing in device-to-device communications,
demonstrating an interesting translation from theory to
practice.
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Fig. 1. A 3-user interference network with 2 states where the dashed red
interfering links are not present in the second (better) state. Over the second
state, the opportunistic message set (AW, AW,, AW3) is sent in addition
to the base message set (W, Wo, W3). The transmitted power levels of the
messages and the interference power levels are shown. At the receiver side,
to the right of the blue vertical line (labelled as S1), we have the interference
power level for the fully connected state and to the left (labelled as Sp),
we have the interference power level for the partially connected state. The
exposed signal levels are exploited to send the opportunistic message set.

A. Motivating Example

We are inspired by the observation that TIN naturally fits
the opportunistic communication scenario, illustrated in the
following example. Consider a 3-user interference channel
with 2 states, as shown in Fig. 1. In the first state, the net-
work is fully connected and the channel strength for each
link is depicted (the channel strength is measured in dB
scale. For a detailed explanation, refer to the system model
section). In the second state, each receiver only sees one
interfering transmitter (due to, say, time-varying channel sta-
tistics), i.e., the red dashed interfering links are not present
(e.g., Receiver 1 is interfered only by Transmitter 2, but not
by Transmitter 3). Both states are in the regime where TIN is
optimal [12].

We wish to send 3 messages (Wi, Wa, W3) (W; for the
i-th user pair) over the first state and the associated GDoF
tuple for the messages is (d1, d», d3) = (1.5,0.3,0.7). A TIN
scheme that achieves this GDoF tuple is shown in Fig. 1, where
the transmit power levels and the received interference power
levels are explicitly shown (the power levels are measured
in dB scale as well). For example, W, is sent at power
level —0.2 so that it is received at Receiver 2 at power
level —0.2 + 1 = 0.8 (where 1 is the channel strength from
Transmitter 2 to Receiver 2) and it is received at Receiver 1 at
power level —0.2 4 0.2 = 0. From Fig. 1, it is easy to verify
that the desired GDoF value is achieved at each receiver by
TIN (the interference power level is lower than that of the
desired message by the exact amount of the GDoF value).

Next we consider the performance of the same scheme
over the second state (the better state with less interference).
We notice that because some interfering links become missing,
some signal levels that were occupied by interference are left
interference-freely. For example, consider Receiver 2, where
previously the interference power level was 0.5 (caused by
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Transmitter 1). Now as the interfering link from Transmit-
ter 1 is not present, the interference power level drops to 0
(caused by Transmitter 3). In other words, the signal level from
power O to 0.5 is now clean and we may naturally use this
signal level to send the opportunistic message A W to achieve
the GDoF value of Ady, = 0.5 (see the red tilted rectangle
in Fig. 1). Note that this will not influence the base message set
as the exposed signal level is always lower than that of the base
message set and the opportunistic message will not increase
the interference power level at undesired receivers. Similarly,
Transmitter 1 will send AW; with the exposed signal level to
achieve Ad; = 0.5 (see the red dotted rectangle in Fig. 1).
While for Receiver 3, its interference level is not decreased
even if the interfering link from Transmitter 1 disappears,
leaving no room for AW3 so that the opportunistic message
for Transmitter 3 will not be sent. To decode the opportunistic
message, each receiver first decodes the base message and then
successively proceeds to decode the opportunistic message,
both by TIN. To summarize, we have achieved the GDoF tuple
of (Ady, Ady, Adz) = (0.5,0.5, 0) opportunistically.

From this example, we see that the key idea of our achiev-
able scheme is to superpose the opportunistic message set
over the base message set, using the largest power that is not
exploited yet, to fulfill the interference-free signal level that is
opportunistically exposed due to the decrease of interference
strength. We may vary the power levels and the GDoF tuple
for the base messages arbitrarily. A natural question is: is
this scheme - superposition encoding with power control
and successive decoding with TIN - information theoretically
optimal? We answer this question in the affirmative in this
paper and explore the general channel conditions under which
the proposed scheme is optimal.

B. Main Contribution

Interestingly, the natural scheme of superposition encoding
and successive decoding with TIN is information theoretically
optimal for a broad set of channel conditions and a broad
class of message setting. Specifically, we consider a K -user
interference network with M states, where each transmitter
has up to M messages ordered by their importance (where the
first message is the most important and the M-th message is
the least important), and each receiver will decode the first
r €{l,2,---, M} messages (r might differ across channel
states and across receivers).

As the main result of this work, we show that if all
sub-networks (given by the K transmitters and K receivers
from possibly different states) of the K-user interference
network satisfy the TIN-optimality condition identified in [12],
then for arbitrary realizations of z (arbitrary decoding thresh-
olds across the states and the receivers), the simple scheme
of layered superposition coding with TIN achieves the entire
GDoF region.

We begin by defining the notations.

Notations: For an integer N, we define [N] 2 (1,2,...,
N} when referring to an integer set, while we spec-
ify it as the m-th state, when [m] appears in the
superscript. Given n € [N], we denote by {a(n)},
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a set of a(n) with all n for notational brevity unless
otherwise specified, ie., {a(m)}, = {a(1),a(2),...,
a(N)}, and similarly {a(m,n)}, , given m € [M] and
n € [N] is a set with MN elements, ie., {a(m,n)}y,, =
{a(1,1),a(1,2),...,a(1,N),a2,1),...,a(M, N)}. We also
denote by a([n] : n2]) a subset of a(n) with ny < n < ny,
ie., a([ny : n2]) £ {a(ny),a(m; +1),...,a(n2)}. For a set
{a(n)}n, we use ({a(n)},) to specify a tuple consisting of
the elements from the set {a(n)},, for which the order of the
elements in the tuple does matter. For notational brevity, (-) is
omitted sometimes if no confusion is caused.

II. SYSTEM MODEL
A. Gaussian Interference Network With States

Consider the K-user single-antenna Gaussian interference
network with M states. The received signal for Receiver k
over the t-th channel use when the network falls into the
m-th state is given by

K
v =" X0+ 2" @), Yk € [K],Ym € [M] (1)

i=1

where h,[('?] is the channel coefficient from Transmitter i to
Receiver k at the m-th state, and )Nfl-(t) is the transmitted
signal from Transmitter i over all states. The K2-ary channel
coefficients tuple at the m-th state ({h,[g']}k,,-) is taken from
a finite set J, and is fixed within each state but can vary
across states. The additive white Gaussian noise (AWGN) for
Receiver k over the 7-th channel use Z,Em](t) has zero mean
and unit-variance. The AWGN processes at all receivers are
i.i.d. over time.

The set of channel coefficients JH over all M states is
available at all transmitters and receivers. Over different states,
a possibly different set of messages is required to be com-
municated reliably (as detailed below). An interpretation1 of
this channel model with states is that the M states represent
the channel uncertainty at the transmitters. The transmitters
know that the channels could be in any one of the M
states, but otherwise has no knowledge about which state the
network falls into exactly. However, the transmitters wish to
communicate opportunistically, i.e., if the network turns out
to be in a better state, more messages are communicated.
The receiver is aware of the exact state of the network and
depending on the state, he will choose which set of messages
to decode. A detailed description of the encoding and decoding
operations is as follows.

Encoding: Each Transmitter i has a set of independent
messages {Wi[m]}nﬂle, each of which is uniformly distributed
over the message index set Wl[.m] £ (1,2,..., [Z”Rz!mj]}.
These messages are jointly mapped to the codeword {X; O,
(abbreviated as f(l" € X7) that is transmitted over n chan-
nel uses, and is subject to the average power constraint,
> E [lf(,-(t)lz] < nP; where the expectation is over all

1Equivalently, this channel model with states represents a multicast scenario
where each state has a different set of K receivers and the receivers across
different states have different decoding requirements.

m'=1 m'=2 m'=3
& (1] (2] Ak 1 2l (3l
o R4 W, Wi W, Wy
_ ~ -~ 1 2] 3
o o | w W, w2 W, w2
o w2 | e e | e
X3
Fig. 2. A 3-user interference network with 3 states. Each transmitter i has

3 messages, Wim, Wim, Wim, to send. Over the first state, Receiver 1 needs
to decode Wi”, Wizj, Receiver 2 needs to decode Wzm, and Receiver 3 needs
2]

to decode ngj, w3, ng. The messages that each receiver needs to decode
over the two remaining states are shown in the figure.

the candidate messages. The message-to-codeword mapping
for Transmitter i (i € [K]) is described by the following
encoding function,

fi: Hnﬂle Wl[m] — X7 2)

Note that a single encoding mapping is used at each
transmitter.
Decoding: Suppose the channels are at the m’-th state. For

n
t=1

Yk”m, € H,[(m ]) is used to produce the estimates {WIE

of the messages {W,Em]}:ff:(’f/) . Among these messages, W,El]

is referred to as the basic message that must be decoded at
any state, and {W,Em],m € {2,...,m(m")}} are the addi-
tional messages to be opportunistically decoded, referred to
as “opportunistic messages”. The total number of messages
7 (m’) to be decoded by Receiver k at the m’-th state is
fixed and globally known. m;(m’) can be any number in
[M] so that (mi(1),---,7x(M)) € [MIM. In other words,
at State m’, from ¥, we need to decode degraded messages

W,EI], W,Ez], SRR W,E”k O], Thus, the decoding function for
Receiver k (k € [K]) at the m/-th state is given by

(abbreviated as

m]y 7y (m’)
}m:1

Receiver k, the received signal {Yk[m/](t)}

gy o IO W e M1 (3)
Note that the decoding functions g,[(m/] can be distinct for
different states m’. Fig. 2 gives an example of a 3-user network
with 3 states, where for Receiver 1 71(1) = 2, 7;(2) = 1,
w1(3) = 3, for Receiver 2 73(1) = 1, 72(2) = 2, 72(3) = 3,
and for Receiver 3 z3(1) = 3,73(2) = 2,73(3) = 1. For
each receiver, the basic message is always decodable at all
states and in this case (7 (1), 7 (2), 7x(3)) is a permutation
of {1,2,3}.

The average probability of error is defined as follows

M
P = Pr( U {2 ({WF”""’”}")})’

m'=1

“)

where we take the union of all M states because decoding
error of any state will result in an error event (i.e., we need
to maintain reliable communication over all states), and at
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each state the error events of all basic and opportunistic
messages for this state across all users are counted. Note
here that ({W[Mk (m) ) denotes the ordered message tuple

(Wl[l] , Wi [zx (m")] W [1] W1[<1 . W[ﬂ'k(m )])

A rate tuple ({R[m Ik, m) is sald to be achlevable if we have
a set of encoding {f;}; and decoding functions {gk ]}k m such
that P(") — 0 as n — oo. The capacity region C is the closure

of the set of all achievable rate tuples.

B. GDoF Framework

Following [12], we now translate the channel model (1)
into an equivalent normalized form to facilitate GDoF studies.
For such a purpose, we define X;(r) = +/P; X;(t). Then over
the ¢-th channel use, the received signal for Receiver k at the
m-th state is described by

K
v =D hgVPX (0 + 2" o) (5)
i=1

K
m] . plm]
= SV Pl X (0) + I (1) (6)
i=1

[m] - plm] .
where  P% and e/% are the channel magnitude and phase
between Transmitter i and Receiver k at the m-th state, respec-
tively. We take P > 1 as a nominal power value, and define?

akm] = (log (|h m]|2 )/log P)
becomes % >P L E [lX,-(t)l ] < 1. Asin [12], we call a,ET] the
channel strength level (exponent). The equivalent model (6)

will be used in the rest of this paper.
Next, we introduce the encoding function used in this work.

. Now the power constraint

Definition 1 (Simple Layered Superposition Coding). In sim-
ple layered superposition coding, the transmitted signal is
produced by

M
Xi()= > X", vi (7)
m=1

where each message W™

; is separately encoded by an

]
independent Gaussian codebook {X l[m](t)}, with power P'i

ie., IE[IXl[m](t)|2] = Pri[m] and then the codewords are added
(superposed). Further, we assume that the transmit power
exponent ™ decreases with the order of the message m,’
ie, 0> ri[h > rl-[z] > o> ri[M].

The encoded messages are superposed in a layered manner
according to the power. For a power layer illustration, we put
the basic message at the top layer, followed successively by the
opportunistic messages of next orders, and the opportunistic
message of order M is layered at the bottom. Note that the
above power allocation must satisfy the sum power constraint

M r!;71j .
Zm:lP' = LVvi.
2 As noted in [12], avoiding negative a’s, will not influence the GDOF results.
3t is worthy noting that the message order is not the same as the state
index. Receiver k at the m-th state is able to decode messages with order up
to my(m).
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In this work, we consider the TIN sgtting and use a single
set of decoding functions for all {g,Em ]}m/ (with parameters
varying to conduct opportunistic decoding). We refer to this
class of decoding functions as “Opportunistic TIN”, defined
as follows.

Definition 2 (Opportunistic TIN). At the receiver side, oppor-
tunistic TIN is a successive interference cancelation based
decoding rule where opportunistically the interference is
treated as Gaussian noise. The basic message is first decoded
while treating the interference caused by all opportunistic
messages as Gaussian noise. As a sequel, the correspond-
ing signal carrying the basic message can be reconstructed
using the known channel state information at the receivers
and then subtracted from the received signal. The residual
received signal can be successively used to recover the lower
layer opportunistic messages. Such a decoding-reconstructing-
subtracting procedure repeats until the opportunistic messages
of interest at the present state are successively recovered.

Let us consider State m where Receiver k is interested
in decoding messages {W, }”" o) Wwhile treating the remain-
ing opportunistic messages {W ]}m ()41 3 noise. The
received signal at the m’'-th state for Receiver k can be
rewritten as

K M - ,
" =>>"V P ei% XM (1) + 2. (8)
i=1 m=1
The successive interference cancellation starts with the basic
message W,E” where the interference from all opportunistic
messages is treated as noise. After W,El] is decoded, the signal
X,EI] is reconstructed and subtracted from the received signal.
After applying m — 1,m < m;(m’) rounds of successive
interference cancellation, the messages {W,El], . W,Em_l]}
are successively decoded and the corresponding signals are
subsequently subtracted. At the m-th round, the residual
received signal can be written as

®)

m—1
, 'l . plm’] "
— Yk[m ](t) _ 2 vV P%k ejgkk X][(m ](t) (9)
m//:

m]

’ M ’ ’
= VP el XM )+ ST ke X )
m’"=m+1

(10)

K M —~ ,
+ Z Z Vpel e Xy + 20y, (1)

i=l1,i# =1
Thus, the signal-to-interference-and-noise (SINR) ratio for the
desired signal X,Em](t) is (12), shown at the top of the next
page.

Then the achievable rate of W,Em] is given by

R = min log 14+ SINR{"n)) | (15)
m': Ty (m')>m
— log (1 +  min {SINR,E’"](m’)}) (16)
m': wp(m')>m
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[m]

']
Pakk +r"
SINR][(m] (m/) — m J+ ] '] m' " (12)
U 2 remet:my PO + itk Zmrepy PP
dIEm] = max [0, _ min {akk + rk — max {0, akk ml mH], max(a,[{T/] + rim)}}] (13)
m': w(m')y>=m iiF#k
. 1 . / ’ 1
= max [O, min {r,E'"] — s min {afe !+ ™ — max{o, l;:rl_li)lg(a,[(’f Tgrl ])}}}] (14

where the min operation is to make sure W,Em] can be reliably
decoded at all states that are supposed to decode no less than
m messages, i.e., for all m' € [M] such that mr(m’) > m.

Therefore the GDoF d = limp_ log 5 is given by the
equations (13)-(14), shown at the top of this page, where (14)
follows from the fact that r,Em] is decreasing in m. Note
that r,EMH],Vk is an auxiliary power variable introduced to
simplify the GDoF expression and it is convenient to interpret
r,EMH] as a negative number in the range of (—oo, rkM]] that
represents the lowest power level used by the messages.
We define the GDoF region as

[
p & {({d bew) 1 d™ = lim R
k P—oo log P’

vk € [K1,m € [M], (R{")i.n) € €].
(17)

III. MAIN RESULT

The main result of this work, stated in the following
theorem, is that simple layered superposition coding and
opportunistic TIN decoding is GDoF optimal under a broad
set of channel conditions.

Theorem 1. Consider an M-state K-user single-antenna
Gausszan interference channel with channel strength exponents
{a }l j,m- If the following condition

[mg]

Oy >jn}ax{a " }+ max{akl micly

Vk € [K], Vmyi € [M] (18)

is satisfied, then power control with simple layered superpo-
sition coding at the transmitters and opportunistic TIN at the
receivers achieves the entire GDoF region, which includes all

GDoF tuples ({d" Yi.m) € RYX satisfying
xr(m')
S d" <o), Vm'e[M], Vke[K]  (19a)
m=1
14 ”ik(mik) [ :
[ m' mj
PPN A Z( i = ), (19b)
k=1 m=1
V(ll, in,...,i) € Iy,
Y(m,miy, ..., mik/) c [M]k/,
k' e [KI\{1}, (19¢)

where Il C [K] is the collection of all possible cycli-
cally ordered k-element subsets of user indicies without
repetition, e.g., Il = {(1, 2) (1,3),(2,3)} and I3 =
{(1,2,3),(1,3,2)}, and [MI* is a set with cardinality
MK collecting all possible k'-ary tuples, in which each
coordinate is from [M), eg., [2)° = {(1,1,1),(,]1,2),
1,2,1),(1,2,2),(2,1,1),(2,1,2), (2,2, 1), (2,2,2)}. The
number of messages decoded by Receiver k at the m-th state
wx(m) is arbitrarily chosen from [M), and is globally known
a priori.

Remark 1. The TIN optimality condition (18) and the GDoF
region (19) have an intuitive interpretation. Let us denote by
m = (my, my, ..., mg) a channel state where Receiver k falls
into State my € [M]. In this way, we have constructed in
total MX states (in addition to the M original states defined
in the system model, we further have MX — K mixed states
where the receivers belong to different original states). As the
capacity region only depends on marginals, these additional
mixed states do not hurt the capacity (a detailed argument
appears in Lemma 3). Now (18) says that the TIN optimality
condition for regular interference channel [12] should hold for
every single one of the MX states and (19) is the collection of
inequalities that constitute the GDoF region for each individual
state. A concrete illustration appears in Example 1.

Remark 2. The compound setting studied in [16] is a special
case of ours. By letting 7x(m) = 1 for all k, m, all receivers
are supposed to decode only the basic messages over all states,
and our system model reduces to the compound setting in [16].
Setting d,Em] = 0 for all m > 2, the GDoF region in (19)
recovers that in [16].

Remark 3. A natural choice of the number of messages to

decode at a given state, mi(m’) is mp(m') = Hm e [M] :

al —max;, Hgk{a < a]Ek I max;. ]#k{akj ”—1—1 where

we use {af}) — man;j;ék{akj "1} to reflect the TIN decoding
capability for Receiver k at State m.

Subject to this choice of mx(m’), the transmit power expo-
nents {r,Em]}k,m can be computed as follows. Let my :=
arg max,c[m) {a,E',:'] — maxj;#k{a,[{;'.l]}},\?’k € [K], and con-
sider an auxiliary interference network where Receiver k, k €
[K] is statistically equivalent to that at State my. Next, given a
feasible GDoF tuple ({d,Em]}k,m), the optimal power allocation
exponents of the basic messages {r,El]}k can be obtained
by applying the power control algorithms in [16], [20] to
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State S, State S,

Fig. 3. A 3-user interference network with 2 states.

the auxiliary interference network with the GDoF tuple
M am s gl SM gl The power expo-
nents of the opportunistic messages can then be successively
. [m+1] _  [m] [m]
computed according to ry =r, —d

M —1.

,m = 1,...,

In what follows, we consider a typical example to illustrate
our result and remarks.

Example 1. We hereby consider a 3-user interference channel
with 2 states as shown in Fig. 3. For the sake of notational
clarity, we denote by S1 and S> two states respectively, by Wy
and dy = d,EI] the basic message and its GDoF, respectively,
and by AW, and Ady = d,£2] the opportunistic message and
its GDoF, respectively. The transmitted signal is produced by
using simple layered superposition coding of the messages Wy
and AW with respective power exponent ry and Ary.

We use the choice of zp(m’) as stated in Remark 3
(Theorem 1 holds for any choice. We pick a specific choice
here to illustrate the result). That is, we compute the difference
of the desired signal strength and the strong interference
strength level for each receiver at each state, as follows.

Receiver 1: 2 —max{0.2, 1} = 2 — max{0.2, 1}, (20a)

Receiver 2: 1.5 — max{0.6, 0.6} > 1 — max{0.5, 0.5},
(20b)

Receiver 3: 1.5 — max{0.1, 0.5} <2 — max{0.6, 0.3}.
(20¢)

According to the relative strength of the two states for each
receiver, we set

zi(1) =1,
T1(2) =1,

ma(1) =2,
m2(2) =1,

m3(l) =1,
3(2) =2,

21
(22)

where for example, 72(1) = 2 because for Receiver 2, the first
state is in a better condition such that we wish to decode both
the basic and the opportunistic messages.

Next, we check the TIN-optimality condition and find the
GDoF region. To this end, following Remark 1, we construct
two auxiliary states S’ ; , and S, ;. Note that the channels to
Receiver 1 remain the same across the two states. As such,
the original and auxiliary states with respect to channel
strength exponents are given by

S :=1{2,0.2,1;0.6,1.5,0.6:0.1,0.5,1.5}  (23a)
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S/ 1= 1{2,0.2,1; 0.6, 1.5,0.6; 0.6,0.3, 2} (23b)
S5, =12,02,1;05,1,0.5;0.1,0.5, 1.5} (23c)
S» :=1{2,0.2,1;0.5,1,0.5; 0.6, 0.3, 2}. (23d)

It can be verified that the TIN-optimality condition is
satisfied for every original and auxiliary channel state, so the
TIN optimality condition (18) holds for our setting. Thus,
Theorem 1 applies. According to (19), after removing the
redundant inequalities, we have the optimal GDoF region

d>0,d,>0,d3>0
Ady >0, Ady, >0, Ad; >0
di <2
dy <1
dry+ Ady < 1.5
d3<1.5
dz+ Adz <2
di+dr <23
di+dr+ Adpy <2.7
di+d3+ Adz <2.4
d+d3 <15
dr+d3+ Adr < 1.9
dr+d3+ Adz <2.2
dr+d3+ Ady + Ad3 <2.6
di+dr+d3 <25
di+dr+ds+ Adr <2.9
di+dr+ds+ Ady <3.2
di+dr+d3+ Ady + Adz < 3.6.
As stated in Remark 1, the above optimal GDoF region can
also be obtained by collecting the individual and sum GDoF

inequalities from the GDoF region of all original and auxiliary
states. For each state, we have

d <2

dr+ Adp < 1.5

d3; <15

St di+dr+ Ady < 2.7
di+d3 <24

dr+ Ady +d3 < 1.9
di+dr+ Ady +d3 <2.9
di <2

dr <1

dy+ Adz <2

Sy di+dr <23

di+d3+ Adz <24
dr+d3+ Adz <2.2

| di +dy+d3+ Adz <3.2
dy <2

dr+ Ady < 1.5

dy+ Adz <2
di+dr+ Ady <2.7
di+d3+ Adz <2.4
d+ Ady +ds + Ad3 < 2.6
di+dr+ Ady+ds+ Ad3 < 3.6

(24)
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121
@1 = (d +Ady) ~al?
o) — (4 +0d) ~ al?)

Fig. 4. A 3-user interference network (left) with 2 states m € {1, 2} where
channel strength exponents vary across two states, and a simple potential
digraph (right) corresponding to a special case when 7x (1) = 1 and 7y (2) = 2
for all k = {1, 2, 3}. Receiver k decodes the basic message Wy yielding GDoF
dy at State S1, and decodes at State S» both basic and opportunistic messages
Wy and AWy yielding GDoF dj and Adj respectively.

dy <2

dr <1

d; <15

di+dr <23
di+d3 <24
d+d3 <15
di+dy+d3 <25

(25)

It is easy to check that the collection of all above inequalities
gives us the final optimal GDoF region.

The achievability of the above GDoF region can be
verified by checking the existence of power exponents
r¢’s for all extreme points. For instance, the GDoF tuple
(di,da,ds, Ady, Ad3) = (2,0.3,0.2,0.4,0.2) is one of the
nontrivial extreme points. Following Remark 3, we con-
sider the auxiliary state S, , which has the maximum TIN
decoding capability at each receiver. Applying the power
control algorithms in [16], [20] to State S:/,l,z with the GDoF
tuple (dy,dr + Adar,d3 + Ad3) = (2,0.7,0.4), we obtain
(ri,r2,m3) = (0,—0.2,—1) and (Arp, Ar3) = (r2,r3) —
(dr,d3) = (—=0.5,—1.2). It is not hard to verify that all
messages are successfully decoded with such power allocation.

In what follows, we present the proofs of the achievability
and the converse.

IV. ACHIEVABILITY

For the achievability, to illustrate the main idea, we first
take a 3-user interference channel with 2 states as an example
(see Fig. 4(a)) in Section IV-A.

A. A 3-User Example

To simplify the notation, we denote by Wy and AWj the
basic and opportunistic messages, respectively. Given a state
m € {1, 2}, if 7y (m) = 1, then Receiver k only needs to decode
the basic message Wy, and otherwise if zx(m) = 2, both
basic and opportunistic messages are required to be decoded.
We use simple layered superposition coding at the transmitters

and opportunistic TIN at the receivers (as introduced in
Section II-B) to derive the achievable GDoF region.
At Transmitter k, we send the superposition of the Gaussian

coded basic message Wy and the Gaussian coded opportunistic

message AWy with transmit power exponents r,El]

respectively.

[2]
and T

[1] [2]
Xi = P% Xp(Wi) + P& X,(AWy) (26)

where

rm it =g ke 3], yme 21 (27)

and rE] = r,El] —
Transmitter k.

By ignoring the max{0, -} term in (14), we focus on the
achievable GDoF via polyhedral TIN (as done in [12]-[14],
[16], [18]), for which

d,Em] = min {r,Em] — r,EmH],

d{l] - d£2] is the lowest power level used by

: [m'] [m]

min a +r

m’ i (m')y>m { kk k
[m'] [1]

—max{0, max aff'! 47} I zo @8

Thus, the achievable GDoF region P by polyhedral TIN is
the set of GDoF tuples (d,Em],k € [3],m e [2]) for which
there exist {r,Em],k € [3],m € [2]} such that the above
constraints (28) are satisfied for all k € [3] and m € [2].

Denote the GDoF region in (19) by P*. To show that P*
is achievable by polyhedral TIN, we construct an achievable
GDOF region P’ such that P’ C P and P’ = P*.

1) Constructing P’ C P: By imposing (27) in (28), we have
an achievable GDoF region P’ that is a subset of P. Plug-
ging (27) into (28), we have

0 deEm] < min {akk ! + 7y
m' .z (m')>=m

— max {0, ;pj%a,[{;ﬂ Iy rj[_l]}}, vm' € {1,2}). (29)

Specifying all possible values of m, m’, we have
dV < ol 4 I max 0, max alll 4 11
k — Tkk k { ik kj Jj }
(30a)
dM < a2 4 I — max {0, max af2! + 1!
koS O T {j:j¢kk]+1}

(30b)
if =2, d[2] < o1 2] 0, (1] (1
if 7 (1) S g+ —max{ T % +r}
(30¢)
& d,El] + d,Ez] < a,[(}(] + r,El] — max {O, m_a;é)%c a,[(}] + r}l]}
jii

(30d)
if 102 =2, d2 < g2 42 0, 21, 1]
if 7x(2) S ag g max{ ;:nja;z{ak] +7; }

(30e)

27)

PN d,EI] + d,Ez] < a,[i] + r,El] — max {0, ma;éxka,[j] + r][-l]}.
Ji

(30f)
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Note that (30d) implies (30a) and (30f) implies (30b). Com-
bining all above inequalities, we have the compact form

w(m')
g < gl 0, CANITIN
Z i akk +rk — max{ ﬁlja;éxk{akj +7; H
vm' e {1,2}. (31)

That is, we have a GDoF region P’ of the set of GDoF tuples

>

({d"™ e m) with respect to r"Vs

rk =0, Vke [3] (32a)
d"™ >0, Vke [3l,me [2] (32b)
d" =" =" Yee 31, me 2] (32¢)
o [, 0
,,; d; <oy —}—rk — max{0, j:n}a;zc{akj +7; ke [3]
(32d)
T (2)
Z d,Em < a,[i] + r,El] max{0, max{a,[ci] + r My ke 3]
el Jij#k

(32e)

which is not larger than P because of the additional con-
straint (32c), i.e., P’ € P. For notational simplicity, we here-
after set r,El] = rr and r,Ez] = Arg.

2) Proof of P’ = P*: To show P = P*, we eliminate
the r;’s in P, following the idea in [12].* Specifically,
we construct a potential digraph where the lengths of the arcs
are represented only by di’s and a;;’s. Then we verify the
existence of a potential function by imposing that the lengths
of directed circuits in the potential digraph are non-negative.

Potential Digraph: A given GDoF tuple (d,Em],k e [3],
me [2]) € Ri in P’, according to (32d) and (32e), is feasible
if and only if there exist r¢’s for all k € [3] satisfying,

<0 (33a)
7 (1)
ez > di"—ap! (33b)
7 (2)
ez > d" - ap! (33¢)
m=1
m (1)
re—rj > (Zd,E [1]>+ak]], Vi£k  (33d)
m=1
m(2)
no-rpz (DA —afl) +all, Vigk (3
m=1

In view of these inequalities, we construct a simple potential
digraph D' = (V’, A’), where

V' = {u, v%l], 052], 051], vgz], vgl], vgz]} (34)
A ={(u,v,]):u,0 e V' 1eR}. (35)

4Similar ideas have been applied and extended to other scenarios [12], [13],
[16], [18] to tackle different message settings and network topologies.
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The arc set consists of four parts A" = A} U A, U AL U A),
where

AL = {u, 0™, 1, uk'"])) ke [3,me [21) (36a)
b=, u, 1™, u)) :m e {1,2),k € [3]) (36b)

Ay = (oM, o™ 1™, o)) -
me{l,2},k, je [Blk#j) (36¢)

Ail {(l) ml] ][{"12], l(D]Eml], v][{mz])) .
my,my € {1,2}, my #ma, k € [3]} (36d)

with a length [(a, b) assigned to every single arc (a, b) € A’
as follows:

I, 0™y =0, Vm={1,2) (37a)
7i(1)

1o, u) = ap) — Z a" (37b)
7rk(2)

[ u)=ald = > d™ (37¢)
m=1
m(1)

1o}, ]‘ y=ahl — > a" - a,{}], Vk#j  (37d)
m=1
7 (2)

1o oy =ald = > a™ -, Vk£j  (37e)
m=1

1", o™ =0, Vmi,my e (1,2),mi #my.  (37f)

An illustrative example on the simple potential digraph
when 7 (1) = 1 and 7 (2) = 2 is shown in Fig. 4.

By the potential digraph, we connect the existence of r¢’s
to the existence of a valid potential function for this digraph.

Lemma 1. The GDoF tuple ({d,Ek""]}k,m) € Ri is feasible
if and only if there exists a valid potential function for the
simple digraph D' = (V', A").

Proof: The proof is similar to that in [12]. Given a simple
digraph D = (V, A), a function p : V > R is called potential
if for every arc (a,b) € A with length I(a, b), it satisfies
l(a,b) > p(b) — p(a).

In the simple digraph D' = (V’, A
potential function p(-), then letting

pw) =0, pM)=pe)=r,Vk

the potential function values must satisfy the following
inequalities

"), if there exists a valid

(38)

m(1)
l(v,[cl],vy]) >rji—rg&Esrn—r;> z d,Em] a,[(}c] + a[l]

m=1

(39a)
m(2)

oo zrj—no e n—rp 2 30 4" - o 4 o]

m=1

(39b)

I(u, v ]) > e <0 (39¢)

I, o) > rp =1 <0 (39d)
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Bl (d; + Ady)—a)

Fig. 5. The labeled multi-digraph for a 3-user interference network with
2 states simplifies the simple digraph in Fig. 4.

mi (1)

l(v,El], u) > —rp &=rp > Z d}E’"] _ a,[(}(] (39)
m=1
7 (2)
0P )= == D d"k—af (39
m=1
l(v,El], v,Ez]) >rg—rg=0>0 (39¢2)
1o ol > == 0> 0. (39h)

It can be readily verified that the nontrivial inequalities above
exactly match those in (33). Both“if” and “only if” parts hold
together. O

The above simple potential digraph consists of MK +1 =7
vertices for a 2-state 3-user interference channel, which
becomes involved for large M, K. Next, we simplify it to a
labeled multi-digraph.

Labeled Multi-Digraph Representation: We construct a

labeled multi-digraph D = (V, A) to represent the simple
digraph towards simplifying it. Fig. 5 gives an illustrative
example on the simplification of the potential digraph in Fig. 4.

Given the simple potential graph D' = (V', A'),
we merge the vertices v,E and v,EZ] into a single one vy,
and the arcs in A’ are labeled as follows: (1) the arcs
{(u,v,Em],l(u,v,Em])) :m = {1,2}} are merged as a single
arc (u, vk, [(u, vr)); (2) the arcs between {DIE'"] :m = {1,2}}
are removed; (3) the arcs from v,Em] to u are relabeled as
ok, u, m, " (vx, u)); (4) the arcs (v,[(m],vgm],l(v,[{m],vgm]))
are relabeled as (vg, v, m, 1y, 0;j)).

In particular, the labeled multi-digraph D = (V, A) is such
that

V = {u,v1, 02,03}
A={u,v,m):u,oecV,me{l,2},l e R}

(40)
(41)

where m specifies the label of an arc and I = [["(u, v) is the
length between u, v € V with label m. The arc set consists of

three parts A = A1 U Ay U A3z, where

Ay = {(u, vr, , L(u, vp)) - k € [3]) (42a)
Az = {(, u, m, "o, u)) :m e (1,2}, k € [3]} (42b)
Az = {(x, vj, m, "™ (v, 0)) :m € (1,2}, k, j € [31,k # j}

(42¢)

with a length I (a, b) assigned to every single arc (a, b) € A
as follows:

I(u,v) =0 (43a)
. mi (1)

Mg, u) = ap) = > a™ (43b)
m=1
7 (2)

12 (o, u) = a2 — > (43c)
m=1
(1)

Mg, v) =ap) = > d" - a}] (43d)
m=1

) 7 (2) 5

12 o, v)) = afy = > di™ — a,Ej]. (43e)

m=1

This multi-digraph representation simplifies the description
of the potential graph, due to the following lemma.

Lemma 2. The labeled multi-digraph D inherits two prop-
erties from the single digraph D’: (1) the potential function
in D' is valid in D; (2) for every circuit in D' there is a
corresponding circuit in D with the same length.

Proof: In the labeled multi-digraph D = (V, A), using the
same potential function p(-) as in D', we assign the following
values

pw) =0, p(ok)=ri, k.

As the potential function values satisfy the same set of
inequalities,

(44)

mi (1)
M, v) 2 rj == ne—rj 2 D d"™ = ! + oy
m=1
(45a)
Tk (2) ) )
Bl o)) zrj == n—rj = 2 d" —ag! + o]
m=1
(45b)
lu,vp) > rk <=1, <0 (45c¢)
mi (1)
Mog,u) > —n == > d"™ -y (45d)
m=1
7k (2)
1P (o, u) > —r <= ry > Z d,Em] — a,[j{], (45e)
m=1

we conclude that the potential function in D’ works in D.

For the correspondence of directed circuits in D’ and D,
we illustrate some of the typical ones in Table I at the top of
the next page. Note that the list therein is not exhaustive.
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TABLE I
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THE CORRESPONDENCE OF DIRECTED CIRCUITS BETWEEN D AND D’

D’ [ D [ Length
(u, vP], ) or (u vgl],vgﬂ,u) (u — v1 m, u) (1 (vy, u)

(u, vl ,1)2 ,u) (u — v1 1, v2 1, u) (vl7 va) + 11 (v, w)

(u, ”Ugl],v?],vgg],u) (u— v1 B, v2 ﬂ u) Rl (v1,v2) + 112 (va, u)

(u, UE],UE],U?],U) (u— v1 l)112 ﬂ>u) (w1, v2) + 12 (va, u)

(v[ e ], 51]) (v1 ﬂ> V2 & v1) (vl,vz) +l[1](v2,vl)

(Ul 7v£ ]711[ ! [1] v&l]) (v1 ﬂ> i) ﬂ) v1) (1}171)2) +l[2](v27111)
(v P] [1] [ ] [1]) (v1 ﬂ> D) ﬂ) v3 ﬂ) v1) 7(1] (v1,v2) + 7(1] (v2,v3) +1 (1] (v3,v1)
(U[I] [ ] [ ] [ ] [2]71}&1]) (v1 ﬂ> Vg E) v3 ﬂ) v1) 7(1] (v1,v2) + 102 (v2,v3) +1 2] (v3,v1)
(u, v[lll vE],v[ ], m,u) (u — v1 l>v2 ﬂvg EML) 1l ](vl,v2)+l[2](v2,v3)+l[ ]('Ug, )

Thus, we conclude that we can count the directed circuits
in the labeled multi-graph D to verify the existence of the
potential function. O

GDoF Region Identification: Now, operating on the poten-
tial digraphs, we are able to eliminate r’s in P such that only
{d,Em]}k,m remain.

According to Lemma 1, a GDoF tuple ({d,Em]}k,m) in P’
is feasible if and only if there exists a potential function
for the simple directed graph D’. According to the potential
theorem [23, Th. 8.2], the potential function exists if and
only if each directed circuit in D’ has a non-negative sum-
length. By Lemma 2, it suffices to impose that the directed
circuits on the labeled multi-digraph D are non-negative.
In this way, we are able to identify P’ without involving rg’s.
Next, we divide the directed circuits into the following classes.

o Class I: Directed circuits in the form of (1 — vy ml, u)
forall m € [2] and k € [3].

(1) (1)
- z0e S d <o o
=1 =1
7 (2) 7 (2)
ald — Z d" >0« Z 4" <afl.  (46b)
o Class II: Directed circuits in the form of (v M
v; Imal vop) for all k # j € [3] and

(mi,mp) € {(1,1),(1,2),(2,1),(2,2)}. For instance,
when (m,my) = (1, 2), we have

s 7j(2)
OC][{}(] Z dIEm] . a,[(}.] 4 0‘5‘3-] . Z dj[_m] _ aﬁ] > 0
m=1 f—r
(47a)
mi (1) 7;(2)
o S S <l o -l
(47b)

o Class III: Directed circuits in the form of (¥ —

o 2oy 2Ly forall k £ j € [3] and

(my,my) € {(1,1),(1,2),(2,1),(2,2)}. For instance,

when (m, my) = (1,2), we have

m (1) 7 ()
2 2
z a" +a =" d"hy —alll >0 48a)
m=1
7rk(1) 7;j(2)

<afl +a? —all, (48b)

> dmy S g
m=1 m=1

[m]

which are implied by (47), because a ik > 0 for all
Jj, ke [3]and m € [2].
o Class IV: Directed circuits in the form of (vx M

v M) v; ﬁ) vx) for all (my, ma, m3) € [2]° and

for either (k, j,i) = (1,2,3) or (k, j,i) = (1,3,2). For
instance, when (m1, ma, m3) = (1, 2,2), we have

i (1) 7;(2)
(1] (m] _ [2]
akk Z d —oy; + a Z d
7 (2)
+all = > ad™ —all >0 (492)
m=1
(1) 7j(2) i (2)
[m) [m] [m]
SRS SILES W
m=1 m=1 m=1
1 2 2] 1 2 2
< a,Ek] + 0‘5‘,-] + al[i a,[q] aEl] al-[k]. (49b)
o Class V: Directed circuits in the form of (u ALY Ok Imal

0 LY u) for all (my, ma, m3) € [2]° and for either

(k,j,i) = (1,2,3) or (k,j,i) = (1,3,2). Similarly,
the resulting sum GDoF inequalities are implied by those
in (49).

To sum up, after removing the redundant inequalities,
we are left with (46b) for all k € [3], (47) for all
k,j) € {(1,2),(2,3),(1,3)}, and (49) for all (k, j,i) €
{(1,2,3),(1,3,2)}. A concise expression is shown at the top
of the next page. A more compact form of the last two sets
of inequalities is

K iy (mi)

[m [mlk mzk]
Z z dik = z( ki lklk+1)
k=1 m=1

&1y
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wy (m')
> dM < al™ ke 3], vm' € [2] (50a)
m=1
mi(m1) mj(ma)
1 [ 1 [mi] [m2] [m2]
Z a" + Z d" < (@ = o) + (@ — alih),
V(k, j) € Ty, V(mi,mp) € 21 (50b)
mi(my) mj(m2) i (m3)
z dkm]+ z d[m + Z d[m < (0( ml] [ml )+(0€ mz] 5’:12])+(al[:"2]_al[l’{'13]),
V(k, j,i) € T3, Vmi,ma, m3) € 2. (50¢)
V(ii,i2,...,0) € My, (53) reduces to
V(miy, miy, ...,mi,) € [21°, VK € {2,3). d" < min a4
(52) m': T (m')>m
('l (1]
It can be verified that, when k' = 2, we have (ij,i2) € _maX{O’lI:rili)li(aki ti )}}’
H2 - {(192)9 (29 3)9 (193)} and (mil miz) € [2]2 - {(1 1) Vk
’ > € [K], Vm € [M], 55
(1,2),(2,1),(2,2)}, and thus the inequalities in (51) corre- LK1, Vm € [M] (53)
spond to those in Class II; when k' = 3, we have (i1, ip,i3) € which further expands to
H3 - {(1529 3)9 (1935 2)} and (mil;miz»mi3) E [2]3 = [m m]
(L0120, (L2 1, (L2.2), @ L1122, 4 =l —maxio, max(ag! +rMh) (s6)
1), (2,2,2)}, and thus the inequalities in (51) correspond to
thos.e in Class 1V. . o - akk Iy r}E” Z d}Em ]
Finally, note that the inequalities in (50), shown at the top =1
of this page, match exactly those in P*. Therefore P’ = P* B 1, ]
and the achievability proof is complete. max{0, {?;‘Zi(aki +ri
vm' e [M], s.t. m(m') > m,
B. The General Proof Vk c [K], Vm € [M], (57)
By simple layered superposition coding and opportunistic d
TI%\I]decoding, the achievable GDoF value of the message ue to
W, via polyhedral TIN, with the max{0, -} term ignored m-t
Mk VI POY g L L ) (58)
in (14), is given by k k k
m//:
[m] __ [m] [m+1] . m'] [m] .
i = min {rk "k nrkn(}}ll,)>m {O‘kk + 1 Rearranging (57), we have
— max{0, max(a['."/] + r.[l])}}}, c (m"] _ (] m'l | 1]
itik ki L Z dk = + e — max{0, ?}iﬁ(aki +r; )
Vk € [K], Vm e [M]. (53)  ™'=

Thus, the polyhedral TIN achievable GDoF region P will be
the set of GDoF tuples ({d,Em]}kjm) € Rf K for which there
exist {r,Em]}kjm € R[f”(, such that all equations in (53) are
satisfied. In general, the polyhedral TIN region can only shrink
the achievable GDoF region of TIN [12]. We aim to show that,
when the TIN optimality condition (18) is satisfied, polyhedral
TIN incurs no loss, and achieves the optimal GDoF region P*
in (19).

In what follows, we first impose a constraint on (53) to
construct an achievable GDoF region P’ C P, and then
by identifying P’ and showing that it is the same as P*,
we complete the achievability proof.

1) Constructing P’ C P: By imposing the following
constraint

=m0 vk e (K, m e (M),

a" (54)

Vm < mp(m'), Yk € [K], Vm' € [M]. (59)

With respect to m, the inequality with m = mx(m’) is the
dominant one and implies others with m < 7z (m’), because
of the non-negativity of {d,Em]}k,m.

Hence, we have constructed P’ with respect to ({d,Em]}kjm) c

RfK (for some properly chosen parameters ({r,Em]}k,m)),
defined by the following inequalities.
r" <0, Vkel[K], Vm e [M] (60a)
4" >0, Vke[K], Vm e [M] (60b)
a™ =" " Yk e K1, ¥m e [M] (60c)
i (m")

Z 4" < “kk T4 — max{o, max(a[m] + iy,

Vk € [K], Ym' € [M], (60d)
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where the additional constraint (54) makes P’ no larger than
P, ie, P CP

2) Proof of P’ = P*: Next, we eliminate {r,Em]}kjm in P’
and show that it becomes P*.

Due to the imposed power relation in (54), {r,Em], m > 2
can be recursively computed and we only need to focus on
the existence of {r,El]} (for the basic messages) with regard to

i (m')
Z d’"] < a [m'] + rp — max{0, max(akj +7j)},
m=1

Vk € [K],Vm' € [M] (61)

where we set r,El] = r¢ for the sake of notational brevity.

A given GDOF tuple ({d""}i ) € RYX is feasible in P’ if
and only if there exist {ry};’s satisfying

re <0, (62a)
wi(m')

= > d" —alil, vm' e [M] (62b)
m=1
i (m')

[m] m']
Z dkm O‘kk —i—a

re—rj > , Vm' € [M], Vj #k.

(62¢)

Similarly to the 3-user example, to verify the existence
of {ri}x, we construct a potential digraph to ensure the
existence of a valid potential function. For the simplicity
of presentation, we only focus on the labeled multi-digraph.
For the general K-user interference channel with M states,
the labeled multi-digraph D = (V, A) is such that

(63)
(64)

, 0K}
A={u,o,m',):u,veV,m e[M],IecR}

V =A{u,v1,00,...

where m’ specifies the label of an arc and [ = l[’"/](u, ) is the
length between u,v € V with label m’. The arc set consists
of three parts A = A1 U Ay U A3z, where

Ay = {(, vr, , L, 0p)) - k € [K]) (65a)
Az = {(ox, i, m', 1" Vo, u)) - m" € [M],k € [K]} (65b)
Az = {(ox, 0, m', 1" Vo, 0})) -

m' e [M],k,je[Klk#j} (65)

with a length / ' (a, b) assigned to every single arc (a, b) € A
as follows:

l(u,vk) =0 (66a)
mi(m”)
1" Vop, ) = aff ' = > ™, vm' e [M]  (66b)
i (m’) )
g, 0) = afi'l - z a" -, vm' e [M]
(66¢)

According to the potential theorem [23, Th. 8.2], by impos-
ing that the lengths of the shortest directed circuits in the
labeled multi-digraph D are non-negative, the existence of a

potential function is guaranteed. The imposed non-negativity
lends itself to the identification of P without involving {ry}«.

o Class I: Directed circuits in the form of (u — vy ] u)
for all m" € [M] and k € [K].

e (m') mr(m’)
akk Z 4§"=0 Z " <afl. (67)
m=1
e Class II: For all k¥ € [K]\{1} and (i1, i2, ..., iy) € Iy,
[mi ] [mi, ]
directed circuits in the form of (v, —— v;, —>
[mlk/ ] [mlk/]
vy viy) for all (m;,mjy,...,m;,) €
[(M]F.
k' ] iy, (mlk) [
[mi, ml m,k
z lklk Z d lklk+| z 0 (6821)
k=1
K T (’"ik) L
[m Lmiy Mig
< Z Z dk Z( ikik lklk+1) (68b)
k=1 m=l1
e Class III: For all &' € [K1\{1} and (i, i2, ..., i) € Iy,
mi ] [miy]
directed circuits in the form of (1 — v;, —'—> Vi, —>
[mlk/ 1] [m'k’]
vy u) for all (m;,mi,,...,m;,) €
[M]¥.
K1 : wiy (i) |
iy ] [m] m'k
iy z di = igirsr
k=1
[m 7rlk/ (mlk/) |
'k/ m
o0, = D A =0 (69a)
m=1
K i (m,k) /% : ] - [ |
[m] Mig Mig iy
< Z Z dk = Z( ixig lklk+1) + aik/il
k=1 m=1 k=1
(69b)

which is implied by (68).

It is not hard to verify that apart from the circuits above
mentioned, there are no other shortest directed circuits. By far,
we have simplified P’ such that it is represented with respect
only to {d,Em]}k,m. Collecting the inequalities of (67) and (68),
we find that P’ = P*, when the TIN optimality condition (18)
is satisfied. The achievability proof is thus complete.

V. CONVERSE

For the converse, instead of starting from Fano’s inequality
and upper-bounding the sum rate, we cast our problem to
a set of regular interference channels for which the optimal
GDoF regions under TIN-optimality conditions have been
characterized in [12]. In this way, we directly collect the
sum GDoF constraints therein to form our GDoF region outer
bound. In doing so, the converse proof can be significantly
simplified.

We use the set of channel coefficients to indicate different
states, i.e.,

State m: HI™ £ {({h,[:?]}i,k)} ccX (70)
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mi(miy)
m=1

lim Pr ({{W,E"”}
n—00

= hrn Pr ({{ka }k}ﬂ'k(mzk) £ {{ka b }nk(m,k))

I A

Tim Pr ({{W,E'" T
: [

= lim Pr ({{ka je

Dy,

b O )

man mi(miy,)

maxy 7 (mi, )

)
(73)

£ (W ) 74)
b # (O ) (75)
(76)

where at State m, Receiver k wishes to recover messages

{Wk }nk(m), Further, we define m = (m;,...,m;,) and
introduce

~. qrlm] & [mi; ] [miy ] [mig ] pe
State m: H™ = 3,1, H, 2, L H cCX @

[mik] A

where m € [M1X, 3( % 2 {({h,[{’?ik]}i)} and at State m,

Receiver k wishes to recover messages {Wkl]}lk( ie) . Appar-

ently, H!™! is a realization of H!™! when m = (m,m, ..., m).

According to the construction of the states, besides M
original states, we also introduce Mx — M auxiliary states.
We make the following statement.

Lemma 3. Any message set in the M-state Gaussian interfer-
ence channel (GIC) defined by {H",, can be decoded if and
only if the same message set can be decoded in the MX -state
GIC defined by {H™ m e [M]X).

Proof: The “if” part is readily obtained, because the states
{HIm1y, are a subset of the states {H!™! m e [M]X}. Thus,
the messages decoded in the latter can be decoded in the
former.

For the “only if” part, we need to show that, if the messages
are decodable in the M-state GIC, these messages are also
decodable in all the auxiliary states. Consider State m’ € [M]
in the M-state GIC such that the message set {W, m]}nk(m) at
every receiver k can be decoded. Then the average probability
of error satisfies

lim Pr (({lemk(m/)]}k) + ({nglznk(ln/)]}k)) =0,

n—o0
for all m’ € [M] 77

given the encoding and decoding mapplngs X; @ =
[AW™y) for all i e [K] and (W) = gl vp )
for all k € [K].

Without loss of generality, we focus on a specific auxiliary
state m = (m;,,...,m;,) in the MX-state GIC, where the
input-output relation is as follows:

[mlk]

"y —Zh[ Yo+ z"o. 0

We impose that X;(f) = Xi(t) = f,-({Wi[m]}m) for all
i € [K], i.e., the input X;(¢) in the M¥X _state GIC has the
same encoding mapping applied at each transmitter as used in

the M-state GIC. Thus, the received signal for Receiver k can
be rewritten as

[mlk]

()—th i+ 2" 0 (79)

i=1

v," &) (80)

~Zh’"’k %0 +2z0" ) =
where A ~ B means that A and B are statistically equiv-
alent. So the received signal in the MX-state GIC is statis-
tically equivalent to that in the M-state GIC. Applying the
same decoding mapping g,[{mi" ] as that in State m;, of the
M-state GIC, we have the equations at the top of this page.
Therefore the messages can indeed be decoded at the auxiliary
states. This completes the proof. O
Whether the messages can be decoded at a receiver is
determined by the marginal distribution associated to this
receiver if there is no receiver cooperation. Thus the same
message set can be decoded in both the M-state GIC and
the MX -state GIC as the receivers in the two networks see
the same marginal channel transition probabilities. Similar
statements have been used extensively in network information
theory literature (e.g., [24, Lemma 5.1], [25, Proposition 2]).
By Lemma 3, we conclude that the achievable rate tuple
({ka]}m,k) in the M-state GIC should satisfy the sum
rate constraints in the MX-state GIC. Given a state riz =
[m] iy (i)

(mj,,...,mj,), we treat the set of messages {W be 1

as a single virtual message W, . Let d;, be the GDOF of W;,.
As such, we have d;, = zﬁ'k(m"‘)d[m

el Such a state is a

regular interference channel with messages {W,-k }e and here
the TIN optimality condition is satisfied (refer to (18)), so by
Theorem 1 of [12] the GDoF tuple ({d;, }x) should satisfy

di, < af:}f], Vk (81a)

[m; [m;, ]
Zd’k = Z( lklkk lklkﬁ—l) (81b)
V(ll,lz, i) € My, VK e [KI\{1}. (81c)
Collecting all inequalities for all possible states
(mil,miz,...,mik,) € [M]¥, we have that the constraints
of (8la) for all possible states are equivalent to (19a).
For a specific state (m;,mi,...,m;,) € (M,

the constraints (81b) match exactly those in (19b). The
outer bound proof is thus complete.
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VI. CONCLUSION

Motivated by the need to communicate with a higher rate
when channels are in better conditions (i.e., opportunistic
communications), we consider a K -user interference network
with multiple channel states and degraded message sets, where
each transmitter has a set of messages (ordered by their
priorities) and each receiver will decode a number of mes-
sages up to a pre-determined threshold on the message order,
depending on the channel state. For this channel with states,
we show that if each sub-network (comprised of receivers from
possibly distinct states) satisfies a TIN-optimality condition,
then simple layered superposition encoding and successive
cancelation based opportunistic TIN decoding achieves the
entire GDoF region, for all possible decoding thresholds at
each receiver.
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