
3880 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 6, JUNE 2019

The Capacity of Private Computation
Hua Sun , Member, IEEE, and Syed Ali Jafar , Fellow, IEEE

Abstract— We introduce the problem of private computation,
comprised of N distributed and non-colluding servers, K indepen-
dent datasets, and a user who wants to compute a function of the
datasets privately, i.e., without revealing which function he wants
to compute, to any individual server. This private computation
problem is a strict generalization of the private information
retrieval (PIR) problem, obtained by expanding the PIR message
set (which consists of only independent messages) to also include
functions of those messages. The capacity of private computation,
C, is defined as the maximum number of bits of the desired
function that can be retrieved per bit of total download from
all servers. We characterize the capacity of private computation,
for N servers and K independent datasets that are replicated at
each server, when the functions to be computed are arbitrary
linear combinations of the datasets. Surprisingly, the capacity,
C =

�
1 + 1/N + · · · + 1/NK−1

�−1
, matches the capacity of

PIR with N servers and K messages. Thus, allowing arbitrary
linear computations does not reduce the communication rate
compared to pure dataset retrieval. The same insight is shown
to hold even for arbitrary non-linear computations when the
number of datasets K → ∞.

Index Terms— Capacity, private computation, private
information retrieval.

I. INTRODUCTION

D ISTRIBUTED computing arises as a promising solu-
tion for massive data processing. Much recent effort

is devoted to various computation tasks, such as search
[1], [2], matrix multiplication [3], [4] and shuffling [3], [5]
etc. Privacy is a concern when sensitive data sets are involved.
For example, retrieving statistical information from remotely
stored patient records for medical research is a representative
application for private computation over distributed systems.

In this work, motivated by privacy concerns in distributed
computing applications, we introduce the private computa-
tion (PC) problem, where a user wishes to privately compute
a function of datasets that are stored at distributed servers.
Specifically, K datasets are stored at N non-colluding servers,
and a user wishes to compute a function of these datasets.
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A private computation scheme allows the user to compute
his desired function, while revealing no information to any
individual server about the identity of the desired function. The
achievable rate of a private computation scheme is the ratio of
the number of bits of the desired function that the user is able
to retrieve, to the total number of bits downloaded from all
servers. The capacity of private computation is the supremum
of achievable rates.

The private computation problem is a strict generalization
of the private information retrieval (PIR) problem, where one
of the K datasets is desired by the user, i.e., the function to
be computed simply returns the desired dataset. The capacity
was characterized recently for PIR in [6] and for several of
its variants in [7]–[19]. In the PIR setting, the datasets are
called messages and all messages are independent. Private
computation may also be viewed as PIR with dependent
messages, where each possible function that may be desired
by a user is interpreted as a dependent message, i.e., a message
whose value depends on other messages.

Our main result is the characterization of the capacity of
private computation, where a user wishes to compute arbitrary
linear combinations of K independent datasets (messages),
replicated at N servers. Note that if the user can only choose
one of M = K independent linear combinations, then the
setting is equivalent to the PIR problem with K messages
and N servers. From [6], we know that the capacity of
PIR in this setting is equal to

(
1 + 1/N + · · ·+ 1/NK−1

)−1
.

Surprisingly, we show that even if the user wishes to compute
arbitrary linear combinations of the K datasets, the capacity of
private computation remains

(
1 + 1/N + · · ·+ 1/NK−1

)−1
,

i.e., in terms of capacity, arbitrary linear computation incurs
no additional penalty.

The capacity achieving scheme for private computation that
is presented in this work is a highly structured adaptation of
the capacity achieving scheme for PIR that was introduced
in [6]. Specifically, the private computation scheme utilizes
an optimized symbol index structure, and a sophisticated
assignment of signs (‘+’ or ‘−’) to each symbol in order
to optimally exploit the linear dependencies. A surprising
feature of the optimal private computation scheme is that the
query construction does not depend on the linear combining
coefficients that define the set of possible functions that may
be computed by the user.

Finally, we note that following the ArXiv posting of our
capacity results for the elemental setting of private compu-
tation with N = 2, K = 2, arbitrary M (first version of this
paper, posted October 30, 2017), an independent work on ‘pri-
vate function retrieval’ was posted on ArXiv by Mirmohseni
and Maddah-Ali (reference [20], posted November 13, 2017).
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Since the private function retrieval problem is identical to
the private computation problem, it is worthwhile to compare
and contrast the two works. To this end, we note that while
there is no overlap in the achievable schemes proposed in
the two works, the general capacity result presented in this
paper subsumes and strictly improves upon the results of [20].
In particular, [20] presents two results. The first result
of [20] is a capacity characterization of private computation
when N = 2, K is arbitrary, and the set of functions
that may be computed is comprised of all possible linear
combinations of the K message sets — albeit limited to binary
coefficients. This result is recovered as a special case of our
general capacity result in this paper. In this case, although
the achievable schemes of [20] and this work are different,
they both achieve capacity. The second result of [20] is an
extension of their achievable scheme to general N, K and
non-binary combining coefficients, although the optimality of
the achievable scheme is left open. For this general case, our
capacity characterization implies that the achievable scheme
of [20] is strictly suboptimal.

Notation: For integers Z1, Z2, Z1 ≤ Z2, we use the compact
notation [Z1 : Z2] = {Z1, Z1 + 1, · · · , Z2}. For an index
set I = {i1, i2 · · · , ik}, the notation AI represents the set
{Ai, i ∈ I}. The notation X ∼ Y is used to indicate that
X and Y are identically distributed. For a matrix A, AT

represents its transpose and |A| represents its determinant.
For a set S, |S| represents its cardinality. For sets S1, S2,
we define S1/S2 as the set of elements that are in S1 and not
in S2. A list of notations used is presented below.

II. PROBLEM STATEMENT AND DEFINITIONS

Consider the private computation problem with N servers
and K datasets. We will assume that the datasets are replicated
at all servers, that the servers do not collude, and that the func-
tions to be computed are linear combinations of the messages.
We will focus primarily on this basic setting which opens the
door to numerous other open problems through various gener-
alizations (some of which have appeared recently [21]–[24]),
e.g., coded storage instead of replication, colluding servers,
symmetric privacy requirements, non-linear functions, etc.

The K datasets, denoted by Wd1 , · · · , WdK ∈ F
L×1
p , are

each comprised1 of L i.i.d. uniform symbols from a finite

1As usual for an information theoretic formulation, the actual size of each
message is allowed to approach infinity. The parameter L partitions the data
into blocks and may be chosen freely by the coding scheme to match the
code dimensions. Since the coding scheme for a block can be repeated for
each successive block of data with no impact on rate, it suffices to consider
one block of data.

field Fp. In p-ary units,

H(Wd1) = · · · = H(WdK ) = L, (1)

H(Wd1 , · · · , WdK ) = H(Wd1) + · · ·+ H(WdK ). (2)

A linear combination of these datasets is represented as a
dependent message,2

Wm = vm[Wd1 , · · · , WdK ]T

= vm(1)Wd1 + · · ·+ vm(K)WdK , m ∈ [1 : M ] (3)

where vm = [vm(1), · · · , vm(K)] consists of K constants
from Fp, and ‘+’ represents element-wise addition over
Fp. Without loss of generality, we assume M ≥ K and
[v1;v2; · · · ;vK ] = IK , where IK is the K × K identity
matrix. Thus, (W1, W2, · · · , WK) = (Wd1 , Wd2 , · · · , WdK ).

There are N servers and each server stores all datasets
Wd1 , · · · , WdK . A user privately generates θ ∈ [1 : M ] and
wishes to compute (retrieve) Wθ while keeping θ a secret
from each server. Depending on θ, there are M strategies
that the user could employ to privately compute his desired
function. For example, if θ = m, then in order to compute
Wm, the user employs N queries, Q

[m]
1 , · · · , Q[m]

N . Since the
queries are determined by the user with no knowledge of the
realizations of the messages, the queries must be independent
of the messages,3

∀m ∈ [1 : M ], I(W1, · · · , WM ; Q[m]
1 , · · · , Q[m]

N ) = 0. (4)

The user sends Q
[m]
n , n ∈ [1 : N ] to the nth server. Upon

receiving Q
[m]
n , the nth server generates an answering string

A
[m]
n , which is a function of Q

[m]
n and the data stored (i.e., all

the messages),

∀m∈ [1 : M ], n∈ [1 : N ], H(A[m]
n |Q[m]

n , W1, · · · , WM)=0.

Each server returns to the user its answer A
[m]
n . From

all the information that is now available to the user
(A[m]

1 , · · · , A[m]
N , Q

[m]
1 , · · · , Q[m]

N ), the user decodes the
desired message Wm according to a decoding rule that is
specified by the private computation scheme. Let Pe denote
the probability of error achieved with the specified decoding
rule.

To protect the user’s privacy, the M strategies must be
indistinguishable (identically distributed) from the perspective
of each server, i.e., the following privacy constraint must be
satisfied ∀n ∈ [1 : N ], ∀m ∈ [1 : M ],

[Privacy] (Q[1]
n , A[1]

n , W1, · · · , WM )
∼ (Q[m]

n , A[m]
n , W1, · · · , WM ). (5)

The PC rate characterizes how many symbols of desired
information are computed per downloaded symbol, and is
defined as follows.

R � L

D
(6)

2We have pK−1
p−1

distinct non-zero linear combinations of K messages over

Fp, so the maximum value of M is pK−1
p−1

.
3The message sets (Wd1 , · · · , WdK

) and (W1, W2, · · · , WM ) are invert-
ible functions of each other, so, e.g., conditioning on one is the same as
conditioning on the other.
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where D is the expected value (over random queries) of the
total number of symbols downloaded by the user from all
servers.

A rate R is said to be ε-error achievable if there exists
a sequence of private computation schemes, indexed by L,
each of rate greater than or equal to R, for which Pe → 0 as
L→∞. Note that for such a sequence of private computation
schemes, from Fano’s inequality, we have

[Correctness] H(Wm|A[m]
1 , · · · , A[m]

N , Q
[m]
1 , · · · , Q[m]

N )
= o(L) (7)

where any function of L, say f(L), is said to be o(L) if
limL→∞ f(L)/L = 0. The supremum of ε-error achievable
rates is called the capacity C.

III. CAPACITY OF PRIVATE COMPUTATION

Theorem 1 states our main result.
Theorem 1: For the private computation problem where a

user wishes to privately retrieve one of M arbitrary4 linear
combinations of K independent datasets from N servers,
the capacity is C =

(
1 + 1/N + · · ·+ 1/NK−1

)−1
.

When M = K , the problem reduces to the PIR problem
with N servers and K messages, for which the capacity is(
1 + 1/N + · · ·+ 1/NK−1

)−1
[6]. Adding more computa-

tion requirements M > K can not help (surprisingly it does
not hurt either), so the converse of Theorem 1 is implied.
We only need to prove the achievability, which is presented
in Section IV.

It is quite surprising that increasing the number of messages
by including arbitrary linear combinations of K datasets
does not reduce capacity for all linear computation settings.
A natural question then is whether this insight holds more
broadly. Remarkably, the insight is also true for arbitrary non-
linear computations, when the number of datasets is large
(K → ∞). It turns out that in this case, again the capacity
of private computation is equal to the capacity of PIR. This
supplemental result is rather straightforward and is stated in
the following theorem.

Theorem 2: For the private computation problem with K
independent datasets, Wk, k ∈ [1 : K], H(Wk) = L,
arbitrary N servers and M−K arbitrary (possibly non-linear)
dependent messages, Wm, m ∈ [K + 1 : M ], H(Wm |
Wk, k ∈ [1 : K]) = 0, H(Wm) ≤ L, if K → ∞, then
the capacity of private computation C → 1 − 1/N , which is
the capacity of PIR with K →∞ messages and N servers.

Proof: For Theorem 2, the achievability is identical to
the symmetric PIR5 scheme of [8, Th. 1] (see also [25],
[26]), where the M functions are viewed as the messages in
the symmetric PIR problem and common randomness is not
used. Specifically, the scheme is as follows. Suppose Wk is
desired and each message has L = N − 1 symbols. Denote

4Note that M ≥ K and the M linear combinations con-
tain K linearly independent ones, so that H(W1, W2, · · · , WM ) =
H(Wd1 , Wd2 , · · · , WdK

) = KL.
5Theorem 2 extends immediately to the symmetric private computation

problem, where the user is prohibited from learning anything beyond the
desired function.

W as the M(N − 1) × 1 vector that is comprised of all the
message symbols (from the first symbol of W1 to the last
symbol of WM ) and let Q represent a random vector of length
M(N − 1), where each element is uniformly distributed over
{0, 1}. Denote ei as a unit vector of length M(N − 1) where
only the ith element is 1 and all other elements are 0. The
queries and answers are generated as follows.

Q
[k]
1 = Q, Q[k]

n = Q + e(k−1)(N−1)+(n−1), ∀n ∈ [2 : N ]

A[k]
n = Inner product(Q[k]

n ,W)

=

{
Inner product(Q,W) n = 1
Inner product(Q,W) + Wk,n−1 n ∈ [2 : N ]

⇒ Wk = (A[k]
2 −A

[k]
1 , · · · , A[k]

N −A
[k]
1 )

Therefore the scheme is both correct and private (for any k,
the query Q

[k]
n is comprised of i.i.d. uniformly random bits).

The rate achieved is L/D = (N − 1)/N = 1 − 1/N as the
message size is L = N − 1 and we download N symbols in
total (one from each server). The converse follows from the
converse of regular PIR [6] because restricting the message
set to Wk, k ∈ [1 : K] cannot reduce capacity. The proof is
thus complete.

IV. THE ACHIEVABLE SCHEME

The private computation scheme needed for Theorem 1
builds upon and significantly generalizes the capacity achiev-
ing PIR scheme presented in [6] and [15]. If we ignore
the dependence of the messages in the private computa-
tion problem and directly use the PIR scheme (capacity
achieving for independent messages) in [6], the rate achieved
is
(
1 + 1/N + · · ·+ 1/NM−1

)−1
, which is strictly less

than
(
1 + 1/N + · · ·+ 1/NK−1

)−1
(independent of M ),

the capacity of private computation. To optimally exploit the
dependence of the messages, we start with the original PIR
scheme of [6] and incorporate two new ideas.

For ease of reference, let us denote the original PIR scheme
of [6] as PIR1 . Recall that in PIR1 , starting from the
retrieval of one random desired message symbol from the
first database, the queries are generated based on iterative
application of three principles: 1) enforcing symmetry across
servers, 2) enforcing message symmetry within the query to
each server, and 3) exploiting side information of undesired
messages to retrieve new desired information. In particular,
when message symmetry is enforced, the indices of new
symbols to be retrieved are structureless (random), and only
addition is used in constructing queries from both symmetry
and side information exploitation. Both of these aspects are
specialized in the new scheme.

(1) Index assignment: Additional structure is required from
symbol indices within the queries because dependence
only exists across message symbols associated with the
same index. This requirement yields a new PIR scheme,
that we will denote as PIR2 . If the messages are
independent, then in terms of downloads PIR2 is as
efficient as PIR1 , i.e., they are both capacity achieving
schemes.
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(2) Sign assignment: The index structure of PIR2 seems
essential to accommodate dependent messages. By itself,
however, it is not sufficient.6 For example, the queries
in both PIR1 and PIR2 are comprised of sums of
symbols. Depending on the form of message dependen-
cies, more sophisticated forms of combining symbols
within queries may be needed. For our present purpose,
with linear message dependencies, we will need both
sums and differences. To this end, we need to carefully
assign a ‘sign’ (‘+’ or ‘−’) to each symbol. The sign
assignment produces the optimal private computation
scheme, denoted PC , for Theorem 1.

To present these schemes, we need to introduce the follow-
ing notation. Let π represent a permutation over [1 : L]. For
all m ∈ [1 : M ], i ∈ [1 : L] let

um(i) = σiWm(π(i)) (8)

Thus, Wm(π(i)) are the symbols from message Wm, per-
muted by π, and um(i) are the corresponding signed versions
obtained by scaling with σi ∈ {+1,−1}. Since both m and
i are indices in um(i), if there is a potential for confusion,
we will refer to m as the ‘message index’ and i as the
‘symbol index’. Note that the same permutation is applied
to all messages, and the same sign variable σi is applied to
symbols from different messages that have the same symbol
index. Both π and σi are generated privately, independently
and uniformly by the user such that they are not known to the
servers.

We will refer to the message Wm equivalently as the
message um. To illustrate the key ideas we will use the special
K = 2, M = 4, N = 2 setting as our running example in this
work.

Example A: Suppose the M = 4 functions on the K = 2
datasets that we wish to compute over N = 2 servers are the
following.

W1 = Wd1

W2 = Wd2

W3 = v3Wd1 + v′3Wd2

W4 = v4Wd1 + v′4Wd2 (9)

Each message consists of L = NM = 16 symbols from Fp.
The specialized setting allows us to use a simpler notation as
follows.

(ai, bi, ci, di) = (u1(i), u2(i), u3(i), u4(i))

The notation is simpler because we only have symbol indices.
Message indices are not necessary in this toy setting because
a different letter is used for each message.

We will start with the query structure of the PIR scheme,
which we will modify using the two principles outlined earlier,
to obtain the private computation scheme. First we explain the
index assignment step.

6Remarkably, if the field Fp in (3) is restricted to F2 then PIR2 is
sufficient to achieve the capacity of private computation. This is because sign-
assignments are redundant over F2, i.e., +x and −x are equivalent over F2.

A. Index Assignment: PIR2
In this section, we introduce the PIR2 scheme, built upon

PIR1 by an index assignment process. The index assign-
ments are necessary because unlike PIR1 where independent
permutations are applied to symbols from each message,
in PIR2 the same permutation is applied to symbols from
every message. For ease of exposition, we will first illustrate
the index assignment process through Example A, and then
present the general algorithm for arbitrary K, M, N . Since we
do not use sign assignments in PIR2 , the σi are redundant
for this scheme. Without loss of generality, the reader may
assume σi = 1 for all i for PIR2 .

1) Example A: Suppose the desired message is W1, i.e.,
θ = 1. Recall the query structure of PIR1 , where we have
left some of the indices of undesired symbols undetermined.

Note that the first row of the query to Server n, n ∈ {1, 2},
is an, bn, cn, dn, just as in PIR1 . In PIR1 , the permutations
are chosen independently for each message, so that cn, dn are
not necessarily functions of an, bn. However, here, because we
apply the same permutation to every message, and because the
same sign σn is applied to an, bn, cn, dn, the dependence of
messages is preserved in these symbols. In particular, cn =
v3an + v′3bn, dn = v4an + v′4bn, and H(an, bn, cn, dn) = 2
p-ary units.

The next three rows of the queries to each server are 2-sums
(i.e., sums of two symbols) that are also identical to PIR1 ,
because these queries exploit the side-information from the
other server to retrieve new desired symbols. However, notice
that because permutations of message symbols are identical,
there is a special property that holds here that is evident to
each server. For example, Server 1 notes that the 2-sums that
contain ai symbols, i.e., a3+b2, a4+c2, a5+d2 have the same
index for the other symbol, in this case the index 2. Since
we do not wish to expose the identity of the desired message,
the same property must hold for all messages. This observation
forces the index assignments of all remaining 2-sums.

For example, let us consider the next query term, b∗ + c∗,
from, say, Server 1. Since b2 was mixed with a3 in the query
a3 + b2, all 2-sums that include some bi must have index 3
for the other symbol. Similarly, since c2 was mixed with a4,
all 2-sums that include some cj must have index 4 for the
other symbol. Thus, for Server 1, the only index assignment
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possible for query b∗ + c∗ is b4 + c3. Similarly, the b∗ + d∗
must be b5 + d3 and c∗ + d∗ must be c5 + d4. All indices for
2-sums are similarly assigned for Server 2 as well. Thus all
indices for 2-sums are settled.

Now let us consider 3-sums. The index assignments for
the first three rows for the 3-sums are again straightforward,
because as in [6], these are side-information exploitation
terms, i.e., new desired message symbols must be mixed with
the side-information symbols (2-sums) downloaded from the
other server that do not contain desired message symbols. This
gives us the following query structure.

Now, again there is a special property that is evident to each
server based on the 3-sums that contain symbols from message
a. Suppose we choose any two messages, one of which is a.
For example, suppose we choose a, b and consider Server 1.
Then there are 2 instances of 3-sums that contain a, b, namely,
a9 + b7 + c6 and a10 + b8 + d6. Note that the third symbol
in each case has the same index (6 in this case). The same is
true if for example, we choose a, c or a, d instead. The two
3-sums that contain a, c are a9 + b7 + c6 and a11 + c8 + d7,
and in each case the third symbol has the same index (7 in
this case). The two 3-sums that contain a, d are a10 + b8 + d6

and a11 + c8 + d7, and in each case the third symbol has the
same index (8 in this case). Again, because we do not wish to
expose a as the desired message, the same property must be
true for all messages. This observation fixes the indices of the
remaining 3-sum, b∗ + c∗ + d∗ as follows. The index of d in
this term must be 9 because the two 3-sums that contain b, c
must have the same index for the third symbol, and according
to a9 + b7 + c6 this index must be 9. Similarly, the index of
c in b∗ + c∗ + d∗ must be 10 because the two 3-sums that
contain b, d must have the same index for the third term, and
according to a10 + b8 + d6 it has to be 10. The index of b in
b∗ + c∗ +d∗ is similarly determined by the term a11 + c8 +d7

to be 11. Thus, the query b∗ + c∗ + d∗ from Server 1 must be
b11 + c10 +d9. Similarly, the query b∗+ c∗+d∗ from Server 2
must be b14 + c13 + d12.

The last step is again a side-information exploitation step,
for which index assignment is trivial (new desired symbol
must be combined with the 3-sums queried from the other
server that do not contain the desired symbol). Thus, the index
assignment is complete, giving us the queries for PIR2 .

For the sake of comparison, here are the queries generated
with PIR2 when θ = 3, i.e., when message W3 (symbols c)
is desired.

To see why the queries for θ = 1 are indistinguishable from
the queries for θ = 3 under PIR2 , say from the perspective
of Server 1, note that the former is mapped to latter under the
permutation on [1 : L] that maps

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)
−→ (1, 3, 4, 2, 5, 9, 6, 10, 7, 11, 8, 12, 15, 13, 14, 16)

The permutation π is chosen privately and uniformly by the
user independent of θ, so both queries are equally likely
whether θ = 1 or θ = 3.

2) Arbitrary K, M, N : The extension to arbitrary M, N is
formally presented7 in the query generation algorithm, Q-Gen,
that appears at the end of this section. Let us summarize
the main ideas behind the generalization with the aid of the
illustration in Figure 1 for M = 4, N = 3.

The construction of queries for arbitrary N servers is
essentially a tree-like expansion of the N = 2 construction.
Therefore, the main insights all come from the N = 2 setting.

7Both PIR2 and PC may be viewed as PIR schemes for N servers
with M independent messages, so that K is not directly needed for the
query construction. Linear dependencies, if they are present, make some of
the queries redundant, and allow a reduction in the number of downloaded
symbols. K only matters because it determines the number of redundant
queries. The specific linear combinations involved in the M functions are
also not needed for the query construction. Thus the query construction has
an intriguing ‘universal’ character that exploits linear dependencies while
remaining oblivious to the specifics of those dependencies.
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Fig. 1. Query generation tree according to PIR2 for M = 4 messages and N = 3 servers. Red arrows indicate the use of the Exploit-SI algorithm, and
blue arrows indicate the use of the M-Sym algorithm. Note that the symbol index assignments in any I partition are uniquely determined by the indices in
the corresponding M partition.

In fact, the index assignment process for K messages is
comprised of localized operations within the sets of queries
that form the vertices of this tree, that operate exactly as in
the N = 2 setting. Let us use the tree terminology to explain
the query construction for arbitrary K, M, N .

The root node (not shown because it carries no information)
branches into N vertices at depth 1. These vertices, denoted
Q(n1), n1 ∈ [1 : N ], represent the first set of queries from
each server. For our example, Q(n1) = (an1 , bn1 , cn1 , dn1).
The queries associated with a vertex are internally partitioned
into two parts. Queries that include a desired message symbol
have the identifier M, and queries that do not include any
desired message symbol have the identifier I. For our example
we assume θ = 1, so that the an1 symbols are the desired

message symbols. Thus, Q(n1,M) = an1 and Q(n1, I) =
(bn1 , cn1 , dn1).

Each level 1 vertex, Q(n1), n1 ∈ [1 : N ], branches into
N −1 vertices,8 Q(n2, n1), n2 ∈ [1 : N ], n2 
= n1, to produce
level 2 of the tree. The query vertex Q(n2, n1) is assigned to
Server n2. Thus, level 1 vertices at Server n1 generate level 2
vertices associated with every server other than Server n1. As a
result each Server n2, n2 ∈ [1 : N ], has N − 1 level 2 query
vertices, denoted Q(n2, n1) for all n1 ∈ [1 : N ], n1 
= n2.
Level 2 query vertices are all comprised of 2-sums, i.e., sums
of two symbols, and are internally partitioned into M and I

8A query vertex at level m refers to the set of queries Q(nm, · · · , n1) =
Q(nm, · · · , n1,M) ∪ Q(nm, · · · , n1,I).
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based on whether or not they contain desired message symbols.
The queries in Q(n2, n1,M) are generated by exploiting the
side-information (cf. the Exploit-SI algorithm [15]) contained
in the level 1 queries Q(n1, I), i.e., these queries are generated
by adding a new desired message symbol to each of the sym-
bols in Q(n1, I). Thus, the query set Q(n2, n1,M) contains
M − 1 elements. For our example, these M − 1 = 3 elements
are Q(n2, n1,M) = {ai + bn1 , aj + cn1 , ak + dn1}, where
i, j, k are new symbol indices that have not appeared in any
queries so far. Next, the queries in Q(n2, n1, I) are generated
to enforce message symmetry (cf. the M-Sym algorithm [15]),
and contain a 2-sum of every type that does not include
the desired message, for a total of

(
M−1

2

)
elements. For our

example, these
(
3
2

)
= 3 queries are b∗ + c∗, b∗ + d∗, c∗ + d∗.

The symbol indices ‘*’ are assigned based on the query
set Q(n2, n1,M) as described in our previous example.
Since Q(n2, n1,M) = {ai + bn1 , aj + cn1 , ak + dn1} the
index assignment produces Q(n2, n1, I) = {bj + ci, bk + di,
ck + dj}.

The query tree grows similarly to a total of M levels.
A level m query vertex assigned to Server nm, nm ∈ [1 :
N ], is denoted as Q(nm, nm−1, · · · , n1) and is comprised
of m-sums that include desired message symbols, denoted
Q(nm, nm−1, · · · , n1,M), and m-sums that do not include
desired message symbols, denoted Q(nm, nm−1, · · · , n1, I).
The queries in Q(nm, nm−1, · · · , n1,M) are m-sums gener-
ated by adding a new desired message symbol to each query
contained in Q(nm−1, · · · , n1, I). This is formalized in the
Exploit-SI algorithm. The queries in Q(nm, nm−1, · · · , n1, I)
are generated by the M-Sym algorithm to force message
symmetry, and contain an m-sum of every type that does
not include the desired message, for a total of

(
M−1

m

)
ele-

ments.9 The index assignment for these queries takes place
as follows. Consider a query q ∈ Q(nm, nm−1, · · · , n1, I),
q = ui1(∗) + ui2(∗) + · · · + uim(∗), where ∗ symbols
represent indices that need to be assigned. Note that since
this query is in the I partition, θ /∈ {i1, i2, · · · , im}. The
index ∗ for uil

(∗), l ∈ [1 : m], comes from the m-sum
query in Q(nm, nm−1, · · · , n1,M) that contains symbols
from ui1 , ui2 , · · · , uil−1 , uθ, uil+1 , · · ·uim . If the symbol index
for uθ in this query is jl, i.e., the query contains uθ(jl) then the
index jl is assigned to uil

. In this way, the M-Sym algorithm
assigns all indices to generate the query q = ui1(j1) +
ui2(j2) + · · · + uim(jm). This completes the description of
PIR2 .

The following observations follow immediately from the
query construction described above.

1) |Q(nm, nm−1, · · · , n1, I)| =
(
M−1

m

)

2) |Q(nm, nm−1, · · · , n1,M)| = |Q(nm−1, · · · , n1, I)| =(
M−1
m−1

)

3) The number of level m query vertices
Q(nm, nm−1, · · · , n1) assigned to Server i, (such
that nm = i), is (N − 1)m−1. This is because there
are N − 1 valid values for nm−1 that are not equal to

9If m = M , then Q(nm, nm−1, · · · , n1,I) is the empty set.

nm = i, there are N − 1 values for nm−2 that are not
equal to nm−1, and so on.

4) The total number of queries assigned to Server i is
∑M

m=1(N − 1)m−1
((

M−1
m

)
+
(
M−1
m−1

))
.

5) If Q and Q′ are two query vertices assigned to the
same server, then the symbol indices that appear in
Q are distinct from the symbol indices that appear
in Q′.

The proof of privacy for PIR2 is similar to that for PIR1
in [6]. We note that once the labelsM, I are suppressed, and
the queries sorted in lexicographic order, the structure of the
queries from any individual server is fixed regardless of the
desired message index θ. For our M = 4, N = 3 example,
this is illustrated in Figure 2.

Note that only distinct symbol indices are shown. All the
remaining indices can be inferred uniquely from the ones
shown based on the index assignment rule. Thus, the particular
query realization (depending on θ) to Server n, n ∈ [1 : N ],
depends only on the realization of these distinct indices.
However, the indices depend on the permutation π which is
chosen uniformly and privately by the user. Thus, all distinct
choices for these indices are equally likely, regardless of θ,
and the scheme is private.

The correctness of PIR2 follows directly from the cor-
rectness of PIR1 . By the same token, if the messages are
independent then PIR1 and PIR2 have the same rate. Thus,
the index assignment process produces a new PIR scheme,
PIR2 , that for independent messages, is equally efficient as
PIR1 in terms of download, i.e., PIR2 is capacity achieving
for independent messages. However, depending upon the form
of the message dependencies, it turns out that the ‘sums’ may
not be sufficient and more sophisticated mixing of message
symbols may be required. For the linear dependencies10 that
we consider in this paper, we will need sign assignments, that
are explained next.

B. Sign Assignment: PC

In this section, we present the sign assignment proce-
dure that produces the private computation scheme PC from
PIR2 for arbitrary K, M, N . We will use Example A to
illustrate its steps. The sign assignment procedure depends
on θ. Let us choose θ = 3 to illustrate the process.
Note that σi are now generated uniformly and independently
from {+1,−1}.

To explain the sign assignment, it is convenient to express
each query in lexicographic order. For example, the query
ui1(j1) + ui2(j2) + · · · + uim(jm) is in lexicographic order
if i1 < i2 < · · · < im regardless of the values of the
indices j. For our M = 4 example, the query c9 + a7 + b6

is expressed as a7 + b6 + c9 under lexicographic ordering.
Note that the lexicographic order for the M = 4 example is

10If we use PIR2 for dependent messages (not necessarily linearly depen-
dent), we can save M − K downloaded symbols because of the redundancy
among the 1-sum symbols. However, to achieve the capacity of private
computation with linearly dependent messages, we require redundancy in the
m-sum symbols for all m ∈ [1 : M − K]. Such redundancy does not exist
for PIR2 over non-binary fields.



SUN AND JAFAR: CAPACITY OF PC 3887

Fig. 2. Structure of queries generated by PIR2 when M = 4 and N = 3.

simply the ordering a < b < c < d and the indices do not
matter. The position of the c∗ symbol within this lexicographic
ordering of query q will be denoted as Δc(q), i.e., for the query
q = a7 + b6 + c9, we have Δa(q) = 1, Δb(q) = 2, Δc(q) = 3
and Δd(q) = 0 where the 0 value indicates that a symbol from
that message is not present in the query.

Next, the queries are sorted in increasing order of blocks, B,
so that the mth block B = m, contains only m-sums. Each
block is partitioned into sub-blocks, S, such that all the queries
q in the same sub-block have the same value of ΔWθ

(q).
The sub-blocks are sorted within a block in descending order
of ΔWθ

(q) and numbered S = 1, 2, · · · . With this sorting,
the query structure is represented as follows.

The sign assignment algorithm for arbitrary M is comprised
of 4 steps.
Algorithm: SignAssign

(Step 1) Consider queries for which ΔWθ
(q) = 0,

i.e., queries that do not contain desired message symbols. The
terms in these queries that occupy even positions (in lexico-
graphic order within each query) are assigned the ‘−’ sign.
Thus, for example the query q = a11 + b10 + d9 changes to
q → q′ = a11 − b10 + d9 after the sign assignment. Notice
that the signs are alternating in the lexicographic ordering of
symbols within the query. The sign assignments for the queries
with ΔWθ

(q) = 0 are now settled.
(Step 2) If a symbol is assigned a negative sign in Step 1

then in Step 2 it is assigned a negative sign everywhere it
appears. Note that any undesired symbol that appears in the
query from one server, appears exactly once within the query
to each server.

For our M = 4 example, at this point we have,

(Step 3) Every query such that ΔWθ
(q) > 0, i.e., every

query that contains a desired message symbol is multiplied by
(−1)S+1(θ �=1), where S is the sub-block index and 1(θ 
= 1)
is the indicator function that takes the value 1 if θ 
= 1 and 0
if θ = 1.

(Step 4) Finally, in Step 4, for each query q that contains
a desired symbol, i.e., ΔWθ

(q) > 0, the desired symbol is
assigned the negative sign if it occupies an even numbered
position, i.e., if ΔWθ

(q) is an even number, and a positive
sign if it occupies an odd numbered position, i.e., if ΔWθ

(q)
is an odd number.
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Following this procedure for our running example, we have
the final form of the queries as follows.

To complete the illustration for our M = 4 example, let us
also present the final queries for θ = 1, 2, 4.

Algorithm 1 Q-Gen Algorithm
1: Input: θ
2: Output: Q(1, ‘θ’), · · · , Q(N, ‘θ’)
3: Initialize: All query sets are initialized as null sets. Also

initialize Block = 1;
4: for DB1 = 1 : N do
5:

Q(DB1, ‘θ’, Block,M)← {uθ(DB1)}
Q(DB1, ‘θ’, Block, I)←
{u1(DB1), · · · , uM (DB1)}/{uθ(DB1)}

6: end for(DB1)
7: for Block = 2 : M do
8: for DBBlock = 1 : N do
9: for each (DBBlock−1, DBBlock−2, · · · , DB1), where

DBBlock−1 
= DBBlock, DBBlock−2 
= DBBlock−1, · · · ,
DB1 
= DB2 do

10:

Q(DBBlock, DBBlock−1, · · · , DB1, ‘θ’, Block,M)←
Exploit-SI(Q(DBBlock−1, DBBlock−2, · · · , DB1, ‘θ’,

Block− 1, I))
Q(DBBlock, DBBlock−1, · · · , DB1, ‘θ’, Block, I)←

M-Sym(Q(DBBlock, DBBlock−1, · · · , DB1, ‘θ’, Block,M))

11: end for (DBBlock−1, DBBlock−2, · · · , DB1)
12: end for(DBBlock)
13: end for (Block)
14: for DBBlock = 1 : N do
15:

Q(DBBlock, ‘θ’)←
⋃

Block∈[1:M ]

⋃

DBBlock−1 �=DBBlock,
··· ,DB1 �=DB2(

Q(DBBlock, DBBlock−1, · · · , DB1, ‘θ’, Block, I)∪

Q(DBBlock, DBBlock−1, · · · , DB1, ‘θ’, Block,M)
)

16: end for(DBBlock)
17: SignAssign(Q(1, ‘θ’), · · · , Q(N, ‘θ’))

We include the full algorithm here for completeness.
Q(n, ‘θ’) denotes the queries for Server n ∈ [1 : N ] when Wθ

is desired. For any ordered tuple u, let new(u) be a function
that, starting with u(1), returns the “next” element in u each
time it is called with the same tuple u as its argument.

The sub-routines are as follows. θ, Block are assumed to be
available to the sub-routines as global variables. Tm represents
the set of all possible choices of m distinct indices in [1 : M ].−→T indicates that the elements of T are to be accessed in the
natural lexicographic increasing order.

This completes the description of the scheme PC . The
correctness of PC follows from that of PIR2 . Remarkably,
if the messages are independent, then PC may be seen as
another PIR scheme that achieves the same rate as PIR1 ,
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Algorithm 2 M-Sym Algorithm

1: Input: Q = Q(DBBlock, DBBlock−1, · · · , DB1, ‘θ’,
Block,M)

2: Output: Q∗ = Q(DBBlock, DBBlock−1, · · · , DB1, ‘θ’,
Block, I)

3: Initialize: Q∗ ← ∅.
4: for each i[1:Block] ∈

−−−→TBlock, θ /∈ i[1:Block] do
5:

Q∗ ←Q∗ ∪ {ui1(j1) + ui2(j2) + · · ·+ uiBlock(jBlock)}
such that ∀l ∈ [1 : Block]

∃ uθ(jl) +
∑

r∈[1:Block],r �=l

uir (∗) ∈ Q

6: end for (i[1:Block])

Algorithm 3 Exploit-SI Algorithm

1: Input: Q = Q(DBBlock−1, DBBlock−2, · · · , DB1, ‘θ’,
Block− 1, I)

2: Output: Q′ = Q(DBBlock, DBBlock−1, · · · , DB1, ‘θ’,
Block,M)

3: Initialize: Q′ ← ∅.
4: for each q ∈ −→Q do
5:

Q′ ← Q′ ∪ {new(uθ) + q}

6: end for (q)

PIR2 , i.e., all three are capacity achieving schemes. The proof
of privacy of PC is deferred to Section VI-A for Example A
and to Section VI-B for arbitrary K, M, N .

The main advantage of PC is that for the dependent
message setting of Theorem 1, it is the optimal private
computation scheme. Its proof of optimality is presented next.

V. PROOF OF OPTIMALITY OF PC

In this section, we show how PC achieves the capacity of
private computation when the messages are dependent. The
key idea is that the message dependencies combined with
the special index and sign structure of PC create redundant
queries, which reduces the download requirement, according
to Slepian Wolf source coding with side information [27]. For
example, suppose the answer from Server n includes i.i.d.
uniformly random symbols X, Y, Z ∈ Fq, H(X, Y, Z) =
3 log(q). If the user already knows side information U from
the answers from other servers, which introduces redundancy,
i.e., H(X, Y, Z|U) ≤ 2 log(q), then the answer X, Y, Z can
be compressed into no more than 2 log(q) bits per (X, Y, Z)-
symbol, without knowledge of U at Server n.

A. Proof of Optimality for Example A

To prove optimality, we need to show that the scheme
achieves a rate that matches the capacity of private com-
putation according to Theorem 1. Specifically, let us prove
that the rate achieved is 8/12 = 2/3. For this, we will

show that the user downloads only 12 symbols from each
server. Note that ostensibly there are 15 symbols that are
queried from each server. However, it turns out that based
on the information available from the other server, 3 of these
symbols are redundant. Thus, 12 generic combinations of these
15 symbols are sufficient.

Let us see why this is the case for the queries from Server 1.
c1, d1 are clearly redundant symbols because according to (9)
they are functions of a1, b1. So we need one more redundant
symbol. Suppose a is desired (θ = 1). Then, consider the
2-sum queries that do not involve the desired message, a.
There are 3 such queries. However, the key is that from any 2
we can construct the 3rd. In this case from Server 1 we have:
b4 − c3, b5 − d3, c5 − d4. But note that

v′3(b5 − d3)− v′4(b4 − c3)− (v3v
′
4 − v4v

′
3)a3 − v4 a4 + v3 a5

= (c5 − d4)

Verify:

LHS = v′3(b5 − d3)− v′4(b4 − c3)− (v3v
′
4 − v4v

′
3)a3

− v4 a4 + v3 a5

(9)
= v′3(b5 − v4a3 − v′4b3)− v′4(b4 − v3a3 − v′3b3)
− (v3v

′
4 − v4v

′
3)a3 − v4 a4 + v3 a5

= v3 a5 + v′3 b5 − v4 a4 − v′4 b4
(9)
= (c5 − d4) = RHS

Since the user knows a3, a4, a5 due to the side information
available from the other server, out of these 3 equations, 1 is
redundant. Thus, one more symbol is saved, giving us 12
effective downloaded symbols, and the rate 8/12 is achieved.
Since this is also the outer bound, this scheme achieves
capacity. It can similarly be verified for Example A that the
redundancy exists no matter which message is desired.

As another example, suppose c is desired (θ = 3). Referring
to the scheme, from Server 1, the three queries (that are
2-sums) not involving c are a4 − b3, a5 − d3, b5 − d4. But
note that

(v3v
′
4 − v4v

′
3)(a4 − b3)− v3(a5 − d3)− v4c3 − v′4 c4 + c5

= v′3(b5 − d4)

Verify

LHS = (v3v
′
4 − v4v

′
3)(a4 − b3)− v3(a5 − d3)− v4c3

− v′4 c4 + c5

(9)
= (v3v

′
4 − v4v

′
3)(a4 − b3)− v3(a5 − v4 a3 − v′4 b3)

− v4(v3a3 + v′3b3)− v′4(v3a4 + v′3b4)
+ (v3a5 + v′3b5)

= v′3(b5 − v4 a4 − v′4 b4)
(9)
= v′3(b5 − d4) = RHS

Note that the scheme is designed to satisfy server symmetry,
so redundancy exists for Server 2 as well. Note also that
the redundant symbols are created in the message symmetry
step so that regardless of the value of θ, the sign structure
(alternating) is maintained and the symbol index structure
is guaranteed to be symmetric. So for all θ ∈ [1 : 4],
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we always have 3 redundant symbols from each server, and
downloading 12 symbols per server suffices. The rate achieved
is L/D = 16/24 = 2/3 = C.

B. Proof of Optimality for Arbitrary K, M and N = 2

To prove optimality, we need to show that the scheme
achieves a rate of

(
1 + 1/2 + · · ·+ 1/2K−1

)−1 = 2K

2(2K−1) .
For this, we will show that the user downloads only
∑M

m=1

((
M
m

)
−
(
M−K

m

))
= 2M − 2M−K symbols from each

server. Note that the message size is L = 2M , then the rate
achieved is 2M

2(2M−2M−K)
= 2K

2(2K−1)
, as desired. Note that

there are
(
M
m

)
symbols queried in Block m, m ∈ [1 : M ] from

each server. However, it turns out that based on information
available from the other sever,

(
M−K

m

)
of these symbols are

redundant. Thus,
(
M
m

)
−
(
M−K

m

)
generic combinations of these(

M
m

)
symbols are sufficient.

Next we prove why this is the case in the following lemma.
Lemma 1: For all θ ∈ [1 : M ], for each server, in Block

m ∈ [1 : M −K],
(
M−K

m

)
of the

(
M
m

)
symbols are redundant,

based on the information available from the other server.
Proof: Let us start with the case where θ = 1. Consider

the m-sum queries that do not involve the desired message u1.

There are
(
M−1

m

)
such queries, divided into two groups:

1)
(
M−1

m

)
−
(
M−K

m

)
queries that involve at least one element

in {u2, · · · , uK},
2)
(
M−K

m

)
queries that do not involve any element in

{u2, · · · , uK}.
The key is that the symbols in Group 2 are redundant.

Specifically, we show that they are functions of the symbols
in Group 1 when u1 is known.11

Example 1: We accompany the general proof with a concrete
example to explain the idea. For this example, assume K = 3
datasets, M = 6 messages, and denote symbols u1, u2, · · · , u6

by distinct letters a, b, · · · , f , respectively, for simplicity. Con-
sider Block m = 3. The queries that do not involve the desired
message u1 are shown below. For this example, we will see
that the only symbol in Group 2 is a function of the 9 symbols
in Group 1.

To simplify the notation, define

q(ui[1:m]) = q({ui1 , ui2 , · · · , uim})

�
m∑

l=1

(−1)l−1uil
(10)

11This is guaranteed because the desired variable u1 in Block k is mixed
with side information in Block k − 1 available from the other server.

where the message indices i1 < i2 · · · < im, and the symbol
indices are suppressed. Consider an arbitrary query in Group 2:

q0 = q(ui[1:m])

where K < i1 < i2 · · · < im. We show that when u1 is
known, the query q0 is a function of

(
m+K−1

m

)
− 1 queries in

Group 1. These
(
m+K−1

m

)
− 1 queries contain an m-sum of

every type12 in I � [2 : K] ∪ i[1:m] (except i[1:m]).

Q �
{

q(uj[1:m]) : j[1:m] ⊂ T
}

(11)

where the set of all possible m distinct indices (types of m-
sums) in I except i[1:m] is denoted as T . Without loss of
generality, we assume j1 < j2 < · · · < jm. The indices of
these queries are assigned by the index assignment process.

From the linear dependence of the messages (3), we have
uil

(∗)=vil(1)u1(∗)+· · ·+vil(K)uK(∗), l ∈ [1 : m] (12)

Note that u1(∗) are assumed known, so u1(∗) could be
canceled (equivalently, we may set u1(∗) to zero). Now we
show that q0 is a linear function of the queries in Q.

q0 =
∑

j[1:m]∈T
h(uj[1:m])q(uj[1:m]) (13)

where the linear combining coefficients h(uj[1:m]) are func-
tions of vi1 , · · · ,vim . The elements of the matrix V∗ �
(vT

i1
vT

i2
· · · vT

im
) are shown below (the rows and columns

are labelled by corresponding messages).
V∗ =

(
vT

i1
vT

i2
· · · vT

im

)

=

ui1 ui2 · · · uim⎛

⎜⎜
⎝

⎞

⎟⎟
⎠

u2 vi1(2) vi2(2) · · · vim(2)

u3 vi1(3) vi2(3) · · · vim(3)

...
...

...
. . .

...
uK vi1(K) vi2(K) · · · vim(K)

In particular, h(uj[1:m]) are specified as follows. Suppose
|j[1:m] ∩ [2 : K]| = t, where t ∈ [1 : m] and denote these t

elements as j̄[1:t] � j[1:m]∩[2 : K]. Then |j[1:m]∩i[1:m]| = m−
t and denote these m− t elements as ī[1:m−t] � j[1:m]∩ i[1:m].
We further define ĩ[1:t] � i[1:m]/ī[1:m−t], where ĩ1 < · · · < ĩt.
For example, suppose K = 5, m = 4, i[1:m] = {6, 7, 9, 11}
and j[1:m] = {2, 4, 6, 11}. Then t = 2 because j[1:m] and
[2 : K] have 2 common elements, i.e., j̄[1:t] = {2, 4}. The
common elements of j[1:m] and i[1:m] are ī[1:m−t] = {6, 11}
and the remaining elements in i[1:m] are ĩ[1:t] = {7, 9}.

We are now ready to give h(uj[1:m]). h(uj[1:m]) is equal to
the determinant of the t×t square matrix obtained as the sub-
matrix of V∗ where the rows correspond to messages uj̄[1:t]
and the columns correspond to messages u�i[1:t] .

h(uj[1:m]) = (−1)
�t

r=1 Ω(�ir)+t(t−1)/2+1

×

∣
∣
∣
∣
∣∣
∣
∣
∣

v�i1(j̄1) v�i2(j̄1) · · · v�it(j̄1)

v�i1(j̄2) v�i2(j̄2) · · · v�it(j̄2)

...
...

. . .
...

v�i1(j̄t)
v�i2(j̄t)

· · · v�it(j̄t)

∣
∣
∣
∣
∣∣
∣
∣
∣

(14)

12Type refers to the set of message indices that appear in a query. For
example, the type of q(ui[1:m] ) is {i1, i2, · · · , im}.
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where Ω(̃ir) is defined as the position13 of ĩr in the lexi-
cographic ordering of the elements of i[1:m]. For example,
suppose i[1:m] = {4, 6, 7, 9}. Then if ĩr = 6, then Ω(̃ir) = 2.
Similarly, if ĩr = 9, then Ω(̃ir) = 4.

Let us verify that (13) holds. In (13),
(
m+K−1

m−1

)
distinct

symbol indices appear, and each of those symbol indices is
assigned to K message variables. Pick any m− 1 messages
from the m +K − 1 messages uI , say uα[1:m−1] , where α1 <
· · · < αt ≤ K < αt+1 < · · · < αm−1, t ∈ [0 : K − 1]. The
same index (denoted by #) is assigned to the variables

uI/uα[1:m−1] � uβ[1:K] (15)

where β1 < · · · < βK−1−t ≤ K < βK−t < · · · < βK . From
(15), we have

α[1:t] ∪ β[1:K−1−t] = [2 : K] (16)

α[t+1:m−1] ∪ β[K−t:K] = i[1:m] (17)

The K variables uβ[1:K](#) appear in the following K queries.

ql � q(uα[1:m−1]∪βl
), l ∈ [1 : K]. (18)

We show that for any m− 1 distinct indices α[1:m−1] in I,
(13) holds for the K variables uβ[1:K](#). Using (12), we write
uβ[1:K](#) as linear combinations of u[2:K](#). Next we prove
that (13) holds for uη(#), ∀η ∈ [2 : K]. Define

V = [Vi,j ](t+1)×(t+1)

�

⎛

⎜⎜
⎜
⎜
⎜
⎝

vβK−t(η) vβK−t+1(η) · · · vβK(η)

vβK−t(α1) vβK−t+1(α1) · · · vβK(α1)

vβK−t(α2) vβK−t+1(α2) · · · vβK(α2)

...
...

. . .
...

vβK−t(αt) vβK−t+1(αt) · · · vβK(αt)

⎞

⎟⎟
⎟
⎟
⎟
⎠

(19)

and the minor of V (the determinant of the submatrix formed
by deleting the i-th row and j-column) is denoted by Mi,j .
Note that α[t+1:m−1] ∪ β[K−t:K] = i[1:K], so

{Ω(αt+1) ∪ · · · ∪ Ω(αm−1) ∪ Ω(βK−t) ∪ · · ·Ω(βK)}
= {Ω(i1) ∪ · · · ∪Ω(iK)} = [1 : K] (20)

and

Δuβr
(qr)= t+Ω(βγ)−(r−(K−t)), ∀r ∈ [K−t : K]

(21)

We now consider two cases for η.
Case 1: η ∈ α[1:t]. In this case, uη(#) variables come from

uβ[K−t:K](#). (13) boils down to

13The variable Ω is introduced to specify the signs of h(uj[1:m] ) (refer to
(14)) so that the signs match the terms from the expansion of the determinant
of sub-matrices of V∗ (e.g., refer to (23) and (38)), which is required for the
proof of redundancy.

(
K∑

r=K−t

h(uα[1:m−1]∪βr)× (−1)Δuβr
(qr)+1vβr(η)

)

× uη(#) = 0 (22)

⇐= vβK−t(η)(−1)
ΔuβK−t

(qK−t)+1

× (−1)
�K

s=K−t Ω(βs)−Ω(βK−t)+t(t−1)/2+1M1,1

+ vβK−t+1(η)(−1)
ΔuβK−t+1

(qK−t+1)+1

× (−1)
�K

s=K−t Ω(βs)−Ω(βK−t+1)+t(t−1)/2+1M1,2 + · · ·
+ vβK(η)(−1)ΔuβK

(qK)+1

× (−1)
�K

s=K−t Ω(βs)−Ω(βK)+t(t−1)/2+1M1,t+1 = 0
(23)

⇐= vβK−t(η)M1,1 − vβK−t+1(η)M1,2 · · ·
+ (−1)t+2vβK(η)M1,t+1 = 0 (24)

⇐= V1,1M1,1 − V1,2M1,2 · · ·+ (−1)t+2V1,t+1M1,t+1

= |V| = 0 (25)

where (24) follows from the observation that consecutive terms
in (23) have alternating signs, proved as follows. For any
r ∈ [K − t : K − 1],

(−1)Δuβr
(qr)+1(−1)

�K
s=K−t Ω(βs)−Ω(βr)+t(t−1)/2+1

(21)
= (−1)t+Ωβr−(r−(K−t))+1

× (−1)
�K

s=K−t Ω(βs)−Ω(βr)+t(t−1)/2+1

= (−1)t−(r−(K−t))+1(−1)
�K

s=K−t Ω(βs)+t(t−1)/2+1

= (−1)× (−1)t+Ω(βr+1)−(r+1−(K−t))+1

× (−1)
�K

s=K−t Ω(βs)−Ω(βr+1)+t(t−1)/2+1

(21)
= (−1)× (−1)

Δuβr+1
(qr+1)+1

× (−1)
�K

s=K−t Ω(βs)−Ω(βr+1)+t(t−1)/2+1 (26)

(25) is due to the fact that η ∈ α[1:t], so V has two identical
rows and its determinant is 0.

Case 2: η ∈ β[1:K−1−t]. In this case, uη(#) variables come
from uβ[K−t:K]∪η(#). If α[1:m−1] ∩ [2 : K] 
= ∅, (13) boils
down to
(

h(uη∪α[1:m−1])(−1)Δuη (q(uα[1:m−1]∪η))+1

+
K∑

r=K−t

h(uα[1:m−1]∪βr)× (−1)Δuβr
(qr)+1vβr(η)

)

× uη(#) = 0 (27)

⇐= |V| − |V| = 0 (28)

where the second term of (28) follows from (25) and the ‘−’
sign in (28) is due to the fact that in (27), the sign of the first
term is different from the sign of the second term, proved as
follows.

(−1)Δuη (q(uα[1:m−1]∪η))+1(−1)Δuη (q(uα[1:m−1]∪η))+1

× (−1)
�K

s=K−t Ω(βs)+t(t+1)/2+1

= (−1)× (−1)t+Ω(βK−t)+1

× (−1)
�K

s=K−t+1 Ω(βs)+t(t−1)/2+1

(21)
= (−1)× (−1)

ΔuβK−t
(qK−t)+1
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× (−1)
�K

s=K−t+1 Ω(βs)+t(t−1)/2+1 (29)

Note that in the first line, the first (−1)Δuη (q(uα[1:m−1]∪η))+1

term is to account for the different ordering of the vectors in
V that appear in defining h(uη∪α[1:m−1]).

Otherwise, if α[1:m−1]∩ [2 : K] = ∅, i.e., α[1:m−1] ⊂ i[1:m],
we have t = 0 and (13) boils down to

(−1)ΔuβK
(qK)+1

vβK(η)

= h(uη∪α[1:m−1])(−1)Δuη (q(uα[1:m−1]∪η))+1 (30)

⇐= (−1)ω(βK)+1vβK(η) = h(uη∪α[1:m−1]) (31)

where (31) follows from ΔuβK
(qK) = ω(βK) as in

qK , the messages are uβK ∪ uα[1:m−1] = ui[1:m] , and
Δuη (q(uα[1:m−1]∪η)) = 1 as η ≤ K < α1. Note that (31)
is the definition of h(uη∪α[1:m−1]) (see (14)). Therefore the
proof is complete.

Example 1 (Continued): Consider the query in Group 2,
dj10 − ej9 + fj8 . We show that it is a function of the 9 queries
in Group 1, when the desired variables (a∗) are set to zero.

dj10 − ej9 + fj8

= −
∣
∣
∣
∣
v5(2) v6(2)

v5(3) v6(3)

∣
∣
∣
∣ (bj5 − cj2 + dj1)

+
∣
∣
∣
∣
v4(2) v6(2)

v4(3) v6(3)

∣
∣
∣
∣ (bj6 − cj3 + ej1)

−
∣∣
∣
∣
v4(2) v5(2)

v4(3) v5(3)

∣∣
∣
∣ (bj7 − cj4 + fj1)

+ v6(2) (bj8 − dj3 + ej2)− v5(2) (bj9 − dj4 + fj2)
+ v4(2) (bj10 − ej4 + fj3) + v6(3) (cj8 − dj6 + ej5)
− v5(3) (cj9 − dj7 + fj5) + v4(3) (cj10 − ej7 + fj6)

Example 2: Let us include another example, where K = 4,
M = 8. Consider Block m = 3 and the desired message index
θ = 1. The queries that do not involve u1 are divided into
Group 1 (where u2, u3 or u4 appears) and Group 2 (where
none of u2, u3, u4 appears). Consider a query in Group 2,
q0 = q(u5,6,8), i.e., i1 = 5, i2 = 6, i3 = 8. When u1 is known,
q0 is a function of the following

(
3+4−1

3

)
− 1 = 19 queries.

Here I = {2, 3, 4, 5, 6, 8}.

Q =
{
q(u2,3,4), q(u2,3,5), q(u2,3,6), q(u2,3,8), q(u2,4,5),

q(u2,4,6), q(u2,4,8), q(u2,5,6), q(u2,5,8), q(u2,6,8),
q(u3,4,5), q(u3,4,6), q(u3,4,8), q(u3,5,6), q(u3,5,8),

q(u3,6,8), q(u4,5,6), q(u4,5,8), q(u4,6,8)
}

(32)

The linear combining coefficients in (13) are designed follow-
ing (14). Let us verify (13) for the symbols with a particular
index value, #. To this end, let us pick the m − 1 = 2
message indices α1 = 3, α2 = 4 (note that {3, 4} ⊂ I).
As α2 = 4 ≤ K = 4, we have t = 2. The variables with index
# are from u2, u5, u6, u8 (from the difference set of I and
{α1, α2}), so that we have β1 = 2, β2 = 5, β3 = 6, β4 = 8.
These 4 variables appear in queries

q1 = q(u2,3,4), q2 = q(u3,4,5),
q3 = q(u3,4,6), q4 = q(u3,4,8). (33)

We can write u5(#), u6(#), u8(#) as a linear combination
of u2(#), u3(#), u4(#) after u1(#) is eliminated, or equiv-
alently, set to zero. Next we show that (13) holds for u3(#).
In this case, η = 3 and η ⊂ {α1, α2} = {3, 4}, so we are in
Case 1. We want to show the following.
(
h(u3,4,5)× (−1)Δu5(q(u3,4,5))+1v5(3)

+ h(u3,4,6)× (−1)Δu6(q(u3,4,6))+1v6(3)

+ h(u3,4,8)× (−1)Δu8(q(u3,4,8))+1v8(3)

)
u3(#)

= 0 (34)

⇐⇒ h(u3,4,5)v5(3) + h(u3,4,6)v6(3) + h(u3,4,8)v8(3)

= 0 (35)

Note that Δu5(q(u3,4,5)) is related to Ω(5). We now find
h(u3,4,5). Referring to (14), we have

j1 = 3, j2 = 4, j3 = 5, j̄1 = 3, j̄2 = 4 (36)

ī = 5, ĩ1 = 6, ĩ2 = 8, Ω(6) = 2, Ω(8) = 3
(37)

h(u3,4,5) = (−1)Ω(6)+Ω(8)+2×1/2+1

∣
∣
∣
∣
v6(3) v8(3)

v6(4) v8(4)

∣
∣
∣
∣

= −
∣
∣
∣
∣
v6(3) v8(3)

v6(4) v8(4)

∣
∣
∣
∣ (38)

Similarly,

h(u3,4,6) =
∣
∣
∣
∣
v5(3) v8(3)

v5(4) v8(4)

∣
∣
∣
∣,

h(u3,4,6) = −
∣
∣
∣
∣
v5(3) v6(3)

v5(4) v6(4)

∣
∣
∣
∣. (39)

Therefore (35) is equivalent to

−
∣
∣
∣
∣
v6(3) v8(3)

v6(4) v8(4)

∣
∣
∣
∣ v5(3) +

∣
∣
∣
∣
v5(3) v8(3)

v5(4) v8(4)

∣
∣
∣
∣ v6(3)

−
∣∣
∣
∣
v5(3) v6(3)

v5(4) v6(4)

∣∣
∣
∣ v8(3)

= −

∣∣
∣
∣
∣
∣

v5(3) v6(3) v8(3)

v5(3) v6(3) v8(3)

v5(4) v6(4) v8(4)

∣∣
∣
∣
∣
∣
= 0 (40)

and thus (35) holds. For the other case (Case 2), we show
that (13) holds for u2(#), i.e., η = 2 and η = β1 = 2. In this
case, we want to show
(
h(u2,3,4)× (−1)Δu2(q(u2,3,4))+1

+ h(u3,4,5)× (−1)Δu5(q(u3,4,5))+1v5(2)

+ h(u3,4,6)× (−1)Δu6(q(u3,4,6))+1v6(2)

+ h(u3,4,8)× (−1)Δu8(q(u3,4,8))+1v8(2)

)
× u2(#)

= 0 (41)

⇐⇒ h(u2,3,4) + h(u3,4,5)v5(2) + h(u3,4,6)v6(2)

+ h(u3,4,8)v8(2) = 0 (42)

Following the definition of h(u2,3,4) (refer to (14)), we find
that

h(u2,3,4) =

∣∣
∣
∣
∣
∣

v5(2) v6(2) v8(2)

v5(3) v6(3) v8(3)

v5(4) v6(4) v8(4)

∣∣
∣
∣
∣
∣

(43)
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Then (42) is equivalent to

∣
∣∣
∣
∣
∣

v5(2) v6(2) v8(2)

v5(3) v6(3) v8(3)

v5(4) v6(4) v8(4)

∣
∣∣
∣
∣
∣
−

∣
∣∣
∣
∣
∣

v5(2) v6(2) v8(2)

v5(3) v6(3) v8(3)

v5(4) v6(4) v8(4)

∣
∣∣
∣
∣
∣
= 0 (44)

and thus (42) holds. Let us consider another index (#′) where
α1 = 5, α2 = 6, i.e., α1 > K = 4 and t = 0. The index #′

is assigned to variables from u2, u3, u4, u7 (β1 = 2, β2 =
3, β3 = 4, β4 = 7) in queries

q1 = q(u2,5,6), q2 = q(u3,5,6),
q3 = q(u4,5,6), q4 = q(u5,6,7). (45)

After writing every variable in terms of u2, u3, u4 (u1 terms
are set to zero because they are known and can be removed),
we show that (13) holds for u2(#′), u3(#′), u4(#′). Note that
no matter which variable we pick, say u4(#′), i.e., η = 4,
η ∈ {2, 3, 4} = {β1, β2, β3}. Further {α1, α2}∩{2, 3, 4} = ∅.
In this case, we want to show

(−1)Δu7(q5,6,7)+1v7(4)u4(#′)

= h(u4,5,6)(−1)Δu4(q(u4,5,6)+1u4(#′) (46)

⇐⇒ v7(4) = h(u4,5,6) (47)

which matches the definition of h(u4,5,6) (see (14)) thus
holds.

The proof for arbitrary θ 
= 1 follows similarly. Since the
first K of the M linear combinations are linearly independent
(in fact, they are the K independent datasets), there exist K−1
messages from u[1:K] (denoted as ur[2:K] , r[2:K] ⊂ [1 : K])
such that uθ ∪ ur[2:K] are independent. Similarly, consider
the m-sum queries that do not involve the desired message
uθ, which are further divided into two groups, depending
on whether at least one element from ur[2:K] is involved
(Group 1) or not (Group 2). We show that any query q0 =
q(ui[1:m]), i[1:m] ∩ (θ ∪ r[2:K]) = ∅ in Group 2 is a function of
the queries in Group 1. q0 exists as m ≤M −K . The symbol
indices in q0 are assigned by the index assignment process.
By a change of basis, we express each variable as a linear
combination of uθ ∪ ur[2:K] . Then we show that q0 is a linear
combination of the queries q(uj[1:m]), where j[1:m] ∈ T ′, and
T ′ is the set of all possible m distinct indices in r[2:K]∪ i[1:m]

except i[1:m]. The rest of the proof, where we design the
linear combining coefficients and show the linear combination
holds, is identical to the case of θ = 1 (by an invertible
mapping from r[2:K] to [2 : K], and between i[1:m] of the two
cases).

Example 3: We give an example where θ 
= 1. Assume
K = 3 datasets, M = 6 messages, θ = 5, and denote
symbols u1, u2, · · · , u6 by distinct letters a, b, · · · , f , respec-
tively. Consider Block m = 2. There exists two messages in
a, b, c (assume without loss of generality, a, b) such that a, b, e
are independent. The queries that do not involve the desired
message e are shown below. The queries are divided into
Group 1 (where a or b appears) and Group 2 (where none
of a, b appears).

We express c, d, f as a linear combination of a, b, e (note that
a, b, e are linearly independent). Assume

c = vc(a)a + vc(b)b + vc(e)e (48)

d = vd(a)a + vd(b)b + vd(e)e (49)

f = vf(a)a + vf(b)b + vf(e)e (50)

The queries in Group 2 are functions of the queries in Group
1. For example, consider cj5 − fj3 . When e∗ are set to zero,
we have

cj5 − fj3 = −
∣
∣∣
∣
vc(a) vf(a)

vc(b) vf(b)

∣
∣∣
∣ (aj2 − bj1)

− vf(a) (aj3 − cj1) + vc(a) (aj5 − fj1)
− vf(b) (bj3 − cj2) + vc(b) (bj5 − fj2) (51)

where the linear combining coefficients are determined by the
following matrix.

c f( )
a vc(a) vf(a)

b vc(b) vf(b)

For example, for aj3 − cj1 , from (14), the linear coefficient is
(−1)2+0+1vf(a) = −vf(a).

C. Proof of Optimality for Arbitrary K, M, N

The proof of optimality when N > 2 follows from that
when N = 2. The query structure of any query vertex at level
m for arbitrary N is identical to the structure of a query vertex
at level m for the N = 2 setting. From the observations listed
in Section IV-A.2, recall that for any N > 2, the queries
from each server in block m are made up of (N − 1)m−1

query vertices. Also let us recall from Lemma 1 that when
N = 2, for each server there are

(
M−K

m

)
redundant symbols

within each level m query vertex, m ∈ [1 : M − K].
Therefore, when N > 2, there are (N − 1)m−1

(
M−K

m

)

redundant symbols in block m, and it suffices to download
only N

(∑M
m=1(N − 1)m−1

((
M
m

)
−
(
M−K

m

)))
symbols in

total from all N servers. The rate achieved is14

R =
NM

N
(∑M

m=1(N − 1)m−1
((

M
m

)
−
(
M−K

m

))) (52)

14The message size L for our capacity achieving scheme is NM , which
increases with M (note that this is in contrast to the capacity, which does not
depend on M ). Generalizations of the private computation problem to include
finite message size constraints along the lines of [15] remain an interesting
direction for future work.
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=
NM

N × 1
N−1 (NM −NM−K)

=
N − 1

N

NK

NK − 1
(53)

=
(

1 +
1
N

+ · · ·+ 1
NK−1

)−1

(54)

which matches the capacity of private computation. The opti-
mality proof is therefore complete.

VI. PROOF OF PRIVACY OF PC
A. Proof of Privacy for Example A

To see why this scheme is private, we show that the queries
are identically distributed, regardless of the value of θ. To this
end, we show that the query for θ = 2, 3, 4 has a one-to-one
mapping to the query for θ = 1, respectively, through a choice
of permutation π and signs σi which is made privately and
uniformly by the user.

For example, for Server 1 and Server 2, the query for θ = 2
can be converted into the query for θ = 1 by the following
mapping:

Server 1: (3, 2, 7, 9, 10, 8, 15, 14,−σ6,−σ12,−σ13)
−→ (2, 3, 9, 7, 8, 10, 14, 15, σ6, σ12, σ13)

Server 2: (6, 1, 12, 4, 13, 5, 16, 11,−σ3,−σ9,−σ10)
−→ (1, 6, 4, 12, 5, 13, 11, 16, σ3, σ9, σ10)

However, these mappings are privately generated by the user
and both alternatives are equally likely regardless of desired
message. Hence, these queries are indistinguishable.

We can similarly verify that the other remaining queries
for θ = 3, 4, are indistinguishable as well. For Server 1 and
Server 2, the query for θ = 3 can be converted into the query
for θ = 1 by the following mapping:

Server 1: (3, 4, 2, 7, 6, 9, 10, 11, 8,−σ8, 14, 13, 15,−σ12)
−→ (2, 3, 4, 9, 7, 6, 8, 10, 11, σ11, 15, 14, 13, σ12)

Server 2: (7, 6, 1, 4, 3, 12, 14, 13, 5,−σ5, 11, 10, 16,−σ9)
−→ (6, 1, 7, 12, 4, 3, 13, 5, 14, σ14, 16, 11, 10, σ9)

The last case is when θ = 4. The mapping from that to θ = 1
is as follows.

Server 1: (3, 4, 5, 2, 6, 7, 8, 9, 10, 11, 14, 13, 12, 15)
−→ (2, 3, 4, 5, 8, 10, 11, 6, 7, 9, 15, 14, 13, 12)

Server 2: (6, 7, 8, 1, 3, 4, 5, 12, 13, 14, 11, 10, 9, 16)
−→ (1, 6, 7, 8, 5, 13, 14, 3, 4, 12, 16, 11, 10, 9)

Again, since these mappings are privately generated by the
user and both alternatives are equally likely regardless of
desired message, these queries are indistinguishable. Thus all
queries are indistinguishable and the scheme is private.

B. Proof of Privacy for Arbitrary K, M, N

We prove that PC is private. We know that PIR2 is private
and PC is obtained from PIR2 by the sign assignment.
Therefore it suffices to show that the sign assignment does not
destroy privacy, i.e., Q(n, ‘θ’) still has a one-to-one mapping

to Q(n, ‘1’) by a choice of permutation π and signs σi which
is made by the user privately and uniformly.

The one-to-one mapping is quite simple. Note that each
query in Q(n, ‘1’) has alternating signs. Consider Q(n, ‘θ’).
We only need to consider the non-desired symbols in queries
introduced by Exploit-SI (so uθ is involved). The reason is
that the signs of the desired symbols introduced by Exploit-
SI and the other queries introduced by M-Sym are the same
as the signs of the queries in Q(n, ‘1’).15 These queries all
satisfy that ΔWθ

> 0. Now to map Q(n, ‘θ’) to Q(n, ‘1’), for
each block, we flip the signs (i.e., replace σi with −σi) of
variables to the right of uθ in queries from sub-blocks S if S
is odd, and the signs of variables to the left of uθ in queries
from sub-blocks S if S is even.

Example 4: We accompany the general proof with a concrete
example to explain the idea. Consider M = 6 (messages),
block m = 4, desired message index θ = 4. For simplicity,
we denote u1, u2, · · · , u6 by a, b, · · · , f . In Block B = m =
4, we have

(
6−1
4−1

)
= 10 queries introduced by Exploit-SI

(contains d) as follows. The signs that need to be flipped are
colored in red.

Note that σi appears in all message variables with symbol
index i, so σi might be flipped multiple times and we need to
make sure that σi is flipped consistently, i.e., the sign flipping
rule either changes or does not change the signs of all variables
with the same index. This is indeed true, proved as follows.
Note that we flip the signs depending on whether the sub-block
index is even or odd and if the variables are to the left or right
of uθ . This means, for variables in two consecutive sub-blocks,
the variables to the left of uθ in one sub-block and the variables
to the right of uθ in the other sub-block are simultaneously
flipped or unflipped. So it suffices to show that all variables
with the same index are

• either in the same sub-block, and all are on the same side
of uθ,

• or in two consecutive sub-blocks, but are on different
sides of uθ.

15Note that the indices of the non-desired symbols introduced by Exploit-
SI do not appear in the queries introduced by M-Sym. The reason is seen as
follows. Consider a symbol ui, i �= θ that appears in a query introduced by
Exploit-SI (denote the query by q, so uθ appears in q) and suppose the index
of ui is j (i.e., we have ui(j)). Now from index assignment, symbols with
index j all appear in terms that contain uθ (thus these terms are all generated
by Exploit-SI).
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Example 4 (Continued): Referring to the table above, con-
sider all variables with index j1, i.e., cj1 , ej1 , fj1 . cj1 is in
sub-block 1 and is to the left of d. ej1 , fj1 are in sub-block 2
and are to the right of d. Further, the signs of cj1 , ej1 , fj1 are
all unflipped. As another example, consider all variables with
index j10, i.e., aj10 , bj10 , cj10 . They are all in sub-block 3 and
their signs are all unflipped. One more example: all variables
with index j6, aj6 , cj6 , fj6 . aj6 , cj6 are in sub-block 2 and are
to the left of d. fj6 is in sub-block 3 and is to the right of d.
The signs of aj6 , cj6 , fj6 all need to be flipped.

We now find variables with the same symbol index, say #.
From index assignment, we know that all occurrences of
symbol index # are in queries that contain the same m − 1
(distinct) variables (uθ included). Suppose the message indices
of these m−1 variables are i[1:m−2]∪θ, and let the remaining
M − (m − 1) message indices be denoted by r[1:M−(m−1)].
Assume that i1 < i2 · · · < ij < uθ < uj+1 · · · < uim−2 . Then
the symbol index # appears in queries

±ur1(#)± ui1()± · · · ± uij ()± uθ()± uij+1()
± · · · ± uim−2()
...

±ui1()± · · · ± uij ()± uθ()± uij+1()± · · · ± uim−2()
± urM−(m−1)(#) (55)

where ± represents either ‘+’ or ‘−’, determined by sign
assignment. These M − (m − 1) variables url

, l ∈ [1 :
M − (m − 1)] can be divided into two sets (one set could
be empty), where

• the first set are those url
where rl < θ

• and the second set are those url
where rl > θ

So the variables in the first set are to the left of uθ and the
variables in the second set are to the right of uθ. Further,
the two sets are in consecutive sub-blocks because Δuθ

only
differs by 1. Therefore the sign flipping rule is consistent and
the privacy proof is complete.

Example 4 (Continued): Suppose we want to find all vari-
ables with index # = j1. They appear in queries that contain
a, b, d. The queries in (55) are

aj5 − bj2 + cj1 − d∗
−aj6+bj3 + d∗ − ej1

−aj7+bj4 + d∗ − fj1

The 3 variables with index # = j1 are cj1 , ej1 , fj1 (colored
in blue). The first set contains cj1(< d) (in sub-block 1) and
the second set contains ej1 , fj1(> d) (in sub-block 2). As
another example, suppose we want to find all variables with
index # = j10. The queries in (55) are

aj10 − d∗−ej4+fj3

bj10 − d∗−ej7+fj6

cj10 − d∗−ej9+fj8

The 3 variables with index # = j10 are aj10 , bj10 , cj10(< d).
They all belong to the first set (sub-block 3). One more
example: find all variables with index # = j6. The queries

in (55) are

−aj6+bj3 + d∗ − ej1

−bj8+cj6 + d∗ − ej5

bj10 − d∗−ej7+fj6

The 3 variables with index # = j6 are aj6 , cj6 , fj6 . The first
set contains aj6 , cj6(< d) (in sub-block 2) and the second set
contains fj6(> d) (in sub-block 3).

VII. CONCLUSION

Motivated by privacy concerns in distributed computing,
we introduce the private computation problem where a user
wishes to compute a desired function of datasets stored at
distributed servers without disclosing any information about
the function that he wishes to compute to any individual
server. The private computation problem may be seen as a
generalization of the PIR problem by allowing dependencies
among messages. We characterize in Theorem 1 the capacity
of private computation for arbitrary N servers, arbitrary K
independent datasets, and arbitrary M linear combinations
of the K independent datasets as the possible functions.
Surprisingly, this capacity turns out to be identical to the
capacity of PIR with N servers and K independent messages.
Thus, there is no loss in capacity from the expansion of
possible messages to include arbitrary linear combinations.

Going beyond linear-combinations, we show in Theorem 2
that in the asymptotic limit where the number of independent
datasets K → ∞, the capacity of private computation is
not affected by allowing non-linear functions into the set of
functions that may be computed by the user, provided the
symbol-wise entropy of each of these functions is no more
than the entropy of a symbol from a dataset.

In the non-asymptotic regime, the capacity of private com-
putation with arbitrary (non-linear) functions is an interesting
direction for future work. Along these lines, let us conclude
with the following two observations. The first observation
is a general achievability argument for private computation.
Consider the most general setting, where we allow the M
messages to be arbitrarily dependent and even the entropies of
the message symbols are allowed to be different for different
messages. Suppose each message Wm, m ∈ [1 : M ] is made
of L symbols Wm = (Wm,1, Wm,2, · · · , Wm,L). While the
messages may have arbitrary dependencies, the sequence of
symbols is generated i.i.d. in l, i.e., for all l ∈ [1 : L],
the symbols (W1,l, W2,l, · · · , WM,l) ∼ (w1, w2, · · · , wM ).
We have

H(W1, · · · , WM ) = LH(w1, · · · , wM ) (56)

H(Wm) = LH(wm), m ∈ [1 : M ] (57)

Symbols from different messages may not have the same
entropy, i.e., we allow the possibility that H(wi) 
= H(wj).
In this general setting, the private computation rate of R =
Hmin
Hmax

(1 − 1
N ) is always achievable, (although not optimal in

general) where Hmax = max(H(w1), H(w2), · · · , H(wM ))
and Hmin = min(H(w1), H(w2), · · · , H(wM )). Just like the
achievability argument for Theorem 2, the general achievabil-
ity claim follows essentially from [8]. For example, suppose
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N = 2. First we compress each message separately into Hmax

bits per message symbol. This is possible because ∀m ∈ [1 :
M ], H(wm) ≤ Hmax. Then, in order to retrieve the ith bit of
the compressed desired message, Wθ,i, the user requests from
Server 1, the linear combination

∑M
m=1 cmWm,i and from

Server 2, the linear combination
∑M

m=1 cmWm,i+Wθ,i, where
cm are i.i.d. uniform binary coefficients generated privately by
the user and all operations are over F2. Adding the answers
received from the two servers, allows the user to recover Wθ,i.
The total number of bits downloaded is 2Hmax, while the
number of desired bits retrieved is at least Hmin. Thus, the rate
achieved is at least Hmin

2Hmax
= Hmin

Hmax
(1 − 1

N ) for N = 2.
Similarly, following the approach of [8], the rate Hmin

Hmax
(1− 1

N )
is achieved for arbitrary N .

The second observation is the capacity characterization for
an elemental case where we have M = 2 arbitrarily correlated
messages and N servers. Again consider the general setting
with arbitrary dependencies and without loss of generality,
suppose H(w1) ≥ H(w2). In this case, the capacity is C =

NH(w2)
H(w1,w2)+(N−1)H(w1) .

The converse is proved as follows. From Fano’s inequality,
we have

LH(w1)
(57)
= H(W1) (58)
(7)
= I(W1; A

[1]
1 , Q

[1]
1 , · · · , A[1]

N , Q
[1]
N ) + o(L) (59)

(4)
= I(W1; A

[1]
1 , · · · , A[1]

N |Q
[1]
1 , · · · , Q[1]

N ) + o(L) (60)

= H(A[1]
1 , · · · , A[1]

N |Q
[1]
1 , · · · , Q[1]

N )

−H(A[1]
1 , · · · , A[1]

N |W1, Q
[1]
1 , · · · , Q[1]

N ) + o(L)
(61)

(6)

≤ D −H(A[1]
1 |W1, Q

[1]
1 , · · · , Q[1]

N ) + o(L) (62)

= D −H(A[1]
1 |W1, Q

[1]
1 ) + o(L) (63)

(5)
= D −H(A[2]

1 |W1, Q
[2]
1 ) + o(L) (64)

where (63) follows from that H(A[1]
1 |W1, Q

[1]
1 , · · · , Q[1]

N ) =
H(A[1]

1 |W1, Q
[1]
1 ), proved as follows.

I(A[1]
1 ; Q[1]

2 , · · · , Q[1]
N |W1, Q

[1]
1 )

≤ I(A[1]
1 , W2; Q

[1]
2 , · · · , Q[1]

N |W1, Q
[1]
1 ) (65)

= I(W2; Q
[1]
2 , · · · , Q[1]

N |W1, Q
[1]
1 )

+ I(A[1]
1 ; Q[1]

2 , · · · , Q[1]
N |W1, W2, Q

[1]
1 ) (66)

(5)
= I(W2; Q

[1]
2 , · · · , Q[1]

N |W1, Q
[1]
1 ) (67)

≤ I(W2, W1; Q
[1]
2 , · · · , Q[1]

N |Q
[1]
1 ) (68)

≤ I(W2, W1; Q
[1]
1 , · · · , Q[1]

N ) (69)
(4)
= 0 (70)

By a similar argument, we have

I(A[2]
1 ; Q[2]

2 , · · · , Q[2]
N |W1, Q

[2]
1 ) = 0

(71)

I(A[2]
n ; Q[2]

1 , · · · , Q[2]
n−1, Q

[2]
n+1, · · · , Q

[2]
N |W1, Q

[2]
n ) = 0

(72)

Next, from (64), by symmetry, we have

LH(w1) ≤ D −H(A[2]
n |W1, Q

[2]
n ) + o(L), ∀n ∈ [2 : N ]

(73)

Adding (64) and (73) for all n ∈ [2 : N ], we have

NLH(w1) + o(L)

≤ ND −
N∑

n=1

H(A[2]
n |W1, Q

[2]
n ) (74)

(71)(72)
= ND −

N∑

n=1

H(A[2]
n |W1, Q

[2]
1 , · · · , Q[2]

N ) (75)

≤ ND −H(A[2]
1 , · · · , A[2]

N |W1, Q
[2]
1 , · · · , Q[2]

N ) (76)
(7)
= ND −H(A[2]

1 , · · · , A[2]
N , W2|W1, Q

[2]
1 , · · · , Q[2]

N )
(77)

≤ ND −H(W2|W1, Q
[2]
1 , · · · , Q[2]

N ) (78)
(4)
= ND −H(W2|W1) (79)
(56)(57)

= ND − LH(w2|w1) (80)

=⇒ R =
H(W2)

D

≤ lim
L→∞

LH(w2)
1
N (NLH(w1) + LH(w2|w1) + o(L))

(81)

=
NH(w2)

H(w1, w2) + (N − 1)H(w1)
(82)

The converse proof is thus complete.
The achievability is based on PIR2 . Consider N2 symbols

of each message at a time. The user privately generates a
random permutation over [1 : N2], and applies the same
permutation to both messages, taken N2 symbols at a time.
Denote this random permutation of the N2 symbols from
W1 as a1, a2, · · · , aN2 . Similarly, the corresponding ran-
dom permutation of the N2 symbols from W2 is denoted
as b1, b2. · · · , bN2 . Note that only symbols with the same
index are correlated. Without loss of generality, suppose
W2 is desired, and consider the queries generated according
to PIR2 .

In order to send (a1, b1), Server 1 needs only H(w1, w2) bits.
Note that optimal compression requires long sequences, so the
scheme operates over LN2 symbols each of W1 and W2, for
large L, so that a1 is a sequence of L symbols from W1, and
b1 is the corresponding sequence of L symbols from W2, and
optimal compression is possible as L→∞. Thus, for (a1, b1)
the server sends LH(w1, w2) + o(L) bits. For a2 + bN+1,
the key is that the server first compresses the L symbols of a2,
and the L symbols of bN+1, separately, each into LH(w1) +
o(L) bits. This is possible because H(w1) ≥ H(w2). And then
the server sends the sum of the compressed bits, for a total of
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LH(w1)+o(L) bits. Each 2-sum a+b is compressed similarly.
Thus, the total download from Server 1 is LH(w1, w2) +
L(N − 1)H(w1) + o(L) bits. The total download from all
servers is N times that number of bits. The total number
of desired bits retrieved is LN2H(w2). Therefore, the rate
achieved is limL→∞ LN2H(w2)/N(LH(w1, w2) + L(N −
1)H(w1)+o(L)) = NH(w2)/(H(w1, w2)+(N−1)H(w1)),
and the capacity for this case is settled. Finding the capacity
for 3 or more dependent messages with arbitrary dependencies
is the next immediate open problem for future work.

REFERENCES

[1] R. Ostrovsky and W. E. Skeith, III, “Private searching on streaming
data,” J. Cryptol., vol. 20, no. 4, pp. 397–430, 2007.

[2] Z. Chen, Z. Wang, and S. Jafar, “The asymptotic capacity of private
search,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2018,
pp. 2122–2126.

[3] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514–1529, Mar. 2018.

[4] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 2100–2108.

[5] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed comput-
ing,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–128, Jan. 2018.

[6] H. Sun and S. A. Jafar, “The capacity of private information retrieval,”
IEEE Trans. Inf. Theory, vol. 63, no. 7, pp. 4075–4088, Jul. 2017.

[7] H. Sun and S. A. Jafar, “The capacity of robust private information
retrieval with colluding databases,” IEEE Trans. Inf. Theory, vol. 64,
no. 4, pp. 2361–2370, Apr. 2018.

[8] H. Sun and S. A. Jafar, “The capacity of symmetric private information
retrieval,” IEEE Trans. Inf. Theory, vol. 65, no. 1, pp. 322–329, Jan.
2019.

[9] K. Banawan and S. Ulukus, “The capacity of private information
retrieval from coded databases,” IEEE Trans. Inf. Theory, vol. 64, no. 3,
pp. 1945–1956, Mar. 2018.

[10] Q. Wang and M. Skoglund, “Symmetric private information retrieval
for MDS coded distributed storage,” in Proc. IEEE Int. Conf. Com-
mun. (ICC), May 2017, pp. 1–6.

[11] K. Banawan and S. Ulukus, “The capacity of private information
retrieval from Byzantine and colluding databases,” IEEE Trans. Inf.
Theory, to be published, doi: 10.1109/TIT.2018.2869154.

[12] R. Tandon. (2017). “The capacity of cache aided private information
retrieval.” [Online]. Available: https://arxiv.org/abs/1706.07035

[13] Y.-P. Wei, K. Banawan, and S. Ulukus, “Fundamental limits of cache-
aided private information retrieval with unknown and uncoded prefetch-
ing,” IEEE Trans. Inf. Theory, to be published, doi: 10.1109/TIT.
2018.2883302.

[14] H. Sun and S. A. Jafar, “Multiround private information retrieval:
Capacity and storage overhead,” IEEE Trans. Inf. Theory, vol. 64, no. 8,
pp. 5743–5754, Aug. 2018.

[15] H. Sun and S. A. Jafar, “Optimal download cost of private information
retrieval for arbitrary message length,” IEEE Trans. Inf. Forensics
Security, vol. 12, no. 12, pp. 2920–2932, Dec. 2017.

[16] H.-Y. Lin, S. Kumar, E. Rosnes, and A. G. I. Amat. (2018). “An MDS-
PIR capacity-achieving protocol for distributed storage using non-MDS
linear codes.” [Online]. Available: https://arxiv.org/abs/1801.04923

[17] S. Kadhe, B. Garcia, A. Heidarzadeh, S. El Rouayheb, and A. Sprintson.
(2017). “Private information retrieval with side information.” [Online].
Available: https://arxiv.org/abs/1709.00112

[18] M. A. Attia, D. Kumar, and R. Tandon. (2018). “The capacity of pri-
vate information retrieval from uncoded storage constrained databases.”
[Online]. Available: https://arxiv.org/abs/1805.04104

[19] Q. Wang and M. Skoglund. (2017). “Linear symmetric private informa-
tion retrieval for MDS coded distributed storage with colluding servers.”
[Online]. Available: https://arxiv.org/abs/1708.05673

[20] M. Mirmohseni and M. A. Maddah-Ali. (2017). “Private function
retrieval.” [Online]. Available: https://arxiv.org/abs/1711.04677

[21] S. A. Obead and J. Kliewer, “Achievable rate of private function retrieval
from MDS coded databases,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2018, pp. 2117–2121.

[22] D. Karpuk, “Private computation of systematically encoded data with
colluding servers,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2018, pp. 2112–2116.

[23] S. A. Obead, H.-Y. Lin, E. Rosnes, and J. Kliewer. (2018). “Capacity
of private linear computation for coded databases.” [Online]. Available:
https://arxiv.org/abs/1810.04230

[24] N. Raviv and D. A. Karpuk. (2018). “Private polynomial computa-
tion from Lagrange encoding.” [Online]. Available: https://arxiv.org/
abs/1812.04142

[25] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private informa-
tion retrieval,” J. ACM, vol. 45, no. 6, pp. 965–982, 1998.

[26] N. B. Shah, K. V. Rashmi, and K. Ramchandran, “One extra bit of
download ensures perfectly private information retrieval,” in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), Jun./Jul. 2014, pp. 856–860.

[27] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information
sources,” IEEE Trans. Inf. Theory, vol. IT-19, no. 4, pp. 471–480,
Jul. 1973.

Hua Sun (S’12–M’17) received his B.E. in Communications Engineering
from Beijing University of Posts and Telecommunications, Beijing, China,
in 2011, M.S. in Electrical and Computer Engineering from University of
California Irvine, USA, in 2013, and Ph.D. in Electrical Engineering from
University of California Irvine, USA, in 2017. He is an Assistant Professor
in the Department of Electrical Engineering at the University of North Texas,
USA. His research interests include information theory and its applications to
communications, privacy, networking, and storage.

Dr. Sun received the IEEE Jack Keil Wolf ISIT Student Paper Award
in 2016, an IEEE GLOBECOM Best Paper Award in 2016, and the University
of California Irvine CPCC Fellowship for the year 2011-2012.

Syed Ali Jafar (S’99–M’04–SM’09–F’14) received his B. Tech. from IIT
Delhi, India, in 1997, M.S. from Caltech, USA, in 1999, and Ph.D. from
Stanford, USA, in 2003, all in Electrical Engineering. His industry experience
includes positions at Lucent Bell Labs and Qualcomm. He is a Professor in the
Department of Electrical Engineering and Computer Science at the University
of California Irvine, Irvine, CA USA. His research interests include multiuser
information theory, wireless communications and network coding.

Dr. Jafar is a recipient of the New York Academy of Sciences Blavat-
nik National Laureate in Physical Sciences and Engineering, the NSF
CAREER Award, the ONR Young Investigator Award, the UCI Academic
Senate Distinguished Mid-Career Faculty Award for Research, the School of
Engineering Mid-Career Excellence in Research Award and the School of
Engineering Maseeh Outstanding Research Award. His co-authored papers
have received the IEEE Information Theory Society Paper Award, IEEE
Communication Society and Information Theory Society Joint Paper Award,
IEEE Communications Society Best Tutorial Paper Award, IEEE Commu-
nications Society Heinrich Hertz Award, IEEE Signal Processing Society
Young Author Best Paper Award, IEEE Information Theory Society Jack
Wolf ISIT Best Student Paper Award, and three IEEE GLOBECOM Best
Paper Awards. Dr. Jafar received the UC Irvine EECS Professor of the
Year award six times, in 2006, 2009, 2011, 2012, 2014 and 2017 from the
Engineering Students Council, a School of Engineering Teaching Excellence
Award in 2012, and a Senior Career Innovation in Teaching Award in 2018.
He was a University of Canterbury Erskine Fellow in 2010 and an IEEE
Communications Society Distinguished Lecturer for 2013-2014. Dr. Jafar was
recognized as a Thomson Reuters/Clarivate Analytics Highly Cited Researcher
and included by Sciencewatch among The World’s Most Influential Scientific
Minds in 2014, 2015, 2016, 2017 and 2018. He served as Associate Editor
for IEEE TRANSACTIONS ON COMMUNICATIONS 2004-2009, for IEEE
COMMUNICATIONS LETTERS 2008-2009 and for IEEE TRANSACTIONS ON

INFORMATION THEORY 2009-2012.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


