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Abstract: We consider the storage–retrieval rate trade-off in private information retrieval (PIR)
systems using a Shannon-theoretic approach. Our focus is mostly on the canonical two-message
two-database case, for which a coding scheme based on random codebook generation and the binning
technique is proposed. This coding scheme reveals a hidden connection between PIR and the classic
multiple description source coding problem. We first show that when the retrieval rate is kept optimal,
the proposed non-linear scheme can achieve better performance over any linear scheme. Moreover,
a non-trivial storage-retrieval rate trade-off can be achieved beyond space-sharing between this
extreme point and the other optimal extreme point, achieved by the retrieve-everything strategy. We
further show that with a method akin to the expurgation technique, one can extract a zero-error PIR
code from the random code. Outer bounds are also studied and compared to establish the superiority
of the non-linear codes over linear codes.

Keywords: capacity; information theory; multiple descriptions; privacy

1. Introduction

Private information retrieval (PIR) addresses the situation of storing K messages of
L-bits each in N databases, with the requirement that the identity of any requested message
must be kept private from any one (or any small subset) of the databases. The early works
were largely computer science theoretic [1], where L = 1, and the main question is the
scaling law of the retrieval rate in terms of (K, N).

The storage overhead in PIR systems has been studied in the coding and information
theory community from several perspectives using mainly two problem formulations. Shah
et al. [2] considered the problem when N is allowed to vary with L and K, and obtained
some conclusive results. In a similar vein, for L = 1, Fazeli et al. [3] proposed a technique
to convert any linear PIR code to a new one with low storage overhead by increasing N.
Other notable results along this line can be found in [4–9].

An information theoretic formulation of the PIR problem was considered in [10],
where L is allowed to increase, while (N, K) are kept fixed. Important properties on
the trade-off between the storage rate and retrieval rate were identified in [10], and a
linear code construction was proposed. In this formulation, even without any storage
overhead constraint, characterizing the minimum retrieval rate in the PIR systems is
nontrivial, and this capacity problem was settled in [11]. Tajeddine et al. [12] considered
the capacity problem when the message is coded across the databases with a maximum-
distance separable (MDS) code, which was later solved by Banawan and Ulukus [13].
Capacity-achieving code designs with optimal message sizes were given in [14,15]. Systems
where servers can collude were considered in [16]. There have been various extensions and
generalizations, and the recent survey article [17] provides a comprehensive overview on
efforts following this information theoretic formulation.
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In many existing works, the storage component and the PIR component are largely de-
signed separately, usually by placing certain structural constraints on one of them, e.g., the
MDS coding requirement for the storage component [13], or the storage is uncoded [18];
moreover, the code constructions are almost all linear. The few exceptions we are aware
of are [19–21]. In this work, we consider the information theoretic formulation of the PIR
problem, without placing any additional structural constraints on the two components,
and explicitly investigate the storage–retrieval trade-off region. We mostly focus on the case
N = K = 2 here since it provides the most important intuition; we refer to this as the (2, 2)
PIR system. Our approach naturally allows the joint design of the two components using
either linear or non-linear schemes.

The work in [19] is of significant relevance to our work, where the storage overhead
was considered in both single-round and multi-round PIR systems, when the retrieval rate
must be optimal. Although multi-round PIR has the same capacity as single-round PIR,
it was shown that at the minimum retrieval rate, a multi-round, ε-error, non-linear code
can indeed break the storage performance barrier of an optimal single-round, zero error,
linear code. The question of whether all the three differences are essential to overcome this
barrier was left as an open question.

In this work, we show that a non-linear code is able to achieve better performance
than the optimal linear code in the single-round zero-error (2, 2) PIR system, over a range
of the storage rates. This is accomplished by providing a Shannon-theoretic coding scheme
based on random codebook generation and the binning technique. The proposed scheme
at the minimum retrieval rate is conceptually simpler, and we present it as an explicit
example. The general inner bound is then provided, and we show an improved trade-off
can be achieved beyond space-sharing between the minimum retrieval rate code and the
other optimal extreme point. By leveraging a method akin to the expurgation technique,
we further show that one can extract a zero-error deterministic PIR code from the random
ε-error PIR code. Outer bounds are also studied for both general codes and linear codes,
which allow us to establish conclusively the superiority of non-linear codes over linear
codes. Our work essentially answers the open question in [19], and shows that, in fact, only
non-linearity is essential in breaking the aforementioned barrier.

A preliminary version of this work was presented first in part in [22]. In this up-
dated article, we provide a more general random coding scheme, which reveals a hidden
connection to the multiple description source coding problem [23]. Intuitively, we can
view the retrieved message as certain partial reconstruction of the full set of messages,
instead of a complete reconstruction of a single message. Therefore, the answers from
the servers can be viewed as descriptions of the full set of messages, which are either
stored directly at the servers or formed at the time of request, and the techniques seen in
multiple description coding become natural in the PIR setting. Since the publication of
the preliminary version [22], several subsequent efforts have been made in studying the
storage–retrieval trade-off in the PIR setting, which provided stronger and more general
information theoretic outer bounds and several new linear code constructions [20,21,24].
However, the Shannon-theoretic random coding scheme given in [22] remains the best-
performing for the (2, 2) case, which motivates us to provide the general coding scheme in
this work and to make the connection to multiple description source coding more explicit.
It is our hope that this connection may bring existing coding techniques for the multiple
description problem to the study of the PIR problem.

2. Preliminaries

The problem we consider is essentially the same as that in [11], with the additional
consideration on the storage overhead constraint at the databases. We provide a formal
problem definition in the more traditional Shannon-theoretic language to facilitate sub-
sequent treatment. Some relevant results on this problem are also reviewed briefly in
this section.
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2.1. Problem Definition

There are two independent messages, denoted as W1 and W2, in this system, each
of which is generated uniformly at random in the finite field FL

2 , i.e., each message is an
L-bit sequence. There are two databases to store the messages, which are produced by two
encoding functions operating on (W1, W2):

φn : FL
2 × FL

2 → Fαn
2 , n = 1, 2,

where αn is the number of storage symbols at database-n, n = 1, 2, which is a deterministic
function of L, i.e., we are using fixed length codes for storage. We write S1 = φ1(W1, W2)

and S2 = φ2(W1, W2). When a user requests message-k, it generates two queries (Q[k]
1 , Q[k]

2 )
to be sent to the two databases, randomly in the alphabet Q × Q. Note that the joint
distribution satisfies the condition

P
W1,W2,Q[k]

1 ,Q[k]
2

= PW1,W2 P
Q[k]

1 ,Q[k]
2

, k = 1, 2, (1)

i.e., the messages and the queries are independent. The marginal distributions PW1,W2 and
P

Q[k]
1 ,Q[k]

2
, k = 1, 2, thus fully specify the randomness in the system.

After receiving the queries, the databases produce the answers to the query via a set
of deterministic functions:

ϕ
(q)
n : Fαn

2 → Fβ
(q)
n

2 , q ∈ Q, n = 1, 2. (2)

We also write the answers A[k]
n = ϕ

(Q[k]
n )

n (Sn), n = 1, 2. The user, with the retrieved
information, wishes to reproduce the desired message through a set of decoding functions

ψ(k,q1,q2) : Fβ
(q1)
1

2 × Fβ
(q2)
2

2 → FL
2 . (3)

The outputs of the functions Ŵk = ψ(k,Q[k]
1 ,Q[k]

2 )(A[k]
1 , A[k]

2 ) are essentially the retrieved
messages. We require the system to retrieve the message correctly (zero error), i.e., Ŵk = Wk
for k = 1, 2.

Alternatively, we can require the system to have a small error probability. Denote the
average probability of coding error of a PIR code as

Pe = 0.5 ∑
k=1,2

P
W1,W2,Q[k]

1 ,Q[k]
2
(Wk 6= Ŵk). (4)

An (L, α1, α2, β1, β2) ε-error PIR code is defined similar as a (zero-error) PIR code,
except that the correctness condition is replaced by the condition that the probability of
error Pe ≤ ε.

Finally, the privacy constraint stipulates that the identical distribution condition must
be satisfied:

P
Q[1]

n ,A[1]
n ,Sn

= P
Q[2]

n ,A[2]
n ,Sn

, n = 1, 2. (5)

Note that one obvious consequence is that P
Q[1]

n
= P

Q[2]
n

, PQn , for n = 1, 2.
We refer to the code, which is specified by two probability distributions P

Q[k]
1 ,Q[k]

2
, k =

1, 2, and a valid set of coding functions {φn, ϕ
(q)
n , ψk,q1,q2} that satisfy both the correctness

and privacy constraints, as an (L, α1, α2, β1, β2) PIR code, where βn = EQn [β
(Qn)
n ], for n =

1, 2.



Information 2023, 14, 44 4 of 14

Definition 1. A normalized storage–retrieval rate pair (ᾱ, β̄) is achievable, if for any ε > 0 and
sufficiently large L, there exists an (L, α1, α2, β1, β2) PIR code, such that

L(ᾱ + ε) ≥ 1
2
(α1 + α2), L(β̄ + ε) ≥ 1

2
(β1 + β2). (6)

The collection of the achievable normalized storage–retrieval rate pair (ᾱ, β̄) is the achievable storage–
retrieval rate region, denoted asR.

Unless explicitly stated, the rate regionR is used for the zero-error PIR setting. In the
definition above, we used the average rates (ᾱ, β̄) across the databases instead of the
individual rate vectors 1

n (α1, α2,EQ1 [β
(Q1)
1 ],EQ2 [β

(Q2)
2 ]). This can be justified using the

following lemma.

Lemma 1. If an (L, α1, α2, β1, β2) PIR code exists, then a (2L, α, α, β, β) PIR code exists, where

α = α1 + α2, β = β1 + β2. (7)

This lemma can essentially be proved by a space-sharing argument, the details of
which can be found in [19]. The following lemma is also immediate using a conventional
space-sharing argument.

Lemma 2. The regionR is convex.

2.2. Some Relevant Known Results

The capacity of a general PIR system with K messages and N databases is identified
in [11] as

C =
1− 1/N

1− 1/NK , (8)

which in our definition corresponds to the case when β̄ is minimized, and the proposed
linear code achieves (ᾱ, β̄) = (K, (1− 1/NK)/(N − 1)). The capacity of MDS-code PIR
systems was established in [13]. In the context of the storage–retrieval trade-off, this result
can be viewed as providing the achievable trade-off pairs

(ᾱ, β̄) =

(
t,

1− tK/NK

N − t

)
, t = 1, 2, . . . , N. (9)

However, when specialized to the (2, 2) PIR problem, this does not provide any improve-
ment over the space-sharing strategy between the trivial code of retrieval-everything and
the code in [11]. By specializing the code in [11], it was shown in [19] that for the (2, 2) PIR
problem, at the minimal retrieval value β̄ = 0.75, the storage rate ᾱl = 1.5 is achievable
using a single-round, zero-error linear code, and in fact, it is the optimal storage rate that
any single-round, zero-error linear code can achieve.

One of the key observations in [19] is that a special coding structure appears to be the
main difficulty in the (2, 2) PIR setting, which is illustrated in Figure 1. Here, message W1
can be recovered from either (X1, Y1) or (X2, Y2), and message W2 can be recovered from
either (X1, Y2) or (X2, Y1); (X1, X2) is essentially S1 and is stored at database-1, and (Y1, Y2)
is essentially S2 and is stored at database-2. It is clear that we can use the following strategy
to satisfy the privacy constraint: when message W1 is requested, with probability 1/2,
the user queries for either (X1, Y1) or (X2, Y2); for message 2, with probability 1/2, the user
queries for either (X1, Y2) or (X2, Y1). More precisely, the following probability distribution
P

Q[1]
1 ,Q[1]

2
and P

Q[2]
1 ,Q[2]

2
can be used:
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P
Q[1]

1 ,Q[1]
2

=

{
0.5 (Q[1]

1 , Q[1]
2 ) = (11)

0.5 (Q[1]
1 , Q[1]

2 ) = (22)
, (10)

and

P
Q[2]

1 ,Q[2]
2

=

{
0.5 (Q[2]

1 , Q[2]
2 ) = (12)

0.5 (Q[2]
1 , Q[2]

2 ) = (21)
. (11)

database-1 database-2

Figure 1. A possible coding structure.

2.3. Multiple Description Source Coding

The multiple description source coding problem [23] considers compressing a memo-
ryless source S into a total of M descriptions, i.e., M compressed bit sequences such that
the combinations of any subset of these descriptions can be used to reconstruct the source
S to guarantee certain quality requirements. The motivation of this problem is mainly to
address the case when packets can be dropped randomly on a communication network.

Denote the coding rate for each description as Ri, i = 1, 2, . . . , M. A coding scheme
was proposed in [25], which leads to the following rate region. Let U1, U2, . . . , UM be M
random variables jointly distributed with S, then the following rates (R1, R2, . . . , RM) and
distortions (DA,A ⊆ {1, 2, . . . , M}) are achievable:

∑
i∈A

Ri ≥ ∑
i∈A

H(Ui)− H({Ui, i ∈ A}|S), A ⊆ {1, 2, . . . , M}, (12)

DA ≥ E[d(S, fA(Ui, i ∈ A))], A ⊆ {1, 2, . . . , M}. (13)

Here, fA is a reconstruction mapping from the random variables {Ui, i ∈ A} to the re-
construction domain, d(·, ·) is a distortion metric that is used to measure the distortion,
and DA is the distortion achievable using the descriptions in the set A. Roughly speak-
ing, the coding scheme requires generating approximately 2nRi length-n codewords in
an i.i.d. manner using the marginal distribution Ui for each i = 1, 2, . . . , M, and the rate
constraints ensure that when n is sufficiently large, with overwhelming probability there
is a tuple of M codewords (un

1 , un
2 , . . . , un

M), one in each codebook constructed earlier,
that are jointly typical with the source vector Sn. In this coding scheme, the descriptions
are simply the codeword indices of these codewords in these codebooks. For a given
joint distribution (S, U1, U2, . . . , UM), we refer to the rate region in (12) as the MD rate
regionRMD(S, U1, U2, . . . , UM), and the corresponding random code construction the MD
codebooks associated with (S, U1, U2, . . . , UM).

The binning technique [26] can be applied in the multiple description problem to
provide further performance improvements, particularly when not all the combinations of
the descriptions are required to satisfy certain performance constraints, but only a subset
of them are; this technique was previously used in [27,28] for this purpose. Assume that
only the subsets of descriptions A1,A2, . . . ,AT ⊆ {1, 2, . . . , M} have distortion require-
ments associated with the reconstructions using these descriptions, which are denoted as
DAi , i = 1, 2, . . . , T. Consider the MD codebooks associated with (S, U1, U2, . . . , UM) at
rates (R′1, R′2, . . . , R′M) ∈ RMD(S, U1, U2, . . . , UM), then assign the codewords in the i-th
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codebook uniformly at random into 2nRi bins with 0 ≤ Ri ≤ R′i. The coding rates and
distortions that satisfy the following constraints simultaneously for all Ai, i = 1, 2, . . . , T
are achievable:

∑
j∈J

(R′j − Rj) ≤ ∑
j∈J

H(Uj)− H
({

Uj, j ∈ J
}∣∣∣∣{Uj′ , j′ ∈ Ai \ J

})
, ∀J ⊆ Ai, (14)

DAi ≥ E[d(S, fAi (Uj, j ∈ Ai))]. (15)

We denote the collection of such rate vectors (R1, R2, . . . , RM, R′1, R′2, . . . , R′M) as
R∗MD((S, U1, U2, . . . , UM), ({Uj, j ∈ Ai}, i = 1, 2, . . . , T)), and refer to the corresponding
codebooks as the MD∗ codebooks associated with the random variables (S, U1, U2, . . . , UM)
and the reconstruction sets (A1,A2, . . . ,AT).

3. A Special Case: Slepian–Wolf Coding for Minimum Retrieval Rate

In this section, we consider the minimum-retrieval-rate case, and show that non-linear
and Shannon-theoretic codes are beneficial. We will be rather cavalier here and ignore
some details, in the hope of better conveyance of the intuition. In particular, we ignore
the asymptotic-zero probability of error that is usually associated with a random coding
argument, but this will be addressed more carefully in Section 4.

Let us rewrite the L-bit messages as

Wk = (Vk[1], . . . , Vk[L]) , VL
k , k = 1, 2. (16)

The messages can be viewed as being produced from a discrete memoryless source PV1,V2 =
PV1 · PV2 , where V1 and V2 are independent uniform-distributed Bernoulli random variables.

Consider the following auxiliary random variables:

X1 , V1 ∧V2, X2 , (¬V1) ∧ (¬V2),

Y1 , V1 ∧ (¬V2), Y2 , (¬V1) ∧V2, (17)

where ¬ is the binary negation, and ∧ is the binary “and” operation. This particular
distribution satisfies the coding structure depicted in Figure 1, with (V1, V2) taking the
role of (W1, W2), and the relation is non-linear. The same distribution was used in [19] to
construct a multiround PIR code. This non-linear mapping appears to allow the resultant
code to be more efficient than linear codes.

We wish to store (XL
1 , XL

2 ) at the first database in a lossless manner, however, store
only certain necessary information regarding YL

1 and YL
2 to facilitate the recovery of W1 or

W2. For this purpose, we will encode the message as follows:

• At database-1, compress and store (XL
1 , XL

2 ) losslessly;
• At database-2, encode YL

1 using a Slepian–Wolf code (or more precisely Sgarro’s code
with uncertainty side information [29]), with either XL

1 or XL
2 at the decoder, whose

resulting code index is denoted as CY1 ; encode YL
2 in the same manner, independent of

YL
1 , whose code index is denoted as CY2 .

It is clear that for database-1, we need roughly ᾱ1 = H(X1, X2). At database-2, in order
to guarantee successful decoding of the Slepian-Wolf code, we can chose roughly

ᾱ2 = max(H(Y1|X1), H(Y1|X2)) + max(H(Y2|X1), H(Y2|X2))

= 2H(Y1|X1), (18)
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where the second equality is due to the symmetry in the probability distribution. Thus we
find that this code achieves

ᾱnl = 0.5[H(X1, X2) + 2H(Y1|X1)]

= 0.75 + 0.75H(1/3, 2/3)

= 0.25 + 0.75 log2 3 ≈ 1.4387. (19)

The retrieval strategy is immediate from the coding structure in Figure 1, with
(VL

1 , VL
2 , XL

1 , XL
2 , CY1 , CY2) serving the roles of (W1, W2, X1, X2, Y1, Y2), and thus indeed the

privacy constraint is satisfied. The retrieval rates are roughly as follows:

β̄
(1)
1 = β̄

(2)
1 = H(X1) = H(X2), (20)

β̄
(1)
2 = β̄

(2)
2 = H(Y1|X1), (21)

implying

β̄ = 0.5[H(X1) + H(Y1|X1)] = 0.5H(Y1, X1) = 0.75.

Thus, at the optimal retrieval rate β̄ = 0.75, we have

ᾱl = 1.5 vs. ᾱnl ≈ 1.4387, (22)

and clearly the proposed non-linear Shannon-theoretic code is able to perform better than
the optimal linear code. We note that it was shown in [19] by using a multround approach,
the storage rate ᾱ can be further reduced; however, this issue is beyond the scope of this
work. In the rest of the paper, we build on the intuition in this special case to generalize
and strengthen the coding scheme.

4. Main Result
4.1. A General Inner Bound

We first present a general inner bound to the storage–retrieval trade-off region. Let
(V1, V2) be independent random variables uniformly distributed on Ft

2 × Ft
2. Define the

region R(t)
in to be the collection of (ᾱ, β̄) pairs for which there exist random variables

(X0, X1, X2, Y1, Y2) jointly distributed with (V1, V2) such that the following hold:

1. There exist deterministic functions f1,1, f1,2, f2,1, and f2,2 such that

V1 = f1,1(X0, X1, Y1) = f2,2(X0, X2, Y2), V2 = f1,2(X0, X1, Y2) = f2,1(X0, X2, Y1); (23)

2. There exist non-negative coding rates

(β
(0)
1 , β

(1)
1 , β

(2)
1 , β

(1)
2 , β

(2)
2 , γ

(0)
1 , γ

(1)
1 , γ

(2)
1 , γ

(1)
2 , γ

(2)
2 )

∈ R∗MD(((V1, V2), X0, X1, X2, Y1, Y2),

({X0, X1, Y1}, {X0, X1, Y2}, {X0, X2, Y1}, {X0, X2, Y2})); (24)

3. There exist non-negative storage rates (α(0)1 , α
(1)
1 , α

(2)
1 , α

(1)
2 , α

(2)
2 ) such that

α
(0)
1 ≤ β

(0)
1 , α

(1)
1 ≤ β

(1)
1 , α

(2)
1 ≤ β

(2)
1 , α

(1)
2 ≤ β

(1)
2 , α

(2)
2 ≤ β

(2)
2 , (25)

and if

γ
(0)
1 − β

(0)
1 + γ

(1)
1 − β

(1)
1 + γ

(2)
1 − β

(2)
1 < H(X1) + H(X2) + H(X3)− H(X0, X1, X2), (26)
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choose

(α
(0)
1 , α

(1)
1 , α

(2)
1 , γ

(0)
1 , γ

(1)
1 , γ

(2)
1 ) ∈ R∗MD(((V1, V2), X0, X1, X2), ({X0, X1, X2})); (27)

otherwise, choose (α
(0)
1 , α

(1)
1 , α

(2)
1 ) = (β

(0)
1 , β

(1)
1 , β

(2)
1 ). Similarly, if

γ
(1)
2 − β

(1)
2 + γ

(2)
2 − β

(2)
2 < I(Y1; Y2), (28)

choose

(α
(1)
2 , α

(2)
2 , γ

(1)
2 , γ

(2)
2 ) ∈ R∗MD(((V1, V2), Y1, Y2), ({Y1, Y2})), (29)

otherwise (α
(1)
2 , α

(2)
2 ) = (β

(1)
1 , β

(2)
1 );

4. The normalized average retrieval and storage rates

2tᾱ ≥ α
(0)
1 + α

(1)
1 + α

(2)
1 + α

(1)
2 + α

(2)
2 , (30)

4tβ̄ ≥ 2β
(0)
1 + β

(1)
1 + β

(2)
1 + β

(1)
2 + β

(2)
2 . (31)

Then, we have the following theorem.

Theorem 1. R(t)
in ⊆ R.

We can, in fact, potentially enlarge the achievable region by taking ∪∞
t=1R

(t)
in . However,

unlessR(t+1)
in ⊆ R(t)

in for all t ≥ 1, the region ∪∞
t=1R

(t)
in is even more difficult to characterize.

Nevertheless, for each fixed t, we can identify inner bounds by specifying a feasible set of
random variables X0, X1, X2, Y1, Y2.

Instead of directly establishing this theorem, we shall prove the following theorem
which establishes the existence of a PIR code with diminishing error probability, and then
use an expurgation technique to extract a zero-error PIR code.

Theorem 2. Consider any (ᾱ, β̄) ∈ R(t)
in . For any ε > 0 and sufficiently large L, there exists an

(L, L(ᾱ + ε), L(ᾱ + ε), L(β̄ + ε), L(β̄ + ε)) ε-error PIR code with the query distribution given in
(10) and (11).

The key observation to establish this theorem is that there are five descriptions in
this setting; however, the retrieval and storage place different constraints on different
combination of descriptions, and some descriptions can, in fact, be stored, recompressed,
and then retrieved. Such compression and recompression may lead to storage savings.
The description based on X0 can be viewed as some common information to X1 and X2,
which allows us to trade-off the storage and retrieval rates.

Proof of Theorem 2. Codebook generation: Codebooks are built using the MD codebooks
based on the distribution ((V1, V2), X0, X1, X2, Y1, Y2).

Storage codes: The bin indices of the codebooks are stored in the two servers: those of X0,
X1, and X2 are stored at server-1 at rates α

(0)
1 , α

(1)
1 , and α

(2)
1 , respectively; those of Y1 and Y2

are stored at server-2 at rates α
(1)
2 and α

(2)
2 . Note that at such rates, the codewords for X0,

X1, and X2 can be recovered jointly with overwhelming probability, while those for Y1 and
Y2 can also be recovered jointly with overwhelming probability.

Retrieval codes: A different set of bin indices of the codebooks are retrieved during the
retrieval process, again based on the MD∗ codebooks: those of X0, X1, and X2 are retrieved
at server-1 at rates β

(0)
1 , β

(1)
1 , and β

(2)
1 , respectively; those of Y1 and Y2 are retrieved at

server-2 at rates β
(1)
2 and β

(2)
2 . Note that at such rates, the codewords of X0, X1, and Y1 can
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be jointly recovered such that using the three corresponding codewords, the required V1
source vector can be recovered with overwhelming probability. Similarly, the three retrieval
patterns of (X0, X1, Y2)→ V2, (X0, X2, Y1)→ V2, and (X0, X2, Y2)→ V2 will succeed with
overwhelming probabilities.

Storage and retrieval rates: The rates can be computed straightforwardly, after normalization
by the parameter t.

Next we use it to prove Theorem 1.

Proof of Theorem 1. Given an ε > 0, according to Proposition 2, we can find an (L, L(ᾱ +
ε), L(ᾱ+ ε), L(β̄+ ε), L(β̄+ ε)) ε-error PIR code for some sufficient large L. The probability
of error of this code can be rewritten as

Pe = 0.5 ∑
k=1,2

∑
(w1,w2)

2−2LP
Q[k]

1 ,Q[k]
2 |(w1,w2)

(wk 6= Ŵk).

For a fixed (w1, w2) pair, denote the event that there exists a (q1, q2) ∈ {(11), (22)}, i.e.,
when (Q[1]

1 , Q[1]
2 ) = (q1, q2), such that ŵ1 6= w1 as E(1)

w1,w2 , and there exists a (q1, q2) ∈
{(12), (21)} such that ŵ2 6= w2 as E(2)

w1,w2 . Since (Q[k]
1 , Q[k]

2 ) is independent of (W1, W2),

if P(E(k)
w1,w2) 6= 0, we must have P(E(k)

w1,w2) ≥ 0.5. It follows that

Pe ≥ 0.25 ∑
(w1,w2)

2−2L1(E[1]
w1,w2 ∪ E[2]

w1,w2), (32)

where (·) is the indicator function. This implies that for any ε ≤ 0.125, there are at
most 22L−1 pairs of (w1, w2) that will induce any coding error. We can use any 22L−2 of
the remaining 22L−1 pairs of L-bit sequence pairs to instead store a pair of (L − 1)-bit
messages, through an arbitrary but fixed one-to-one mapping. This new code has a factor
of 1 + 1/(L− 1) increase in the normalized coding rates, which is negligible when L is
large. Thus a zero-error PIR code is found with the same normalized rates as the ε-error
code asymptotically, and this completes the proof.

4.2. Outer Bounds

We next turn our attention to the outer bounds forR, summarized in the following
theorem.

Theorem 3. Any (ᾱ, β̄) ∈ R must satisfy

β̄ ≥ 0.75, ᾱ + β̄ ≥ 2, 3ᾱ + 8β̄ ≥ 10. (33)

Moreover, if (ᾱ, β̄) ∈ R can be achieved by a linear code, it must satisfy

ᾱ + 6β̄ ≥ 6. (34)

The inequality β̄ ≥ 0.75 follows from [11], while the two other bounds in (33) were
proved in [24]. Therefore, we only need to prove (34).

Proof of Theorem 3. Following [19], we make the following simplifying assumptions that
have no loss of generality. Define Q = {Q[1]

1 , Q[2]
1 , Q[1]

2 , Q[2]
2 }.

1. Q[1]
1 = Q[2]

1 ⇒ A[1]
1 = A[2]

1 , (35)

2. H(A[1]
1 |Q) = H(A[1]

2 |Q) = H(A[2]
2 |Q), H(S1) = H(S2) (36)

⇒ H(A[1]
1 |Q) ≤ β ≤ (β̄ + ε)L, H(S2) ≤ α ≤ (ᾱ + ε)L. (37)



Information 2023, 14, 44 10 of 14

Assumption 1 states that the query to the first database is the same regardless of the desired
message index. This is justified by the privacy condition that the query to one database
is independent of the desired message index. Assumption 2 states that the scheme is
symmetric after the symmetrization operation in Lemma 1 (the proof is referred to Theorem
3 in [19]). Then, (37) follows from the fact that to describe S2, A[1]

1 , the number of bits
needed cannot be less than the entropy value, and Definition 1.

In the following, we use (c) to refer to the correctness condition, (i) to refer to the
constraint that queries are independent of the messages, (a) to refer to the constraint that
answers are deterministic functions of the storage variables and corresponding queries,
and (p) to refer to the privacy condition.

From A[1]
1 , A[1]

2 ,Q, we can decode W1.

H(A[1]
1 , A[1]

2 |W1,Q) = H(A[1]
1 , A[1]

2 , W1|Q)− H(W1|Q) (38)
(c)(i)
= H(A[1]

1 , A[1]
2 |Q)− L (39)

(36)
≤ 2H(A[1]

1 |Q)− L. (40)

Next, consider Ingleton’s inequality.

I(A[1]
2 ; A[2]

2 |Q) ≤ I(A[1]
2 ; A[2]

2 |W1,Q) + I(A[1]
2 ; A[2]

2 |W2,Q) (41)

= 2I(A[1]
2 ; A[2]

2 |W1,Q) (42)

= 2
(

H(A[1]
2 |W1,Q) + H(A[2]

2 |W1,Q)− H(A[1]
2 , A[2]

2 |W1,Q)
)

(43)
(p)
= 2

(
2H(A[1]

2 |W1,Q)− H(A[1]
2 , A[2]

2 |W1,Q)
)

(44)

≤ 2
(
2H(A[1]

2 |W1,Q) + H(A[1]
1 , A[1]

2 |W1,Q)

− H(A[1]
1 , A[1]

2 , A[2]
2 |W1,Q)− H(A[1]

2 |W1,Q)
)

(45)
(c)(35)
= 2

(
H(A[1]

2 |W1,Q) + H(A[1]
1 , A[1]

2 |W1,Q)

− H(A[1]
1 , A[1]

2 , A[2]
2 , W2|W1,Q)

)
(46)

(i)
≤ 2

(
2H(A[1]

1 , A[1]
2 |W1,Q)− H(W2)

)
(47)

(40)
≤ 2

(
2(2H(A[1]

1 |Q)− L)− L
)

(48)

where (42) follows from the observation that the second term can be bounded using the
same method as that bounds the first term by switching the message index. A more detailed
derivation of (44) appears in (79) of [19]; (45) is due to the sub-modularity of entropy.

Note that

I(A[1]
2 ; A[2]

2 |Q) = H(A[1]
2 |Q) + H(A[2]

2 |Q)− H(A[1]
2 , A[2]

2 |Q) (49)
(36)
≥ 2H(A[1]

1 |Q)− (ᾱ + ε)L (50)

where in (50), and the second term is bounded as follows:

H(A[1]
2 , A[2]

2 |Q) ≤ H(A[1]
2 , A[2]

2 , S2|Q)
(a)
= H(S2|Q)

(37)
≤ (ᾱ + ε)L. (51)
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Combining (48) and (50), we have

2H(A[1]
1 |Q)/L− (ᾱ + ε) ≥ 2(4H(A[1]

1 |Q)/L− 3)

⇒ ᾱ + ε + 6H(A[1]
1 |Q)/L ≥ 6 (52)

(37)⇒ ᾱ + 6β̄ ≥ 6. (53)

The proof is complete.

4.3. Specialization of the Inner Bound

The inner bound given in Theorem 1 is general but more involved, and we can
specialize it in multiple ways in order to simplify it. One particularly interesting approach
is as follows. Define the region R̃(t)

in to be the collection of (ᾱ, β̄) pairs such that there
exists random variables (X0, X1, X2, Y1, Y2) jointly distributed with (V1, V2) such that the
following hold:

1. The distribution factorizes as follows

PV1,V2,X0,X1,X2,Y1,Y2 = PV1,V2 PX0|V1,V2
PX1|V1,V2

PX2|V1,V2
PY1|V1,V2

PY2|V1,V2
;

2. There exist deterministic functions f1,1, f1,2, f2,1, and f2,2 such that

V1 = f1,1(X0, X1, Y1) = f2,2(X0, X2, Y2), (54)

V2 = f1,2(X0, X1, Y2) = f2,1(X0, X2, Y1); (55)

3. A set of rates

γ
(0)
1 = I(V1, V2; X0), γ

(1)
1 = I(V1, V2; X1), γ

(2)
1 = I(V1, V2; X2), (56)

γ
(1)
2 = I(V1, V2; Y1), γ

(2)
2 = I(V1, V2; Y2), (57)

β
(0)
1 = γ

(0)
1 , β

(1)
1 = I(V1, V2; X1|X0), β

(2)
1 = I(V1, V2; X2|X0), (58)

β
(1)
2 = max(I(V1, V2; Y1|X0, X1), I(V1, V2; Y1|X0, X2)), (59)

β
(2)
2 = max(I(V1, V2; Y2|X0, X1), I(V1, V2; Y2|X0, X2)), (60)

and (α
(0)
1 = γ

(0)
1 , α

(1)
1 , α

(2)
1 , α

(1)
2 , α

(2)
2 ) as defined in item 3 for the general regionR(t);

4. The normalized average retrieval and storage rates

2tᾱ ≥ α
(0)
1 + α

(1)
1 + α

(2)
1 + α

(1)
2 + α

(2)
2 , (61)

4tβ̄ ≥ 2β
(0)
1 + β

(1)
1 + β

(2)
1 + β

(1)
2 + β

(2)
2 . (62)

Then we have the following corollary.

Corollary 1. R̃(t)
in ⊆ R.

This inner bound is illustrated together with the outer bounds in Figure 2.
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an outer bound on linear schemes

information theoretic outer bound

Figure 2. Illustration of inner bounds and outer bounds.

Proof. The main difference from Theorem 1 is in the special dependence structure of
(X0, X1, X2, Y1, Y2) jointly distributed with (V1, V2), i.e., the Markov structure. We verify
that the rate assignments satisfy all the constraints in Theorem 1. Due to the special depen-
dence structure of (X0, X1, X2, Y1, Y2) jointly distributed with (V1, V2), it is straightforward
to verify that

(γ
(0)
1 , γ

(1)
1 , γ

(2)
1 , γ

(1)
2 , γ

(2)
2 ) ∈ RMD((V1, V2), X0, X1, X2, Y1, Y2).

We next verify that (24) holds with the choice given above. Due to the symmetry in
the structure, we only need to confirm one subset of random variables, i.e., {X0, X1, Y1},
and the three other subsets {X0, X1, Y2}, {X0, X2, Y1}, and {X0, X2, Y2} follow similarly.
There are a total of 7 conditions in the form of (14) associated with this subset {X0, X1, Y1}.
Notice that

γ
(0)
1 − β

(0)
1 = 0, γ

(1)
1 − β

(1)
1 = I(X1; X0), γ

(2)
2 − β

(2)
2 ≤ I(Y1; X0, X1),

which in fact confirm three of the seven conditions when J is a singleton. Next, when J
has two elements, we verify that

γ
(0)
1 − β

(0)
1 + γ

(1)
1 − β

(1)
1 = I(X1; X0) = H(X0) + H(X1)− H(X0, X1)

≤ H(X0) + H(X1)− H(X0, X1|Y1), (63)

γ
(0)
1 − β

(0)
1 + γ

(1)
2 − β

(1)
2 ≤ I(Y1; X0, X1) = H(Y1) + H(X0, X1)− H(X0, X1, Y1)

≤ H(Y1) + H(X0) + H(X1)− H(X0, X1, Y1)

= H(X0) + H(Y1)− H(X0, Y1|X1), (64)

γ
(1)
1 − β

(1)
1 + γ

(1)
2 − β

(1)
2 ≤ I(X1; X0) + I(Y1; X0, X1) = H(X1) + H(Y1)− H(X1, Y1|X0). (65)

Finally when J has all the three elements, we have

γ
(0)
1 − β

(0)
1 + γ

(1)
1 − β

(1)
1 + γ

(1)
2 − β

(1)
2

= I(X0; X1) + I(V1, V2; X1)−max(I(V1, V2; Y1|X0, X1), I(V1, V2; Y1|X0, X2)) (66)

≤ I(X0; X1) + I(V1, V2; X1)− I(V1, V2; Y1|X0, X1) (67)

= H(X0) + H(X1) + H(Y1)− H(X0, X1, Y1). (68)

Thus, (24) is indeed true with the assignments (56)–(60). This, in fact, completes the
proof.
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We can use any explicit distribution (X0, X1, X2, Y1, Y2) to obtain an explicit inner
bound to R̃(t)

in , and the next corollary provides one such non-trivial bound. For convenience,
we write the entropy function of a probability mass (p1, . . . , pt) as H(p1, . . . , pt).

Corollary 2. The following (ᾱ, β̄) ∈ R for any p ∈ [0, 1]:

ᾱ =
9
4
− H(

1
4

,
3
4
) +

1
4

H(
1− p

2
,

1− p
2

,
p
2

,
p
2
)

+
1
2

H(
2− p

4
,

2− p
4

,
p
2
)− 3

4
H(

3− 2p
6

,
3− 2p

6
,

p
3

,
p
3
),

β̄ =
5
8
+

1
4

H(
2− p

4
,

2− p
4

,
p
2
)− 1

8
H(

1− p
2

,
1− p

2
, p).

Proof. These trade-off pairs are obtained by applying Corollary 1, and choosing t = 1 and
setting (X1, X2, Y1, Y2) as given in (17), and letting X0 be defined as in Table 1. Note that the
joint distribution indeed satisfies the required Markov structure, and in this case α

(1)
2 = β

(1)
2

and α
(2)
2 = β

(2)
2 .

Table 1. Conditional distribution PX0|W1,W2
used in Corollary 2.

(w1, w2) x0 = (00) x0 = (01) x0 = (10) x0 = (11)

(00) 1/2 1/2
(10) (1− p)/2 p (1− p)/2
(01) (1− p)/2 p (1− p)/2
(11) 1/2 1/2

5. Conclusions

We consider the problem of private information retrieval using a Shannon-theoretic
approach. A new coding scheme based on random coding and binning is proposed, which
reveals a hidden connection to the multiple description problem. It is shown that for the
(2, 2) PIR setting, this non-linear coding scheme is able to provide the best known tradeoff
between retrieval rate and storage rate, which is strictly better than that achievable using
linear codes. We further investigate the relation between zero-error PIR codes and ε-error
PIR codes in this setting and show that they do not cause any essential difference in this
problem setting. We hope that the hidden connection to multiple description coding can
provide a new avenue to design more efficient PIR codes.
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