
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 6, JUNE 2021 4001

On the Optimal Load-Memory Tradeoff
of Cache-Aided Scalar Linear

Function Retrieval
Kai Wan , Member, IEEE, Hua Sun , Member, IEEE, Mingyue Ji , Member, IEEE,

Daniela Tuninetti , Fellow, IEEE, and Giuseppe Caire , Fellow, IEEE

Abstract— Coded caching has the potential to greatly reduce
network traffic by leveraging the cheap and abundant storage
available in end-user devices so as to create multicast opportu-
nities in the delivery phase. In the seminal work by Maddah-Ali
and Niesen (MAN), the shared-link coded caching problem was
formulated, where each user demands one file (i.e., single file
retrieval). This article generalizes the MAN caching problem
formulation from single file retrieval on the binary filed to
general scalar linear function retrieval on an arbitrary finite
field. The proposed novel scheme is linear, based on MAN
uncoded cache placement, and leverages ideas from interference
alignment. Quite surprisingly, the worst-case load of the proposed
scheme among all possible demands is the same as the one of the
scheme by Yu, Maddah-Ali, and Avestimehr (YMA) for single
file retrieval. The proposed scheme has thus the same optimality
guarantees as YMA, namely, it is optimal under the constraint
of uncoded cache placement, and is optimal to within a factor
2 otherwise. Some extensions of the proposed scheme are then
discussed. It is shown that the proposed scheme works not only
on arbitrary finite field, but also on any commutative ring. The
key idea of this article can be also extended to all scenarios to
which the original MAN scheme has been extended, including
but not limited to demand-private retrieval and Device-to-Device
networks.

Index Terms— Coded caching, uncoded cache placement,
scalar linear function retrieval.

Manuscript received January 12, 2020; revised October 26, 2020; accepted
March 8, 2021. Date of publication March 15, 2021; date of current version
May 20, 2021. The work of Kai Wan and Giuseppe Caire was supported in part
by the European Research Council under the ERC Advanced Grant 789190,
CARENET. The work of Hua Sun was supported in part by the NSF under
Award 2007108. The work of Mingyue Ji was supported in part by the NSF
under Award 1817154 and Award 1824558. The work of Daniela Tuninetti
was supported in part by the NSF under Award 1910309. This article was
presented at the 2020 IEEE International Symposium on Information Theory.
(Corresponding author: Kai Wan.)

Kai Wan and Giuseppe Caire are with the Electrical Engineering and
Computer Science Department, Technische Universität Berlin, 10587 Berlin,
Germany (e-mail: kai.wan@tu-berlin.de; caire@tu-berlin.de).

Hua Sun is with the Department of Electrical Engineering, University of
North Texas, Denton, TX 76203 USA (e-mail: hua.sun@unt.edu).

Mingyue Ji is with the Electrical and Computer Engineering Depart-
ment, The University of Utah, Salt Lake City, UT 84112 USA (e-mail:
mingyue.ji@utah.edu).

Daniela Tuninetti is with the Electrical and Computer Engineering Depart-
ment, University of Illinois at Chicago, Chicago, IL 60607 USA (e-mail:
danielat@uic.edu).

Communicated by M. Kobayashi, Associate Editor for Communications.
Digital Object Identifier 10.1109/TIT.2021.3066005

I. INTRODUCTION

INFORMATION theoretic coded caching was originally
proposed by Maddah-Ali and Niesen (MAN) [2] for the

shared-link caching systems containing a server with a library
of N equal-length files, which is connected to K users through
a noiseless shared-link. Users can store up to M files in their
local cache. Two phases are included in a caching system.
Cache placement phase: content is pushed into each cache
without knowledge of future demands. Delivery phase: each
user demands one file and, according to the cache contents,
the server broadcasts coded packets to all the users. The
objective is to minimize the worst-case load, which is defined
as the number of transmitted bits, normalized by the file
length, needed to satisfy the all the users’ demands regardless
of the demands.

The MAN coded caching scheme proposed in [2] uses a
combinatorial design in the placement phase (referred to as
MAN uncoded cache placement), such that in the delivery
phase binary multicast messages (referred to as MAN multi-
cast messages) can simultaneously satisfy the users’ demands.
Under the constraint of uncoded cache placement (i.e., each
user directly caches a subset of the library bits), the MAN
scheme can achieve the minimum worst-case load among all
possible demands when N ≥ K [3]. Noting that, if there are
files demanded multiple times, some MAN multicast messages
can be obtained as a binary linear combination of other
MAN multicast messages, Yu, Maddah-Ali, and Avestimehr
(YMA) proposed an improved delivery scheme that achieves
the minimum worst-case load under the constraint of uncoded
cache placement for N < K [4]. The cost of uncoded cache
placement compared to coded cache placement is known to
be a multiplicative factor of at most two [5].

The MAN setting has been extended to numerous models,
such as Device-to-Device (D2D) caching systems [6], coded
caching with private demands [7]–[9], coded distributed com-
puting [10], and coded data shuffling [11]–[13] – just to name a
few. A common point of these models is that each user requests
one file; some allow for users to request (the equivalent of)
multiple files [10]–[15] which however does not substantially
change the nature of the problem. In general, linear and
multivariate polynomial operations are widely used in funda-
mental primitives for building the complex queries that support
on-line analytics and data mining procedures. For example,

0018-9448 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of North Texas. Downloaded on June 10,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4671-3287
https://orcid.org/0000-0001-8777-7987
https://orcid.org/0000-0002-7970-2245
https://orcid.org/0000-0003-1880-4798
https://orcid.org/0000-0002-7749-1333

4002 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 6, JUNE 2021

linear operations are critical in modern deep learning and
artificial intelligence algorithms1, while algebraic polynomial
queries naturally arise in engineering problems such as those
described by differential equations and distributed machine
learning algorithms [16], [17]. In those scenarios, it may be too
resource-consuming (in terms of bandwidth, or execution time,
or storage space) to download locally all the input variables
in order to compute the desired output value. Instead, it is
desirable to directly download the result of the desired output
function. This article studies the fundamental tradeoff between
local storage and network load when users are interested in
retrieving a function of the dataset available at the server. As
the general function retrieval is a formidable difficult problem,
this work considers the natural first generalization step: from
single file retrieval to retrieving a general scalar linear function
of the files.

The question we ask in this article is, compared to the
original MAN caching problem, whether the optimal worst-
case load is increased when the users are allowed to request
scalar linear functions of the files. The original MAN caching
problem in [2], where each user requests one file, is thus a
special case of our cache-aided scalar linear function retrieval
problem. In addition to the novel problem formulation, our
main results are as follows.

1) Achievable Cache-Aided Function Retrieval Scheme: We
propose a novel caching scheme to deliver scalar linear
functions on an arbitrary finite field. To the best of our
knowledge, even for the original MAN caching problem,
no caching scheme is known to operate on an arbitrary
field which achieves the same load as the YMA scheme.
Compared to the YMA scheme, we use different encod-
ing and decoding procedures for the multicast messages.
On the observation that the YMA scheme fails on
fields with characteristics strictly larger than two, we
propose an encoding based on a finite field interference
alignment idea and a decoding that needs both the sum
and multiplication operations, while the YMA scheme
is only defined on the binary field and thus uses only
sum/XOR operations. Interestingly, the achieved load
by the proposed scheme only depends on the number
of linearly independent functions that are demanded,
akin to the YMA’s single-file retrieval scheme where
the load depends on the number of distinct file requests.
Surprisingly, we show that the load of our scheme is the

1One of the simplest examples is as follows. Assume that one node k aims to
perform a linear regression learning task. In this case, the goal of node k is to
minimize 1

2
�Axk −yk�2

2 over all xk ∈ R, where the matrix A is the entire
dataset and is distributed over the nodes, and yk is the observation. Then, at
the time slot t + 1, node k will compute xt+1

k = xt
k − ηAT (Axt

k − yk)
where η is the learning rate. In order to perform this computation task, it can
be done into two steps. The first step is to compute zt

k = Axt
k −yk and the

second step is to compute xt+1
k = xt

k − ηAT zt
k . It can be seen that both

steps involve different linear combinations of the entire data set and can be
computed using the proposed approach. In addition, assume that another node
j aims to compute the dominate eigenvector of the dataset A. One popular
approach is to use the power iteration algorithm. In this algorithm, at time slot
t, it needs to compute vt+1

j = Avt
j/�Avt

j�, where vt
j is the estimate of the

dominant eigenvector of A in time slot t. It can be seen that this computation
task at each time slot is also a linear operation, which can be performed using
the proposed scheme.

same as the YMA load, when logarithms are taken with
base equal to the size of the field.
Finally, when the field is binary, the encoding procedure
of our scheme reduces to the one of the YMA scheme.
Following the decoding step of the YMA scheme, we
provide an alternate and much simpler decodability
proof for our proposed scheme compared to the one for
the general case.

2) Optimality: On observation that the converse bound
for the original MAN caching problem in [3], [4] is
also a converse in the considered cache-aided function
retrieval problem, we conclude that the proposed scheme
achieves the optimal worst-case load under the constraint
of uncoded cache placement and is order optimal to
within a factor of two in general. From the results in
this article, we can answer the question we asked at the
beginning of this article: the optimal worst-case load
under the constraint of uncoded cache placement is not
increased when the users are allowed to request scalar
linear functions of the files.

3) Extensions: A number of extensions of our problem
formulation are possible.

• As only associativity and commutativity are
required to prove the correctness of our proposed
decoding procedure, we conclude that the pro-
posed caching scheme works not only on arbi-
trary finite field, but also on any commutative ring
(i.e., a ring in which the multiplication operation is
commutative).

• Under the constraint of uncoded cache placement
and that the subfile partition is symmetric across
files (see Definition 1), we can show that the
proposed caching scheme achieves the minimum
average load over i.i.d. uniform demand distribution
and over all possible demanded functions.

• We then show how to extend the key idea of
this article to scenarios including demand-private
retrieval or device-to-device networks.

• Finally, we note that any low subpacketization level
scheme for the MAN problem works for scalar
linear function retrieval as well if it has the fol-
lowing characteristics: (i) uses uncoded placement
and whose subfile partition is symmetric across
files (see Definition 1) and (ii) treats the demand
of each user as an independent file. For example,
this class of schemes includes schemes based on
a grouping strategy, such as [18]–[20], schemes
based on Placement Delivery Array (PDA), such
as [21]–[23], and some other combinatorial designs,
such as [24]–[27].

A. Paper Organization

The rest of this article is organized as follows. Section II for-
mulates the cache-aided scalar function retrieval problem and
introduces some related results in the literature. Section III dis-
cusses the main results in this article. Section IV describes the
proposed achievable caching scheme. Section V concludes this
article. Some of the proofs can be found in the Appendices.

Authorized licensed use limited to: University of North Texas. Downloaded on June 10,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: ON THE OPTIMAL LOAD-MEMORY TRADEOFF OF CACHE-AIDED SCALAR LINEAR FUNCTION RETRIEVAL 4003

B. Notation Convention

Calligraphic symbols denote sets, bold symbols denote
vectors, and sans-serif symbols denote system parameters. We
use | · | to represent the cardinality of a set or the length of
a vector; [a : b] := {a, a+ 1, . . . , b} and [n] := [1 : n]; ⊕
represents bit-wise XOR; E[·] represents the expectation value
of a random variable; a! = a × (a − 1) × . . . × 1 represents
the factorial of a; Fq represents a finite field with order q,
where q = pn is a prime-power and the prime p is called
the characteristic of this field; rankq(A) represents the rank
of matrix A on field Fq; det(A) represents the determinant of
matrix A; AS,V represents the sub-matrix of A by selecting
from A, the rows with indices in S and the columns with
indices in V . We let

�
x
y

�
= 0 if x < 0 or y < 0 or x < y. In

this article, for each set of integers S, we sort the elements in
S in an increasing order and denote the ith smallest element
by S(i), i.e., S(1) < . . . < S(|S|).

II. SYSTEM MODEL AND RELATED RESULTS

A. System Model

A (K,N, q) shared-link cache-aided scalar linear function
retrieval problem is defined as follows. A central server
can access a library of N files. The files are denoted by
W1, . . . ,WN. Each file has F independent and uniformly
distributed symbols over a finite field Fq, for some prime-
power q. As in [2], we assume that F is sufficiently large such
that any subpacketization of the files is possible. The central
server is connected to K users through an error-free shared-
link. Each user is equipped with a cache that can store up to
MF symbols, where M ∈ [0,N].

The system operates in two phases.
Cache Placement Phase. During the cache placement phase,

each user stores information about the files in its local cache
without knowledge of future users’ demands, that is, there
exist placement functions φk, k ∈ [K], such that

φk : [Fq]FN → [Fq]FM, (1)

where M denotes the cache or memory size. We denote
the content in the cache of user k ∈ [K] by Zk =
φk(W1, . . . ,WN).

Delivery Phase. During the delivery phase, each user
requests one scalar linear function of the files. The demand
of user k ∈ [K] is represented by the row vector yk =
(yk,1, . . . , yk,N) ∈ [Fq]N, which means that user k wants to
retrieve the element-wise linear combination yk,1W1 + . . . +
yk,NWN. We denote the demand matrix of all users by

D = [y1; . . . ;yK] ∈ [Fq]K×N. (2)

The demand matrix D is known to the server and all users. In
addition, for each set S ⊆ [K], we denote the demand matrix
of the users in S by DS := DS,[N].

Given the demand matrix D, the server broadcasts the
message X = ψ(D,W1, . . . ,WN) to each user k ∈ [K], where
the encoding function ψ is such that

ψ : [Fq]K×N × [Fq]FN → [Fq]FR, (3)

for some non-negative R referred to as load.

Decoding. Each user k ∈ [K] decodes its desired function
from (D, Zk, X). In other words, there exist decoding func-
tions ξk, k ∈ [K], such that

ξk : [Fq]K×N × [Fq]FM × [Fq]FR → [Fq]F, (4)

ξk(D, Zk, X) = yk,1W1 + . . .+ yk,NWN. (5)

Objective. For a given cache size M ∈ [0,N], the objective
is to determine the minimum worst-case load among all
possible demands, defined as the smallest R such that there
exist placement functions φk, k ∈ [K], encoding function ψ,
and decoding functions ξk, k ∈ [K], satisfying all the above
constraints. The optimal load is denoted by R�.

If each user directly copies some symbols of the files into
its cache, the cache placement is said to be uncoded. The
minimum worst-case load under the constraint of uncoded
cache placement is denoted by R�

u .

B. Review of the MAN [2] and YMA [4] Schemes

In the following, we review the MAN and YMA coded
caching schemes for the shared-link caching problem where
each user requests one file. These schemes operate on the
binary field F2.

1) MAN Scheme: File Split. Let t ∈ [0 : K]. Partition each
file into

�
K
t

�
equal-length subfiles denoted by

Wi = {Wi,T : T ⊆ [K], |T | = t}, i ∈ [N]. (6)

Placement Phase: User k ∈ [K] caches Wi,T , i ∈ [N], if
k ∈ T . Hence, each user caches N

�
K−1
t−1

�
subfiles, each of

which contains F

(K
t)

symbols, which requires

M = N

�
K − 1
t− 1

�
/

�
K

t

�
= N

t

K
. (7)

Delivery Phase: User k ∈ [K] requests the file with index
dk ∈ [N]. The server then broadcasts the following MAN
multicast messages: for each S ⊆ [K] where |S| = t + 1,
the server sends

XS = ⊕
k∈S

Wdk,S\{k}. (8)

The server thus sends
�

K
t+1

�
packets of F

(K
t)

symbols, which

requires

R =
�

K

t+ 1

�
/

�
K

t

�
=

K − t

1 + t
. (9)

Decoding: The multicast message XS in (8) is useful to
each user k ∈ S, since this user caches all subfiles contained
in XS except for the desired subfile Wdk,S\{k}. Considering
all multicast messages, each user can recover all uncached
subfiles and thus recover its demanded file.

Load: The achieved memory-load tradeoff of the MAN
scheme is the lower convex envelop of the following points

(M,R) =
�

Nt

K
,
K − t

1 + t

�
, ∀t ∈ [0 : K]. (10)

2) YMA Scheme: File splitting and cache placement are
as for the MAN scheme.

Authorized licensed use limited to: University of North Texas. Downloaded on June 10,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

4004 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 6, JUNE 2021

Delivery Phase: The main idea of the YMA delivery is that,
when a file is demanded by multiple users, some MAN multi-
cast messages in (8) can be obtained as a linear combination of
others. Thus the load of the MAN scheme in (9) can be further
reduced by removing the redundant MAN multicast messages.
More precisely, for each demanded file, randomly choose one
user among all users demanding this file and designate it as
the “leader user” for this file. Let D := ∪k∈[K]{dk} be the
set of all distinct files that are demanded, and L be the set
of |D| leader users. The server only sends those multicast
message XS in (8) that are useful for the leader users, that is,
if S ∩ L
= ∅, thus saving

�
K−|D|

t+1

�
transmissions.

Decoding: Clearly, all leaders users can decode their
demanded files as per the MAN scheme. The non-leader
users appear to miss the multicast messages XA for each
A ⊆ [K] where A ∩ L = ∅ and |A| = t + 1. It was proved
in [4, Lemma 1] that for any such fixed A, we have

⊕
F∈FB

XB\F = 0, (11)

where B = A∪L. FB is the family of subsets F ⊆ B, where
|F| = |D| and each file in D is requested by exactly one
user in F . The key observation is that in ⊕

F∈FB
XB\F each

involved subfile appears exactly twice (i.e., contained in two
MAN multicast messages)2, whose contribution on F2 is thus
zero. From (11), we have

XA = ⊕
F∈FB:F�=L

XB\F , (12)

thus the multicast message XA can be recovered by all users
from the delivery phase.

Load: The YMA scheme requires the load of

R(D) =

�
K

t+1

�
−
�
K−|D|

t+1

��
K
t

� , (13)

if the set of the demanded files is D. The worst-case load is
attained for |D| = min(N,K), thus the achieved memory-load
tradeoff of the YMA scheme is the lower convex envelop of
the following points

(M,R) =

�
Nt

K
,

�
K

t+1

�
−
�
K−min(N,K)

t+1

��
K
t

� �
, ∀t ∈ [0 : K].

(14)

III. MAIN RESULTS AND DISCUSSION

In this section, we summarize the main results in this article
and provide some discussion.

A. Achievability

The main result of this article is as follows.
Theorem 1 (Achievability): For the (K,N, q) shared-link

cache-aided scalar linear function retrieval problem, the YMA

2 In this article, A ‘appears’ in a linear combination means that in the linear
combination, there exists some term in the linear combination including A.
A linear combination ‘contains’ B means that in the linear combination, the
coefficient multiplying B is not 0. For example, we say A appears in the
linear combination (A⊕B)⊕ (A⊕C), but the linear combination does not
contain A.

load in (14) is an achievable worst-case load. More precisely,
for cache size M = Nt

K , with t ∈ [0 : K], and for demand
matrix D, the load

R(D) :=

�
K

t+1

�
−
�
K−rankq(D)

t+1

��
K
t

� (15)

is achievable. The worst-case load is attained by rankq(D) =
min(N,K). �

Remark 1 (Dependance on the Rank of the Demand
Matrix): The load in (15) is a generalization of the load in (13)
achieved by the YMA scheme. More precisely, if each user
k ∈ [K] requests one file (i.e., yk ∈ [0 : 1]N with a unit norm),
rankq(D) is exactly the number of demanded files, and thus
the proposed scheme achieves the load in (13) as the YMA
scheme. Interestingly, the load of the proposed scheme only
depends on the rank of the demand matrix instead of on the
specifically demanded functions. �

Remark 2 (High-Level Ideas for Theorem 1 and Its Com-
parison to the YMA Scheme): We partition the “symbol
positions” set [F] as follows

[F] = ∪
T ⊆[K]:|T |=t

IT such that |IT | = F/

�
K

t

�
. (16)

Then, with a Matlab-inspired notation, we let

Wi,T = Wi(IT), ∀T ⊆ [K] : |T | = t, ∀i ∈ [N], (17)

representing the ordered set of symbols of Wi whose position
is in IT . As in the MAN placement, user k ∈ [K] caches
Wi,T if k ∈ T for all i ∈ [N]. By doing so, any scalar linear
function is naturally partitioned into “blocks” as follows

yk,1W1 + . . .+ yk,NWN

= { yk,1W1(IT) + . . .+ yk,NWN(IT)� 	
 �
:= Bk,T is the T -th block of the k-th demanded function

: T ⊆ [K], |T | = t}.

(18)

Some blocks of the demanded functions can thus be computed
based on the cache content available at each user while the
remaining ones need to be delivered by the server. With this
specific file split (and corresponding MAN cache placement),
we operate the MAN delivery scheme over the blocks instead
of over the subfiles; more precisely, instead of (8) we transmit

XS =
�
k∈S

αS,kBk,S\{k}, ∀S ⊆ [K] : |S| = t+ 1, (19)

for some non-zero encoding coefficient αS,k ∈ Fq in (19).
Clearly, this scheme achieves the same load as in (9) and

works on any finite field.
The question is whether we can do something similar to the

YMA scheme with (19). More specifically, we seek answers
to the following questions.

1) What is a suitable definition of the leader user set L?
2) What is a suitable choice of the encoding coefficients

αS,k for all S ⊆ [K], |S| = t+ 1, and k ∈ S in (19)?
3) Assuming we only send the multicast messages that are

useful for the leaders (i.e., XS where S ⊆ [K], |S| =
t+ 1, and S ∩ L
= ∅), what is the counterpart of (12)?

Authorized licensed use limited to: University of North Texas. Downloaded on June 10,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: ON THE OPTIMAL LOAD-MEMORY TRADEOFF OF CACHE-AIDED SCALAR LINEAR FUNCTION RETRIEVAL 4005

Here, for each A ⊆ [K] where |A| = t+1 and A∩L = ∅,
we seek

XA =
�

S⊆[K]:|S|=t+1,S∩L�=∅
βA,SXS , (20)

for some decoding coefficient βA,S ∈ Fq in (20).

The novelty of our scheme lays in the answers to these
questions as follows.

1) We first choose rankq(D) leaders whose demand vectors
are linearly independent, and denote the set of leader
users by L. By construction, the demand sub-matrix of
the leader users is full-rank.

2) One can see that if the encoding coefficients in (19) are
taken be equal to 1, as in the YMA scheme, and only
the multicast messages useful for at least one leader are
sent, as in the YMA scheme, then it is not possible to
reconstruct the multicast messages useful for non-leaders
only whenever the characteristic of the field is strictly
larger than two–see Remark 4.
Instead, for any prime-power q, we propose to sepa-
rate the blocks demanded by the leaders from those
demanded by non-leaders in (19) as

XS =
�

k1∈S∩L
αS,k1Bk1,S\{k1}

+
�

k2∈S\L
αS,k2Bk2,S\{k2}. (21)

We then propose to alternate the encoding coefficients of
the desired blocks by the leaders (i.e., users in S ∩ L)
between +1 and −1, i.e., the encoding coefficient of
the desired block of the first leader is +1, the encoding
coefficient of the desired block of the second leader is
−1, the encoding coefficient of the desired block of the
third leader is +1, etc. Similarly, we propose to alternate
the encoding coefficients of the desired blocks by the
non-leaders (i.e., users in S \ L) between +1 and −1.3

3) With the above encoding coefficients, we compute the
decoding coefficients by equating (21) to (20) for every
A ⊆ [K] where |A| = t+1 and A∩L = ∅; the solution
is given in (57b). With this, each user can recover all
multicast messages, sent or not, and thus it can recover
its desired function.

4) For q = 2 we have −1 = 1 (i.e., the choice of the
encoding coefficients is exactly the same as the YMA
scheme). In this case, following the decoding step of
the YMA scheme that only uses sum/XOR operations
(reviewed in Section II-B), we propose an alternate and
much simpler decodability proof than the one for the
general q. Note that for the case q = 2n where n > 1,
even if the choice of the encoding coefficients is exactly
the same as the YMA scheme4, the YMA scheme fails as

3 This type of code was originally proposed for the private function retrieval
problem [28], where there is a memory-less user aiming to retrieve a scalar
linear function of the files in the library from multiple servers (each server
can access the whole library), while preserving the demand of this user from
each server.

4 If the characteristic of a field is 2, for each element on this field (denoted
by a), we have a + a = 0. Hence, +1 and −1 are both equal to 1.

in this case multiplication operations are needed during
the decoding step–See Remark 5. �

B. Optimality

As the setting where each user demands one file is a special
case of the considered cache-aided scalar linear function
retrieval problem, each of the converse bounds in [3]–[5]
for the original shared-link coded caching problem is also a
converse in our considered problem, thus we immediately have
the following optimality guarantees.

Theorem 2 (Optimality): For the (K,N, q) shared-link
cache-aided scalar linear function retrieval problem, under
the constraint of uncoded cache placement, the optimal
worst-case load-memory tradeoff is the lower convex envelop
of

(M,R�
u) =

�
Nt

K
,

�
K

t+1

�
−
�
K−min{K,N}

t+1

��
K
t

� �
, ∀t ∈ [0 : K].

(22)

Moreover, the achieved worst-case load in (22) is optimal to
within a factor of two in general.

�

C. Extensions

We discuss here the extensions of the proposed caching
scheme in Theorem 1.

1) Extension to Commutative Rings and Monomial
Retrieval: As only associativity and commutativity are
required to prove the correctness of the decoding procedure
for the scheme in Theorem 1, we conclude that our scheme
works on any commutative ring as well. With this observation,
we can further extend the scope of this work so as to include
monomial retrieval in the spirit of [29]. The idea is that
one can define a discrete logarithm that maps each non-zero
element on the finite field Fq to a distinct element on the
integral domain Zq−1. Thus, except for a special treatment
that one has to reserve to the case where one of the factors
in the monomial is zero, we can use our proposed scheme on
the integral domain Zq−1.

2) Optimal Average Load Under Uncoded and Symmetric
Cache Placement: We define uncoded and symmetric cache
placement as follows, as a generalization of (16)-(17).

Definition 1 (Uncoded and Symmetric Cache Placement):
We partition the symbol positions set into disjoint index sets,

[F] = ∪
T ⊆[K]

IT , (23)

where IT can be empty for some T ⊆ [K]. We then let Wi,T =
Wi(IT) for all T ⊆ [K] and i ∈ [N] as in (17). Each user
k ∈ [K] caches Wi,T if k ∈ T for all i ∈ [N]. �

In the delivery phase, user k ∈ [K] needs to recover
Bk,T (defined in (18)) for all T ⊆ [K] \ {k}. By directly
using [5, Lemma 2] in the caching converse bound under
uncoded cache placement in [3], [4], we can prove that the
proposed caching scheme in Theorem 1 achieves the optimal
average load over i.i.d. uniform demand distribution under the
constraint of uncoded and symmetric cache placement.

Authorized licensed use limited to: University of North Texas. Downloaded on June 10,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

4006 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 6, JUNE 2021

Corollary 1 (Optimal Average Load Under Uncoded and
Symmetric Cache Placement): For the (K,N, q) shared-link
cache-aided scalar linear function retrieval problem, under the
constraint of uncoded and symmetric cache placement, the
optimal average load over i.i.d. uniform demand distribution
is the lower convex envelop of

(M,R) =

�
Nt

K
,ED

�
K

t+1

�
−
�
K−rankq(D)

t+1

��
K
t

� ��
, ∀t ∈ [0 : K].

(24)

Note that an uncoded and asymmetric cache placement can
be treated as a special case of the inter-file coded cache
placement in the original MAN caching problem. It is part
of on-going work to derive a converse bound under the
constraint of uncoded cache placement (i.e., without constraint
of symmetric cache placement) for the considered cache-aided
function retrieval problem.

3) Device-to-Device (D2D) Cache-Aided Scalar Linear
Function Retrieval: Coded caching was originally used in
Device-to-Device networks in [6], where in the delivery phase
each user broadcasts packets, which are functions of its cached
content and the users’ demands, to all other users. The authors
in [30] extended the YMA scheme to D2D networks by
dividing the D2D networks into K shared-link networks, and
used the YMA scheme in each shared-link network. Hence,
when users request scalar linear functions, we can use the
method in [30] to divide the D2D networks into K shared-
link networks, and then use the proposed caching scheme in
Theorem 1 in each shared-link network.

Corollary 2 (D2D Cache-Aided Scalar Linear Function
Retrieval): For the (K,N, q) D2D cache-aided scalar linear
function retrieval problem, the lower convex envelop of the
following points is achievable

(M,R) =

�
Nt

K
,max

D

�
K−1

t

�
− 1

K

�
k∈[K]

�K−1−rankq(D[K]\{k})
t

��
K−1
t−1

� �
,

(25)

for all t ∈ [K].
4) Cache-Aided Private Scalar Linear Function Retrieval:

For successful decoding in the proposed scheme in Theorem 1,
users need to be aware of the demands of other users, which
is not private. To preserve the privacy of the demand of a user
against the other users, one can design schemes that include
virtual users as in [7], [8]. In the proposed scheme in [8],
each possible demanded function (the total number of possible
demanded functions is N� := qN−1

q−1) is demanded exactly K
times. Thus there are totally N�K real or virtual users in the
system. Then the proposed scheme in Theorem 1 can be used
to satisfy the demands of all real or virtual users. As each
user cannot distinguish other real users from virtual users,
the resulting scheme does not leak any information on the
demands of real users.

Corollary 3 (Cache-Aided Private Scalar Linear Function
Retrieval): For the (K,N, q) shared-link cache-aided private
scalar linear function retrieval problem, the lower convex

envelop of the following points is achievable

(M,R) =

�
t

N�K
N,

�
N�K
t+1

�
−
�
N�K−N

t+1

��
N�K

t

� �
, ∀t ∈ [N�K]. (26)

Remark 3: Very recently, the authors in [31] found an
important application of our proposed cache-aided linear func-
tion retrieval scheme in the setting where the privacy of each
user’s demand against the other users must be preserved. The
key idea in [31] is as follows. In the placement phase, besides
the content which users should cache in the MAN cache
placement, users also cache some random linear combinations
of the files that are not cached in the MAN scheme, which
act as a privacy key. In the delivery phase, the server delivers
multicast messages as if the demands are linear combinations
of the files, where the linear combination for a user is
determined by its privacy key and its demand. Compared to
existing private caching schemes based on virtual users, the
scheme in [31] achieves a similar load while reducing the
subpacketization level from 2NKH(M/N) to 2KH(M/N), where
H(p) = −p log2(p)− (1−p) log2(1−p) is the binary entropy
function. This reduction is an exponential improvement on the
subpacketization level. �

5) Reduction on the Subpacketization Level: In practical
scenarios, the high subpacketization level of any scheme based
on the MAN placement, which increases exponentially with
the number of users K, is problematic. Low subpacketization
level schemes for the MAN problem have been extensively
studied in the literature. Here we remark that any low subpack-
etization level scheme for the MAN problem, which (i) uses
uncoded and symmetric cache placement and (ii) treats the
demand of each user as an independent file, works for scalar
linear function retrieval as well – for example, schemes based
on grouping strategy, such as [18]–[20], schemes based on
Placement Delivery Array (PDA), such as [21]–[23], and some
other combinatorial designs such as [24]–[27]. Similarly to the
scheme achieving the MAN load introduced in this article,
the solution for the delivery phase is to treat each demanded
linear function as an independent file and partition each linear
function into blocks, which are treated as subfiles in the
original problem.

IV. ACHIEVABLE SCHEME IN THEOREM 1 FOR GENERAL

PRIME-POWER q

In the following, we describe the proposed cache-aided
function retrieval scheme in Theorem 1 where the users’
demands are scalar linear functions on arbitrary finite field.
All the operations in the proposed scheme are on the same
finite field. First, we give an example to illustrate the main
ideas of the proposed scheme. Next, we present the general
cache-aided function retrieval scheme for any prime-power q.
Finally, for the case q = 2, where the proposed scheme reduces
to the YMA scheme, we give an alternate decodability proof
that is simpler than the one for the general case.

A. Example K = 4,N = 2, t = 1

Consider the (K,N, q) = (4, 2, q) shared-link cache-aided
scalar linear function retrieval problem, where q is a prime-
power. We consider t = KM/N = 1, that is, M = 1/2. Each

Authorized licensed use limited to: University of North Texas. Downloaded on June 10,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: ON THE OPTIMAL LOAD-MEMORY TRADEOFF OF CACHE-AIDED SCALAR LINEAR FUNCTION RETRIEVAL 4007

file is partitioned into
�
K
t

�
= 4 equal-length subfiles. We use

the file split in (16)-(17), resulting in the demand split in (18).
In the delivery phase, we assume that

user 1 demands W1;

user 2 demands W2;

user 4 demands y3,1 W1 + y3,2 W2;

user 5 demands y4,1 W1 + y4,2 W2;

i.e., the demand matrix is

D =

⎡⎢⎢⎣
1 0
0 1
y3,1 y3,2

y4,1 y4,2

⎤⎥⎥⎦ ∈ [Fq]4×2. (27)

We choose the set of leaders L = [2], since
rankq(D[2]) = 2. Each user k ∈ [4] should recover each block
Bk,T = yk,1 W1,T + yk,2 W2,T after the delivery phase,
where T ∈ [4] \ {k} and |T | = 1. Note that y1,1 = y2,2 = 1
and y1,2 = y2,1 = 0.

Encoding. For each set S ⊆ [K] where |S| = t+1 = 2, the
multicast messages in (19) are

X{1,2} = α{1,2},1 B1,{2} + α{1,2},2 B2,{1}, (all leaders);
(28a)

X{1,3} = α{1,3},1 B1,{3} + α{1,3},3 B3,{1}, (mixed);
(28b)

X{1,4} = α{1,4},1 B1,{4} + α{1,4},4 B4,{1}, (mixed);
(28c)

X{2,3} = α{2,3},2 B2,{3} + α{2,3},3 B3,{2}, (mixed);
(28d)

X{2,4} = α{2,4},2 B2,{4} + α{2,4},4 B4,{2}, (mixed);
(28e)

X{3,4}=α{3,4},3 B3,{4}+α{3,4},4 B4,{3}, (all non-leaders).

(28f)

Hence, there are (t + 1)
�

K
t+1

�
= 12 non-zero encoding

coefficients in (28). Our objective is to express X{3,4} as a
linear combination of the other multicast messages, so that we
only need to transmit

�
K

t+1

�
−
�
K−|L|
t+1

�
= 5 multicast messages.

In other words, we aim to find 5 decoding coefficients such
that

X{3,4} = β{3,4},{1,2} X{1,2} + β{3,4},{1,3} X{1,3}

+ β{3,4},{1,4} X{1,4} + β{3,4},{2,3} X{2,3}

+ β{3,4},{2,4} X{2,4} (29a)

= β{1,2} X{1,2} + β{1,3} X{1,3} + β{1,4} X{1,4}

+ β{2,3} X{2,3} + β{2,4} X{2,4}. (29b)

In this example, only X{3,4} must be reconstructed from the
other multicast messages, thus we simply the notation in the
rest of this example and use βS rather than βA,S .

We seek a solution for

α{3,4},3 (y3,1 W1,{4} + y3,2 W2,{4})
+ α{3,4},4 (y4,1 W1,{3} + y4,2 W2,{3}) (30a)

= β{1,2}
�
α{1,2},1 W1,{2} + α{1,2},2 W2,{1}

�
+ β{1,3}

�
α{1,3},1W1,{3}+α{1,3},3(y3,1W1,{1} + y3,2W2,{1})

�
+β{1,4}

�
α{1,4},1W1,{4}+α{1,4},4(y4,1W1,{1} + y4,2W2,{1})

�
+β{2,3}

�
α{2,3},2W2,{3}+α{2,3},3(y3,1W1,{2} + y3,2W2,{2})

�
+β{2,4}

�
α{2,4},2W2,{4}+α{2,4},4(y4,1W1,{2}+y4,2W2,{2})

�
.

(30b)

We proceed to equate the coefficients on the left and on
the right hand side of (30). We start with the easy equations,
namely

for W1,{3} : y4,1 α{3,4},4 = β{1,3} α{1,3},1

⇐⇒ β{1,3} = y4,1

α{3,4},4

α{1,3},1
, (31a)

for W1,{4} : y3,1 α{3,4},3 = β{1,4} α{1,4},1

⇐⇒ β{1,4} = y3,1

α{3,4},3

α{1,4},1
, (31b)

for W2,{3} : y4,2 α{3,4},4 = β{2,3} α{2,3},2

⇐⇒ β{2,3} = y4,2

α{3,4},4

α{2,3},2
, (31c)

for W2,{4} : y3,2 α{3,4},3 = β{2,4} α{2,4},2

⇐⇒ β{2,4} = y3,2

α{3,4},3

α{2,4},2
. (31d)

Then we move to the following equations

for W1,{1} : 0 = y3,1 β{1,3} α{1,3},3 + y4,1 β{1,4} α{1,4},4

(31a)(31b)⇐⇒
α{3,4},4 α{1,3},3

α{1,3},1
+
α{3,4},3 α{1,4},4

α{1,4},1
= 0,

(32a)

for W2,{2} : 0 = y3,2 β{2,3} α{2,3},3 + y4,2 β{2,4} α{2,4},4

(31c)(31d)⇐⇒
α{3,4},4 α{2,3},3

α{2,3},2
+
α{3,4},3 α{2,4},4

α{2,4},2
= 0,

(32b)

which imply the following alignment condition (note the
minus sign!)

−
α{3,4},4

α{3,4},3
=
α{1,4},4

α{1,4},1

α{1,3},1

α{1,3},3
=
α{2,4},4

α{2,4},2

α{2,3},2

α{2,3},3
. (33)

Finally, with the condition in (33) and the previously deter-
mined decoding coefficients, we get

for W2,{1} :
− β{1,2} α{1,2},2=y3,2 β{1,3} α{1,3},3 + y4,2 β{1,4} α{1,4},4

= (−y4,1 y3,2 + y3,1 y4,2)
α{3,4},3 α{1,4},4

α{1,4},1
, (34a)

for W1,{2} :
− β{1,2} α{1,2},1=y3,1 β{2,3} α{2,3},3 + y4,1 β{2,4} α{2,4},4

= (−y4,1 y3,2 + y3,1 y4,2)
α{3,4},4 α{2,3},3

α{2,3},2
, (34b)

which imply another alignment condition
α{3,4},4

α{3,4},3
=
α{2,3},2 α{1,4},4 α{1,2},1

α{2,3},3 α{1,4},1 α{1,2},2
. (35)

To satisfy the constraints in (31)-(35), we choose the fol-
lowing solution. In each XS where S ⊆ [4] and |S| = 2,

Authorized licensed use limited to: University of North Texas. Downloaded on June 10,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

4008 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 6, JUNE 2021

we first alternate the encoding coefficients (either 1 or −1) of
the desired blocks of the leaders in S, and then alternate the
encoding coefficients (either 1 or −1) of the desired blocks of
the non-leaders in S. With this, the multicast messages are

X{1,2} = B1,{2} −B2,{1}; (36a)

X{1,3} = B1,{3} +B3,{1}; (36b)

X{1,4} = B1,{4} +B4,{1}; (36c)

X{2,3} = B2,{3} +B3,{2}; (36d)

X{2,4} = B2,{4} +B4,{2}; (36e)

X{3,4} = B3,{4} −B4,{3}. (36f)

With the above choice on the encoding coefficients, we
can check that all alignment conditions are satisfied with the
decoding coefficients,

β{1,2} = y3,1 y4,2 − y4,1 y3,2 = det([y3,1, y3,2; y4,1, y4,2]);
(37a)

β{1,3} = −y4,1 = −det([y4,1]); (37b)

β{1,4} = y3,1 = det([y3,1]); (37c)

β{2,3} = −y4,2 = −det([y4,2]); (37d)

β{2,4} = y3,2 = det([y3,2]). (37e)

Delivery. The server broadcasts XS for each S ⊆ [4] where
|S| = 2 and S ∩ [2]
= ∅. In other words, the server broadcasts
all the multicast messages in (36) except for X{3,4}.

Decoding. As shown in (29b), each user can recover all
multicast messages in (36), such that it can then recover its
demanded function.

Performance. In total we transmit 5 multicast messages,
each of which contains 1

4 of the file symbols. Hence, the
transmitted load is 5

4 , which coincides with the optimal worst-
case load in Theorem 2.

Remark 4: In this example, the key novelty of the proposed
scheme is to determine the encoding coefficients. The solution
is that in each multicast message we alternate the signs
(either 1 or −1) of the encoding coefficients for the desired
blocks by the leaders and by the non-leaders, respectively.
However, in the YMA scheme all the encoding coefficients are
set to 1. In the following, we show that for an arbitrary field
Fq of characteristic larger than 2, if we choose the encoding
coefficients as the YMA scheme, the resulting scheme is not
decodable.

In the above example, let [y3,1, y3,2] = [1, 1] and
[y4,1, y4,2] = [1, 0]. In the delivery phase, with the set of
leaders L = [2], we generate the multicast messages as for
the YMA scheme

X{1,2} = W1,{2} +W2,{1}; (38a)

X{1,3} = W1,{3} + (W1,{1} +W2,{1}); (38b)

X{1,4} = W1,{4} +W1,{1}; (38c)

X{2,3} = W2,{3} + (W1,{2} +W2,{2}); (38d)

X{2,4} = W2,{4} +W1,{2}. (38e)

Let us then focus on user 3 who desires W1 + W2. From
its cache, user 3 can recover the block W1,{3} +W2,{3}; from
X{1,3}, user 3 can recover the block W1,{1} + W2,{1}; from

X{2,3}, user 3 can recover the block W1,{2} +W2,{2}. Hence,
user 3 lacks the block W1,{4} + W2,{4}. If we assume that
user 3 can recover the block W1,{4} +W2,{4} from (38) and
its cache, we have (39), shown at the bottom of the next page,
where in (39b) we removed the cached content of user 3 in all
the multicast messages, and (39c) follows since the symbols
in the files are independent.

We define (a)b as a vector with length b where the elements
are all a. We first let

Wi,{j} = (0)F/4, ∀i ∈ [2], j ∈ {1, 2, 4}. (40)

With the above values of subfiles, in (39c) we have

X{1,2} = W1,{1} +W2,{1} = X{1,4} = W1,{2} +W2,{2}

= X{2,4} = (0)F/4. (41)

We also have

W1,{4} +W2,{4} = (0)F/4. (42)

We then let

W1,{1} = (1)F/4, W1,{2} = (1)F/4, W1,{4} = (−1)F/4,

(43a)

W2,{1} = (−1)F/4, W2,{2} = (−1)F/4, W2,{4} = (−1)F/4,

(43b)

With the values of subfiles in (43), we can see that (41) still
holds; however, we have

W1,{4} +W2,{4} = (−1 − 1)F/4, (44)

which is not the same as (42) if the characteristic of Fq is
larger than 2. As a result, we prove that the conditional entropy
in (39c) is not equal to 0, which contradicts the fact that we
assumed that user 3 could recover W1,{4} + W2,{4}. So we
proved that if we choose the encoding coefficients as the YMA
scheme, the resulting scheme is not decodable. �

B. General Description

We use the file split in (16)-(17), resulting in the demand
split in (18). The placement phase is as for the MAN scheme.
In the delivery phase, after the demand matrix D =

�
yk,n :

k ∈ [K], n ∈ [N]
�
∈ F

K×N
q is revealed, among the K users we

first choose rankq(D) leaders and we let L to be the set of the
leaders, that is

|L| = rankq(DL) = rankq(D). (45)

Without loss of generality, that is, up to a permutation of the
user indices, we can assume that L = [|L|]. This convention
greatly simplifies the notation in the following of this section.

From (45), we can express the demands of non-leaders
by the linear combinations of the demands of leaders. More
precisely, we define that

Bi := yi,1W1 + . . .+ yi,NWN, ∀i ∈ [|L|], (46)

and express the demand of each user k ∈ [K] as

yk,1W1 + . . .+ yk,NWN =
�
�∈L

xk,�B�. (47)

Authorized licensed use limited to: University of North Texas. Downloaded on June 10,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: ON THE OPTIMAL LOAD-MEMORY TRADEOFF OF CACHE-AIDED SCALAR LINEAR FUNCTION RETRIEVAL 4009

For each k ∈ [K], we define the row vector

xk := [xk,1, . . . , xk,|L|]. (48)

Clearly, for each leader i ∈ [|L|], xi is an |L|-dimension unit
vector where the ith element is 1. The transformed demand
matrix D

� is defined as follows,

D
� = [x1,1, . . . , x1,|L|; . . . ;xK,1, . . . , xK,|L|]. (49)

In addition, for each i ∈ [K] and each T ⊆ [K] where
|T | = t, we define the block as in (18),

Bi,T := yi,1Wi,T + . . .+ yi,NWN,T . (50)

If one block in (50) is demanded by a leader (i.e., Bi,T where
i ∈ [|L|]), we also call it a leader block. From (47), for each
k ∈ [K] and each T ⊆ [K] where |T | = t, we can re-express
each block Bk,T as a linear combination of leader blocks,

Bk,T = yk,1W1,T + . . .+ yk,NWN,T (51a)

= xk,1B1,T + . . .+ xk,|L|B|L|,T . (51b)

Encoding. For each S ⊆ [K], we denote the set of leaders
in S by

LS := S ∩ L = S ∩ [|L|], (52)

and the set of non-leaders in S by

NS := S \ L = S \ [|L|]. (53)

Now we focus on each set S ⊆ [K] where |S| = t + 1,
and generate the multicast message (recall that as defined in
Section I-B, for any set V , V(i) represents the ith smallest
element in set V)

XS =
�

i∈[|LS |]
(−1)i−1BLS(i),S\{LS(i)}

+
�

j∈[|NS |]
(−1)j−1BNS (j),S\{NS (j)}. (54)

The construction of XS can be explained as follows.

• The encoding coefficient of each block in XS is either 1
or −1.

• We divide the blocks in XS into two groups, demanded
by leaders and non-leaders, respectively. We alternate the
sign (i.e., the coefficient 1 or −1) of each block demanded
by leaders, and alternate the sign of each block demanded
by non-leaders, respectively. We then sum the resulting
summations of these two groups.

Delivery. The server broadcasts XS for each S ⊆ [K] where
|S| = t+ 1 and S ∩ L
= ∅.

Decoding. We consider each set A ⊆ [K] where |A| = t+1
and A ∩L = ∅.

We define that the non-leader index of non-leader A(i) is i,
where i ∈ [t+1]. For each S ⊆ A∪L, recall that NS defined
in (53) represents the set of non-leaders in S. By definition,
we have NS ⊆ A. In addition, with a slight abuse of notation
we denote the non-leader indices of non-leaders in A \ S by

IndS = {i ∈ [t+ 1] : A(i) /∈ S}. (55)

For example, if A = {4, 5, 6} and S = {1, 2, 5}, we have
IndS = {1, 3}.

For any set X , we define Tot(X) as the sum of the elements
in X , i.e.,

Tot(X) :=
�

i∈[|X |]
X (i); . (56)

For example, if X = {1, 3, 4, 5}, we have Tot(X) = 1 + 3 +
4 + 5 = 13.

Recall that AS,V represents the sub-matrix of A by selecting
from A, the rows with indices in S and the columns with
indices in V . It will be proved in Appendix B (which is the
most technical part of this article) that

XA =
�

S⊆A∪L:|S|=t+1,S�=A
βA,SXS , (57a)

βA,S = (−1)1+Tot(IndS)det(D�
A\S,LS

). (57b)

In other words, each user k ∈ [K] can recover all messages
XS where S ⊆ [K] and |S| = t + 1. For each desired block
Bk,T , where T ⊆ ([K] \ {k}) and |T | = t, user k can recover
it in XT ∪{k}, because it knows all the other blocks in XT ∪{k}.
Hence, user k can recover xk,1B1 + . . . + xk,|L|B|L|, which
is identical to its demand.

Performance. In total, we transmit
�

K
t+1

�
−
�
K−rankq(D)

t+1

�
multicast messages, each of which contains F

(K
t)

symbols.

Hence, the transmitted load is�
K

t+1

�
−
�
K−rankq(D)

t+1

��
K
t

� . (58)

For the worst-case demands where rankq(D) is full-rank, we
have rankq(D) = min{K,N}, and we achieve the worst-case
load in (22).

C. Simplified Proof of Decodability for q = 2

When q = 2, inspired from the YMA scheme’s decoding
step reviewed in Section II-B, we can give an alternate decod-
ability proof for the proposed cache-aided function retrieval
scheme, which only needs sum/XOR operations and is thus
much simpler than the one for the general q in Appendix B.
We also start with an example.

Example 1: Consider the (K,N, q) = (6, 3, 2) shared-link
cache-aided scalar linear function retrieval problem, where

0 = H
�
W1,{4} +W2,{4}

��X{1,2}, X{1,3}, X{1,4}X{2,3}, X{2,4}, {Wi,{3} : i ∈ [2]}
�

(39a)

= H
�
W1,{4} +W2,{4}

��X{1,2},W1,{1} +W2,{1}, X{1,4},W1,{2} +W2,{2}, X{2,4}, {Wi,{3} : i ∈ [2]}
�

(39b)

= H
�
W1,{4} +W2,{4}

��X{1,2},W1,{1} +W2,{1}, X{1,4},W1,{2} +W2,{2}, X{2,4}
�
. (39c)

Authorized licensed use limited to: University of North Texas. Downloaded on June 10,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

4010 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 6, JUNE 2021

t = KM/N = 2, that is, M = 1. In the cache placement, each
file is partitioned into

�
K
t

�
= 15 equal-length subfiles. We use

the file split in (16)-(17), resulting in the demand split in (18).
In the delivery phase, we assume that the demand matrix is

D =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
1 1 1

⎤⎥⎥⎥⎥⎥⎥⎦ . (59)

On the observation that rank2(D) = 3, we choose 3 users as
leaders, where the demand matrix of these 3 leaders is also
full-rank. Here, we choose L = [3].

Encoding. For each set S ⊆ [K] where |S| = t+ 1 = 3, we
generate a multicast message with encoding coefficients equal
to 1 in (19). Hence, we have

X{1,2,3} = W1,{2,3} ⊕W2,{1,3} ⊕W3,{1,2}; (60a)

X{1,2,4} = W1,{2,4} ⊕W2,{1,4} ⊕ (W1,{1,2} ⊕W2,{1,2});
(60b)

X{1,2,5} = W1,{2,5} ⊕W2,{1,5} ⊕ (W1,{1,2} ⊕W3,{1,2});
(60c)

X{1,2,6} = W1,{2,6} ⊕W2,{1,6}

⊕ (W1,{1,2} ⊕W2,{1,2} ⊕W3,{1,2}); (60d)

X{1,3,4} = W1,{3,4} ⊕W3,{1,4} ⊕ (W1,{1,3} ⊕W2,{1,3});
(60e)

X{1,3,5} = W1,{3,5} ⊕W3,{1,5} ⊕ (W1,{1,3} ⊕W3,{1,3});
(60f)

X{1,3,6} = W1,{3,6} ⊕W3,{1,6}

⊕ (W1,{1,3} ⊕W2,{1,3} ⊕W3,{1,3}); (60g)

X{1,4,5} = W1,{4,5} ⊕ (W1,{1,5} ⊕W2,{1,5})
⊕ (W1,{1,4} ⊕W3,{1,4}); (60h)

X{1,4,6} = W1,{4,6} ⊕ (W1,{1,6} ⊕W2,{1,6})
⊕ (W1,{1,4} ⊕W2,{1,4} ⊕W3,{1,4}); (60i)

X{1,5,6} = W1,{5,6} ⊕ (W1,{1,6} ⊕W3,{1,6})
⊕ (W1,{1,5} ⊕W2,{1,5} ⊕W3,{1,5}); (60j)

X{2,3,4} = W2,{3,4} ⊕W3,{2,4} ⊕ (W1,{2,3} ⊕W2,{2,3});
(60k)

X{2,3,5} = W2,{3,5} ⊕W3,{2,5} ⊕ (W1,{2,3} ⊕W3,{2,3});
(60l)

X{2,3,6} = W2,{3,6} ⊕W3,{2,6}

⊕ (W1,{2,3} ⊕W2,{2,3} ⊕W3,{2,3}); (60m)

X{2,4,5} = W2,{4,5} ⊕ (W1,{2,5} ⊕W2,{2,5})
⊕ (W1,{2,4} ⊕W3,{2,4}); (60n)

X{2,4,6} = W2,{4,6} ⊕ (W1,{2,6} ⊕W2,{2,6})
⊕ (W1,{2,4} ⊕W2,{2,4} ⊕W3,{2,4}); (60o)

X{2,5,6} = W2,{5,6} ⊕ (W1,{2,6} ⊕W3,{2,6})
⊕ (W1,{2,5} ⊕W2,{2,5} ⊕W3,{2,5}); (60p)

X{3,4,5} = W3,{4,5} ⊕ (W1,{3,5} ⊕W2,{3,5})
⊕ (W1,{3,4} ⊕W3,{3,4}); (60q)

X{3,4,6} = W3,{4,6} ⊕ (W1,{3,6} ⊕W2,{3,6})
⊕ (W1,{3,4} ⊕W2,{3,4} ⊕W3,{3,4}); (60r)

X{3,5,6} = W3,{5,6} ⊕ (W1,{3,6} ⊕W3,{3,6})
⊕ (W1,{3,5} ⊕W2,{3,5} ⊕W3,{3,5}); (60s)

X{4,5,6} = (W1,{5,6} ⊕W2,{5,6}) ⊕ (W1,{4,6} ⊕W3,{4,6})
⊕ (W1,{4,5} ⊕W2,{4,5} ⊕W3,{4,5}). (60t)

Delivery. The server broadcasts XS for each S ⊆ [K] where
|S| = t + 1 = 3 and S ∩ L
= ∅. In other words, the
server broadcasts all the multicast messages in (60) except
for X{4,5,6}.

Decoding. We show that the untransmitted multicast mes-
sage X{4,5,6} can be reconstructed by the transmitted multicast
messages. For each set of users B ⊆ [K], we define VB
as the family of subsets V ⊆ B, where |V| = |L| and
rank2(DV) = |L|. It can be seen that VB is the generalization
of FB defined in the YMA scheme described in Section II-B.
When B = L ∪ {4, 5, 6} = [6], we have

V[6]=
�
{1, 2, 3}, {1, 2, 5}, {1, 2, 6}, {1, 3, 4}, {1, 3, 6}, {1, 4, 5},
{1, 4, 6}, {1, 5, 6}, {2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 4, 5},

{2, 4, 6}, {3, 4, 5}, {3, 5, 6}, {4, 5, 6}
�
. (61)

From the above definition, we focus on the following sum
of multicast messages

⊕
V∈V[6]

X[6]\V = 0, (62)

where (62) is because on the LHS of (62), among all subfiles
Wi,T where i ∈ [3], T ⊆ [6], and |T | = 2, the coefficient
of each of W2,{2,4}, W2,{2,6}, W2,{4,6}, W3,{3,5}, W3,{3,6},
W3,{5,6} is 0, W1,{2,3} appears 4 times and other subfiles
appear 2 times. Hence, the sum is equal to 0 on F2. Note
that in the YMA scheme, each subfile appears 2 times in the
sum ⊕

F∈FB
XB\F .

We can write (62) as

X{4,5,6} = ⊕
V∈V[6]:V�=L

X[6]\V . (63)

In other words, the untransmitted multicast message X{4,5,6}
can be reconstructed by the transmitted multicast messages.
Thus each user can recover all the multicast messages in (60),
and then recover its desired function.

Performance. In total we transmit
�

K
t+1

�
−
�
K−rank2(D)

t+1

�
=�

6
3

�
−
�
3
3

�
= 19 multicast messages, each of which contains F

20
bits. Hence, the transmitted load is 19

20 , which coincides with
the optimal worst-case load in Theorem 2. �

Remark 5: In Example 1, if we change the finite field from
F2 to F4, and consider the demands of users y1 = (1, 0, 0),
y2 = (0, 1, 0), y3 = (0, 0, 1), y4 = (1, 2, 0), y5 = (1, 0, 1),
and y6 = (1, 2, 1). The encoding coefficients are still equal
to 1, because we also have +1 = −1 = 1 on F4. However,
the YMA decoding procedure cannot work. More precisely, in
this case V[6] is the same as (61). If we take the sum in (62)

Authorized licensed use limited to: University of North Texas. Downloaded on June 10,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: ON THE OPTIMAL LOAD-MEMORY TRADEOFF OF CACHE-AIDED SCALAR LINEAR FUNCTION RETRIEVAL 4011

following the YMA decoding procedure, some subfiles such
as W2,{1,3} appear twice in (62), where X1,2,3 = W1,{2,3} +
W2,{1,3} + W3,{1,2} and X1,3,6 = W1,{3,6} + W3,{1,6} +
(W1,{1,3} + 2W2,{1,3} + W3,{1,3}); thus the coefficient of
W2,{1,3} in (62) is 3, not 0 on F4. In this case, multiplication
operations are needed during the decoding step. �

For the binary field F2, we are now ready to generalize the
decodability proof in the above example. Recall that in the
delivery phase, among the K users we first choose rank2(D)
leaders, where

|L| = rank2(DL) = rank2(D). (64)

For each set S ⊆ [K] where |S| = t + 1, we generate the
multicast messages

XS = ⊕
k∈S

Bk,S\{k}, ∀S ⊆ [K] : |S| = t+ 1, (65)

where the encoding coefficient of each Bk,S\{k} is 1. The
server then sends the multicast messages XS where |S| = t+1
and S ∩ L
= ∅.

For each set of users B ⊆ [K], define VB as the family
of subsets V ⊆ B, where |V| = |L| and rank2(DV) = |L|.
We now consider each set A ⊆ [K] where |A| = t + 1 and
A ∩ L = ∅, and focus on the binary sum with B = L ∪ A,

⊕
V∈VB

XB\V . (66)

A subfile Wi,T where T ⊆ B appears in the sum (66) if
and only if there exists some user k ∈ B \ T such that
rank2(DB\(T ∪{k})) = |L| (i.e., DB\(T ∪{k}) is full-rank and
thus XT ∪{k} is in (66)) and yk,i
= 0 (i.e., Wi,T appears in
XT ∪{k}). We then provide the following Lemma, proved in
Appendix A.

Lemma 1: If Wi,T appears in the sum (66), the number
of multicast messages in the sum which contains Wi,T is
even.5 �

From Lemma 1, it can be seen that each subfile in the
sum (66) appears an even number of times, and thus the
coefficient of this subfile in the sum is 0, which leads to

XA = ⊕
V∈VB:V�=L

XB\V . (67)

In other words, XA can be reconstructed by the transmitted
multicast messages.

As a result, each user can recover all multicast messages
and thus it can decode its desired function.

V. CONCLUSION

In this article, we introduced the novel problem of cache-
aided scalar linear function retrieval, which is a generaliza-
tion of the classic coded caching problem and allows users
to request scalar linear functions of files. We proposed a
novel scheme that is provably correct for demand functions
over arbitrary finite field. Quite surprisingly, the proposed
scheme has the same worst-case load performance as the
optimal scheme under uncoded cache placement for single file

5 Note that in the YMA scheme for the original MAN caching problem,
each subfile in (11) is contained in two multicast messages in (11). Hence,
Lemma 1 is also a generalization of [4, Lemma 1] for the YMA scheme.

retrieval, as such it is optimal under the constraint of uncoded
cache placement and to within a factor of two otherwise.
Ongoing work includes the extension of the proposed caching
scheme to the case where the demanded functions are vector
linear or non-linear, as well as finding novel caching schemes
for the cache-aided function retrieval problem with coded
cache placement.

APPENDIX A
PROOF OF LEMMA 1

Recall that a subfile Wi,T where T ⊆ B appears in the
sum (66) if and only if there exists some user k ∈ B \ T
satisfying the following two constraints,

1) Constraint 1: rank2(DB\(T ∪{k})) = |L| such that
XT ∪{k} is in (66);

2) Constraint 2: yk,i
= 0 such that Wi,T appears in
XT ∪{k}.

Thus, for each k ∈ B \ T satisfying the above constraints,
in (66) there exists one multicast message which contains
Wi,T . So to prove Lemma 1, it is equivalent to prove that the
number of users k ∈ B \ T satisfying the above constraints is
even.

We assume that user k1 satisfies the above constraints.
Hence, DB\(T ∪{k1}) is full-rank, and yk1,i
= 0. We let
Y = {Y(1), . . . ,Y(|L|)} = B \ (T ∪ {k1}).

In the following, we operate a linear space transformation.
More precisely, we let

Gj = yY(j)[W1; . . . ;WN], ∀j ∈ [|L|]. (68)

From (68), we can re-write the demand of each user Y(j) as

Gj = y�
j [G1; . . . ;G|L|],

where y�
j is the |L|-dimension unit vector whose jth element

is 1. The transformed demand matrix of the users in Y is

T = [y�
1; . . . ;y

�
|L|],

which is an identity matrix.
In addition, we can also re-write the demand of user k1 as

y�[G1; . . . ;G|L|],

where y� is an |L|-dimension vector on F2. Note that if the
pth element in y� is 1 and Gp contains Wi, Wi appears one
time in y�[G1; . . . ;G|L|]. As yk1,i
= 0, it can be seen that
y�[G1; . . . ;G|L|] contains Wi. Hence, the number of p ∈ [|L|]
where the pth element in y� is 1 and Gp contains Wi, is odd.
For each of such p, if we replace the pth row of T by y�,
the resulting matrix is still full-rank, because the pth element
in y� is 1. As the resulting matrix is full-rank, it can be
seen that DB\(T ∪{Y(p)}) is also full-rank. In addition, as Gp

contains Wi, we can see that yY(p),i
= 0. Hence, user Y(p)
also satisfies the two constraints. Moreover, for any s ∈ [|L|],
if the sth element in y� is not 1, user Y(s) does not satisfy
Constraint 1; if Gs does not contain Ws, user Y(s) does not
satisfy Constraint 2.

As a result, besides user k1, the number of users in B \ T
satisfying the two constraints is odd. In conclusion, by taking
user k1 into consideration, the number of users in B \ T

Authorized licensed use limited to: University of North Texas. Downloaded on June 10,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

4012 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 6, JUNE 2021

satisfying the two constraints is even. Thus Lemma 1 is
proved.

APPENDIX B
PROOF OF (57)

Recall that L = [|L|]. We now focus on one set of non-
leaders A ⊆ [K] where |A| = t+ 1 and A ∩L = ∅.

For any positive integer n, Perm(n) represents the set of
all permutations of [n]. For any set X and any number y, we
define Card(X , y) as the number of elements in X which is
smaller than y, i.e.,

Card(X , y) := |{i ∈ X : i < y}|. (69)

For example, if X = {1, 3, 4, 5} and y = 4, we have
Card(X , y) = |{1, 3}| = 2.

Our objective is to prove (57) which can be equivalently
written as

XA =
�

S⊆A∪L:|S|=t+1,S�=A
βA,SXS , (70)

where βA,S is given in (71), shown at the bottom of the
next page. Note that (71) is obtained from expanding the
determinant in (57b).

Remark 6 (Connection to the Example in Section IV-A
– Part I): Let us go back to the illustrated example in
Section IV-A, where we have L = [2]. When A = {3, 4} and
S = {1, 2}, from the definition in (52) we have LS = [2]
and from the definition in (55) we have IndS = [2]. In
addition, Perm(|LS |) = Perm(2) = {(1, 2), (2, 1)}. Hence,
when u = (u1, u2) = (1, 2), in (71) we have the term

(−1)1+Tot([2])+Card([2]\{1},1)+Card([2]\{1,2},2)x3,1x4,2

= (−1)1+Tot([2])+Card([2]\{1},1)+Card([2]\{1,2},2)y3,1y4,2

= y3,1y4,2, (72)

where (72) is because in the example we have Wi = Bi for
each i ∈ [N], and thus xk = yk for each k ∈ [K]. Similarly,
when u = (2, 1), in (71) we have the term

(−1)1+Tot([2])+Card([2]\{2},2)+Card([2]\{1,2},1)x4,1x3,2

= (−1)1+Tot([2])+Card([2]\{2},2)+Card([2]\{1,2},1)y4,1y3,2

= −y4,1y3,2. (73)

Hence, in (71) we have β{3,4},{1,2} = y3,1y4,2 − y4,1y3,2,
which coincides with (37a) in the illustrated example. �

By the definition of XS in (54) and the fact that each block
is a linear combination of leader blocks as explained in (51b),
it is obvious to check that in (70), there only exist the leader
blocks Bi,T where i ∈ [|L|], T ⊆ (A∪L), and |T | = t. Now
we divide such leader blocks into hierarchies, where we say a
leader block Bi,T appearing in (70) is in Hierarchy h ∈ [0 : t],
if |T ∩ L| = h. In addition, on the LHS of (70), only leader
blocks in Hierarchy 0 exist.

We consider the following three cases:

1) Case 1: Bi,T is in Hierarchy 0. In Appendix B-A, we
will prove that the coefficient of Bi,T on the RHS
of (70) is equal to the coefficient of Bi,T on the LHS
of (70).

2) Case 2: Bi,T is in Hierarchy h > 0 and i ∈ T . In
Appendix B-B, we will prove that the coefficient of Bi,T
on the RHS of (70) is 0.

3) Case 3: Bi,T is in Hierarchy h > 0 and i /∈ T . In
Appendix B-C, we will prove that the coefficient of Bi,T
on the RHS of (70) is 0.

Hence, after proving the above three cases, (70) can be directly
derived.

Remark 7 (Connection to the Example in Section IV-A –
part II): In the illustrated example, recall that Bi = Wi for
each i ∈ [|L|]. Hence, it can be seen that Bi,T = Wi,T for
each i ∈ [|L|], T ⊆ [K], and |T | = t. For each leader block
Wi,T , it is in one of the following three cases,

1) Case 1: Wi,T is in Hierarchy 0. In this case, we have
the leader blocks Wi,{3}, Wi,{4} for i ∈ [2].

2) Case 2: Wi,T is in Hierarchy 1 and i ∈ T . In this case,
we have the leader blocks W1,{1} and W2,{2}.

3) Case 3: Wi,T is in Hierarchy 1 and i /∈ T . In this case,
we have the leader blocks W1,{2} and W2,{1}.

In this example, (70) becomes (29b), i.e.,

X{3,4} =
�

S⊆[4]:|S|=2,S∩[2] �=∅
β{3,4},SXS , (74)

which is our objective. �

A. Case 1

If Bi,T is in Hierarchy 0, we have T ⊆ A. As |A|−|T | = 1,
we assume that {A(k)} = A \ T . On the LHS of (70), Bi,T
appears in XA, where from (54) we have

XA =
�

j∈[t+1]

(−1)j−1(xA(j),1B1,S\{A(j)}+

. . .+ xA(j),|L|B|L|,S\{A(j)}). (75)

Hence, the coefficient of Bi,T in XA is (−1)k−1xA(k),i.
Let us then focus on the RHS of (70). Bi,T appears in

XT ∪{i}. As user i is the only leader in T ∪{i} (i.e., LT ∪{i} =
{i}), the coefficient of Bi,T in XT ∪{i} is (−1)1−1 = 1. In
addition, by computing IndT ∪{i} = {k}, we have

βA,T ∪{i} = (−1)1+k+0xA(k),i = (−1)k+1xA(k),i (76a)

= (−1)k−1xA(k),i. (76b)

Hence, the coefficient of Bi,T on the RHS of (70) (i.e., in
βA,T ∪{i}XT ∪{i}) is

(−1)k−1xA(k),i × 1 = (−1)k−1xA(k),i, (77)

which is the same as the coefficient of Bi,T on the LHS
of (70).

Remark 8 (Connection to the Example in Section IV-A –
Part III): In the illustrated example, recall that L = [2] and
A = {3, 4}. Let us focus on W1,{3} which is in Case 1. On
the LHS of (74), we have

X{3,4}=(y3,1W1,{4}+y3,2W2,{4})−(y4,1W1,{3}+y4,2W2,{3});

thus the coefficient of W1,{3} in X{3,4} is −y4,1. On the RHS
of (74), W1,{3} appears in X{1,3}, where

X{1,3} = W1,{3} + (y3,1W1,{1} + y3,2W2,{1});

Authorized licensed use limited to: University of North Texas. Downloaded on June 10,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: ON THE OPTIMAL LOAD-MEMORY TRADEOFF OF CACHE-AIDED SCALAR LINEAR FUNCTION RETRIEVAL 4013

thus the coefficient of W1,{3} in X{1,3} is 1. From (71) the
decoding coefficient of X{1,3} is (recall that L{1,3} = {1} and
Ind{1,3} = {2})

β{3,4},{1,3} =
�

u∈Perm(1)

(−1)1+2+Card([1]\{u1},u1)y4,1 = −y4,1.

(78)

Hence, the coefficient of W1,{3} on the RHS of (74) is also
−y4,1, which is the same as the one on the LHS of (74). �

B. Case 2

Now we focus on one leader block Bi,T in Hierarchy h > 0
where i ∈ T . By definition, we have |T ∩L| = h. On the RHS
of (70), as i ∈ T , Bi,T only appears in XT ∪{A(k)}, where
k ∈ IndT . We define that

the
�

Ind
−1
T (k)

�th
smallest element in IndT is k. (79)

We focus on one k ∈ IndT . A(k) is the kth element
in A, and in A \ T there are Ind

−1
T (k) − 1 elements

smaller than A(k). Hence, in NT ∪{A(k)} there are k − 1 −�
Ind

−1
T (k) − 1

�
= k− Ind

−1
T (k) elements smaller than A(k).

So from (54), it can be seen that the coefficient of Bi,T in
XT ∪{A(k)} is

(−1)k−Ind−1
T (k)xA(k),i. (80)

In addition, we have (81), shown at the bottom
of the next page. From (80) and (81b), the
coefficient of Bi,T in βA,T ∪{A(k)}XT ∪{A(k)} is

(−1)k−Ind
−1
T (k)xA(k),iβA,T ∪{A(k)}.

In the following, we will prove�
k∈IndT

(−1)k−Ind−1
T (k)xA(k),iβA,T ∪{A(k)} = 0, (82)

such that the coefficient of Bi,T on the RHS of (70) is 0.
Let us focus on one k ∈ IndT and one permutation u =

(u1, . . . , u|LT |) ∈ Perm(|LT |). The term in (82) caused by k
and u is (83), shown at the bottom of the next page. Note that
in

xA(k),i

�
i2∈[|LT |]

x
A
�

IndT ∪{A(k)}(ui2)
�
,LT (i2)

, (84)

which is the product of |LT | + 1 terms, there is one term
whose second subscript is i� for each i� ∈ LT \ {i}, and there
are two terms whose second subscript is i. We define that

the
�
L−1
T (i)

�th
smallest element in LT is i. (85)

Hence, the two terms in (84) whose second subscript is i are
xA(k),i and xA(k�),i, where k� := IndT ∪{A(k)}(uL−1

T (i)).

In addition, the combination k� and u� = (u�1, . . . , u
�
|LT |)

also causes a term in (82) which has the product

xA(k�),i

�
i2∈[|LT |]

x
A
�

IndT ∪{A(k�)}(u�
i2

)
�
,LT (i2)

. (86)

The products in (84) and (86) are identical if u� is as follows,

• for j ∈ [|LT |] \ {L−1
T (i)}, we have

A
�
IndT ∪{A(k�)}(u�j)

�
= A

�
IndT ∪{A(k)}(uj)

�
; (87)

such that

x
A
�

IndT ∪{A(k�)}(u�
j)
�
,LT (j)

= x
A
�

IndT ∪{A(k)}(uj)
�
,LT (j)

;

(88)

• for j = L−1
T (i), we have

A
�
IndT ∪{A(k�)}(u�j)

�
= A(k); (89)

such that

x
A
�

IndT ∪{A(k�)}(u�
j)
�
,LT (j)

= xA(k),i. (90)

It is obvious to check that there does not exist any other
combination of k�� ∈ IndT and u�� ∈ Perm(|LT |), causing a
term on the LHS of (82) which has the product in (84), except
the two above combinations.

In Appendix C, we will prove that

(−1)
−Ind−1

T (k)+1+Tot(IndT)+
�

i1∈[|LT |]
Card([|LT |]\{u1,...,ui1},ui1)

+

(−1)
−Ind−1

T (k�)+1+Tot(IndT)+
�

i�1∈[|LT |]
Card([|LT |]\{u�

1,...,u�
i�1

},u�
i�1

)

= 0,
(91)

such that the coefficient of the product in (84) on the LHS
of (82) is 0. In other words, for each combination of k and
u on the LHS of (82), there is exactly one term caused by
the combination of k� and u�, such that the sum of these two
caused terms is 0. Thus (82) is proved.

Remark 9 (Connection to the Example in Section IV-A –
Part IV): In the illustrated example, let us focus on W1,{1}
which is in Case 2. It can be seen that Ind{1} = [2]. For each
k ∈ [2], W1,{1} appears in X{1}∪A(k). When k = 1, we have

X{1}∪A(k) = X{1,3} = W1,{3} + (y3,1W1,{1} + y3,2W2,{1}).
(92)

From (71), the coefficient of X{1,3} in (74) is (recall that
L{1,3} = {1} and Ind{1,3} = {2})

β{3,4},{1,3} =
�

u∈Perm(1)

(−1)1+2+Card([1]\{u1},u1)y4,1 = −y4,1.

(93)

βA,S =
�

u=(u1,...,u|LS|)

∈Perm(|LS |)

(−1)
1+Tot(IndS)+

�
i1∈[|LS|]

Card([|LS |]\{u1,...,ui1},ui1) �
i2∈[|LS |]

x
A
�

IndS(ui2)
�
,LS(i2)

. (71)

Authorized licensed use limited to: University of North Texas. Downloaded on June 10,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

4014 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 6, JUNE 2021

When k = 2, we have

X{1}∪A(k) = X{1,4} = W1,{4} + (y4,1W1,{1} + y4,2W2,{1}).
(94)

From (71), the coefficient of X{1,4} in (74) is (recall that
L{1,4} = {1} and Ind{1,4} = {1})

β{3,4},{1,4} =
�

u∈Perm(1)

(−1)1+1+Card([1]\{u1},u1)y3,1 = y3,1.

(95)

Hence, the coefficient of W1,{1} in (74) is

y3,1β{3,4},{1,3}+y4,1β{3,4},{1,4}=y3,1(−y4,1)+y4,1y3,1 = 0.
(96)

�

C. Case 3

Lastly we focus on one leader block Bi,T in Hierarchy
h > 0 where i /∈ T . By definition, we have |T ∩ L| = h.
On the RHS of (70), as i /∈ T , Bi,T appears in XT ∪{i}. In

addition, Bi,T also appears in XT ∪{A(k)}, where k ∈ IndT .

Let us first focus on XT ∪{i}. Recall that the
�
L−1
T ∪{i}(i)

�th

element in LT ∪{i} is i. From (54), it can be seen that the
coefficient of Bi,T in XT ∪{i} is

(−1)L
−1
T ∪{i}(i)−1. (97)

In addition, we have (98), shown at the bottom of the next
page.

Let us then focus on XT ∪{A(k)}, where k ∈ IndT . It was
proved in (80) that the coefficient of Bi,T in XT ∪{A(k)} is

(−1)k−Ind−1
T (k)xA(k),i. (99)

In addition, it was proved in (81b) that

βA,T ∪{A(k)} =
�

u=(u1,...,u|LT |)

∈Perm(|LT |)

(−1)
1+(Tot(IndT)−k)+ �

i1∈[|LT |]
Card([|LT |]\{u1,...,ui1},ui1)�

i2∈[|LT |]
x
A
�

IndT ∪{A(k)}(ui2)
�
,LT (i2)

. (100)

In the following, we will prove

(−1)L
−1
T ∪{i}(i)−1βA,T ∪{i}+�

k∈IndT

(−1)k−Ind−1
T (k)xA(k),iβA,T ∪{A(k)} = 0, (101)

such that the coefficient of Bi,T on the RHS of (70) is 0. Note
that there are t− |LT | non-leaders in T . As there are totally
t+ 1 non-leaders in A, we have

|IndT | = t+ 1 − (t− |LT |) = |LT | + 1. (102)

Let us focus on one permutation u = (u1, . . . , u|LT |+1) ∈
Perm(|LT | + 1) in βA,T ∪{i}. The term in (101) caused by u
is (103), shown at the bottom of the next page.

We can rewrite the product term in (103b) as follows (recall

again that the
�
L−1
T ∪{i}(i)

�th
element in LT ∪{i} is i),�

i2∈[|LT |+1]

x
A
�

IndT (ui2)
�
,LT ∪{i}(i2)

= x
A
�

IndT (uL−1
T ∪{i}(i)

)
�
,i

�
i2∈[|LT |+1]

\{L−1
T ∪{i}(i)}

x
A
�

IndT (ui2)
�
,LT ∪{i}(i2)

(104a)

= xA(�k),i

�
i2∈[|LT |+1]\{L−1

T ∪{i}(i)}

x
A
�

IndT (ui2)
�
,LT ∪{i}(i2)

,

(104b)

βA,T ∪{A(k)} =
�

u=(u1,...,u|LT ∪{A(k)}|)

∈Perm(|LT ∪{A(k)}|)

(−1)
1+Tot(IndT ∪{A(k)})+

�
i1∈[|LT ∪{A(k)}|]

Card([|LT ∪{A(k)}|]\{u1,...,ui1},ui1)

�
i2∈[|LT ∪{A(k)}|]

xA
�

IndT ∪{A(k)}(ui2)
�
,LT ∪{A(k)}(i2)

(81a)

=
�

u=(u1,...,u|LT |)

∈Perm(|LT |)

(−1)
1+(Tot(IndT)−k)+ �

i1∈[|LT |]
Card([|LT |]\{u1,...,ui1},ui1) �

i2∈[|LT |]
x
A
�

IndT ∪{A(k)}(ui2)
�
,LT (i2)

. (81b)

(−1)k−Ind−1
T (k)xA(k),i

⎧⎨⎩(−1)
1+(Tot(IndT)−k)+ �

i1∈[|LT |]
Card([|LT |]\{u1,...,ui1},ui1) �

i2∈[|LT |]
x
A
�

IndT ∪{A(k)}(ui2)
�
,LT (i2)

⎫⎬⎭ (83a)

= (−1)
−Ind

−1
T (k)+1+Tot(IndT)+

�
i1∈[|LT |]

Card([|LT |]\{u1,...,ui1},ui1)

⎧⎨⎩xA(k),i

�
i2∈[|LT |]

x
A
�

IndT ∪{A(k)}(ui2)
�
,LT (i2)

⎫⎬⎭ . (83b)

Authorized licensed use limited to: University of North Texas. Downloaded on June 10,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: ON THE OPTIMAL LOAD-MEMORY TRADEOFF OF CACHE-AIDED SCALAR LINEAR FUNCTION RETRIEVAL 4015

where we define $k := IndT (uL−1
T ∪{i}(i)).

Hence, on the LHS of (101), besides
(−1)L

−1
T ∪{i}(i)−1

βA,T ∪{i}, only the caused term by the
combination of $k and $u = ($u1, . . . , $u|LT |) has the product
in (104b), where

$u =
�
g(u1), . . . , g(uL−1

T∪{i}(i)−1), g(uL−1
T ∪{i}(i)+1),

. . . , g(u|LT |+1)
�
, (105a)

g(uj) :=

⎧⎨⎩uj , if uj < uL−1
T ∪{i}(i)

uj − 1 if uj > uL−1
T ∪{i}(i)

. (105b)

In Appendix D, we will prove that

(−1)
L−1

T ∪{i}(i)+Tot(IndT)+
�

i1∈[|LT |+1]
Card([|LT |+1]\{u1,...,ui1},ui1)

+

(−1)
−Ind−1

T (�k)+1+Tot(IndT)+
�

�i1∈[|LT |]
Card([|LT |]\{�u1,...,�u

�i1
},�u

�i1
)

= 0,
(106)

such that the coefficient of the product in (104b) on the LHS
of (101) is 0. Hence, for each permutation u ∈ Perm(|LT |+1),
there is exactly one term caused by the combination of $k ∈
IndT and $u ∈ Perm(|LT |), such that the sum of these two
caused terms are 0.

In addition, on the LHS of (101), there are (|LT | +
1)! terms in (−1)L

−1
T ∪{i}(i)−1

βA,T ∪{i}. Recall that in (102),
we proved |IndT | = |LT | + 1. Hence, on the LHS
of (101), there are |LT |! × (|LT | + 1) = (|LT | + 1)! terms
in
�

k∈IndT
(−1)k−Ind−1

T (k)xA(k),iβA,T ∪{A(k)}. In conclusion,
we prove (101).

Remark 10 (Connection to the Example in Section IV-A –
Part V): In the illustrated example, let us focus on W1,{2}
which is in Case 3. It can be seen that W1,{2} appears in
X{1,2}, where

X{1,2} = W1,{2} −W2,{1}. (107)

From (71), the coefficient of X{1,2} in (74) is (recall that
L{1,2} = [2] and Ind{1,2} = [2])

β{3,4},{1,2}=
�

u∈Perm(2)

(−1)1+3+Card([2]\{u1},u1)
�

i2∈[2]

yA(ui2),i2

(108a)

= y3,1y4,2 − y4,1y3,2. (108b)

In addition, with Ind{2} = [2], it can be seen that W1,{2} also
appears in X{2}∪A(k) where k ∈ [2]. When k = 1, we have

X{2}∪A(k) = X{2,3} = W2,{3} + (y3,1W1,{2} + y3,2W2,{2}).
(109)

From (71), the coefficient of X{2,3} in (74) is (recall that
L{2,3} = {2} and Ind{2,3}) = {2})

β{3,4},{2,3} =
�

u∈Perm(1)

(−1)1+2y4,2 = −y4,2. (110)

When k = 2, we have

X{2}∪A(k) = X{2,4} = W2,{4} + (y4,1W1,{2} + y4,2W2,{2}).
(111)

From (71), the coefficient of X{2,4} in (74) is (recall that
L{2,4} = {2} and Ind{2,4}) = {1})

β{3,4},{2,4} =
�

u∈Perm(1)

(−1)1+1y3,2 = y3,2. (112)

Hence, the coefficient of W1,{2} in (74) is

β{3,4},{1,2} + y3,1β{3,4},{2,3} + y4,1β{3,4},{2,4} (113a)

= y3,1y4,2 − y4,1y3,2 + y3,1(−y4,2) + y4,1y3,2 = 0. (113b)

�

βA,T ∪{i} =
�

u=(u1,...,u|LT ∪{i}|)

∈Perm(|LT ∪{i}|)

(−1)
1+Tot(IndT ∪{i})+

�
i1∈[|LT ∪{i}|]

Card([|LT ∪{i}|]\{u1,...,ui1},ui1)

�
i2∈[|LT ∪{i}|]

x
A
�

IndT ∪{i}(ui2)
�
,LT ∪{i}(i2)

(98a)

=
�

u=(u1,...,u|LT |+1)

∈Perm(|LT |+1)

(−1)
1+Tot(IndT)+

�
i1∈[|LT |+1]

Card([|LT |+1]\{u1,...,ui1},ui1) �
i2∈[|LT |+1]

x
A
�

IndT (ui2)
�
,LT ∪{i}(i2)

(98b)

(−1)L
−1
T ∪{i}(i)−1

⎧⎨⎩(−1)
1+Tot(IndT)+

�
i1∈[|LT |+1]

Card([|LT |+1]\{u1,...,ui1},ui1) �
i2∈[|LT |+1]

x
A
�

IndT (ui2)
�
,LT ∪{i}(i2)

⎫⎬⎭ (103a)

= (−1)
L−1

T ∪{i}(i)+Tot(IndT)+
�

i1∈[|LT |+1]
Card([|LT |+1]\{u1,...,ui1},ui1)

⎧⎨⎩ �
i2∈[|LT |+1]

x
A
�

IndT (ui2)
�
,LT ∪{i}(i2)

⎫⎬⎭ . (103b)

Authorized licensed use limited to: University of North Texas. Downloaded on June 10,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

4016 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 6, JUNE 2021

APPENDIX C
PROOF OF (91)

To prove (91), it is equivalent to prove, (114), shown at the
bottom of the page.

Let us focus on
�

i1∈[|LT |]
Card([|LT |] \ {u1, . . . , ui1}, ui1).

By the definition of the function Card(·) in (69), we have�
i1∈[|LT |]

Card([|LT |] \ {u1, . . . , ui1}, ui1)

=
�

i1∈[|LT |]:i1 �=L−1
T (i)

Card
�
([|LT |] \ {uL−1

T (i)})

\ {u1, . . . , uL−1
T (i)−1, uL−1

T (i)+1, . . . , ui1}, ui1

�
+ |{i2 ∈ [L−1

T (i) − 1] : uL−1
T (i) < ui2}|

+ |{i3 ∈ [L−1
T (i) + 1 : |LT |] : ui3 < uL−1

T (i)}| (115a)

=
�

i1∈[|LT |]:i1 �=L−1
T (i)

Card
�
([|LT |]

\ {uL−1
T (i)}) \ {u1, . . . , uL−1

T (i)−1, uL−1
T (i)+1, . . . , ui1}, ui1

�
+ (L−1

T (i) − 1 − |{i2 ∈ [L−1
T (i) − 1] : ui2 < uL−1

T (i)}|)
+ |{i3 ∈ [L−1

T (i) + 1 : |LT |] : ui3 < uL−1
T (i)}| (115b)

=
�

i1∈[|LT |]:i1 �=L−1
T (i)

Card
�
([|LT |]

\ {uL−1
T (i)}) \ {u1, . . . , uL−1

T (i)−1, uL−1
T (i)+1, . . . , ui1}, ui1

�
+ (L−1

T (i) − 1 − |{i2 ∈ [L−1
T (i) − 1] : ui2 < uL−1

T (i)}|)
+ Card([|LT |], uL−1

T (i))−|{i2 ∈ [L−1
T (i)−1] : ui2<uL−1

T (i)}|.
(115c)

Similarly, for
�

i�1∈[|LT |]
Card([|LT |] \ {u�1, . . . , u�i�1}, u

�
i�1

), from

the same derivation as (115c), we have�
i�1∈[|LT |]

Card([|LT |] \ {u�1, . . . , u�i�1}, u
�
i�1

)

=
�

i�1∈[|LT |]:i�1 �=L−1
T (i)

Card
�
([|LT |]

\ {u�L−1
T (i)

}) \ {u�1, . . . , u�L−1
T (i)−1

, u�L−1
T (i)+1

, . . . , u�i1}, u
�
i1

�
+ (L−1

T (i) − 1 − |{i�2 ∈ [L−1
T (i) − 1] : u�i�2 < u�L−1

T (i)
}|)

+ Card([|LT |], u�L−1
T (i)

)−|{i�2 ∈ [L−1
T (i)−1] : u�i�2<u

�
L−1

T (i)
}|.

(116)

In addition, from (87), it can be seen that�
i1∈[|LT |]:i1 �=L−1

T (i)

Card
�
([|LT |] \ {uL−1

T (i)})

\ {u1, . . . , uL−1
T (i)−1, uL−1

T (i)+1, . . . , ui1}, ui1

�
=

�
i�1∈[|LT |]:i�1 �=L−1

T (i)

Card
�
([|LT |]

\ {u�L−1
T (i)

}) \ {u�1, . . . , u�L−1
T (i)−1

, u�L−1
T (i)+1

, . . . , u�i1}, u
�
i1

�
.

(117)

From (115c)-(117), and the fact that (−1)2a = (−1)0 for
any integer a, we have, (118), shown at the top of the next
page.

Without loss of generality, we assume k < k�. Recall that
IndT ∪{A(k)}(uL−1

T (i)) = k�. By the definition in (79), we can

see that in IndT , there are Ind
−1
T (k�)−1 elements smaller than

k�. By the assumption, k < k�. Hence, in IndT ∪{A(k)}, there

are Ind
−1
T (k�) − 2 elements smaller than k�. In other words,

uL−1
T (i) = Ind

−1
T (k�) − 1, (119)

which leads to

Card({u1, . . . , u|LT |}, uL−1
T (i)) = Ind

−1
T (k�) − 2. (120)

Similarly, recall that IndT ∪{A(k�)}(u�L−1
T (i)

) = k. In IndT ,

there are Ind
−1
T (k)−1 elements smaller than k. By the assump-

tion, k < k�. Hence, in IndT ∪{A(k�)}, there are Ind
−1
T (k) − 1

elements smaller than k. In other words,

u�L−1
T (i)

= Ind
−1
T (k), (121)

which leads to

Card({u�1, . . . , u�|LT |}, u�L−1
T (i)

) = Ind
−1
T (k) − 1. (122)

We take (120) and (122) into (118) to obtain, (123), shown at
the top of the next page.

Finally, we have, (124), shown at the top of the next page.
which proves (114).

APPENDIX D
PROOF OF (106)

To prove (106), it is equivalent to prove, (125), shown at
the top of the next page.

Let us focus on
�

i1∈[|LT |+1]

Card([|LT | + 1] \

{u1, . . . , ui1}, ui1). By the definition of the function
Card(·) in (69), we have�
i1∈[|LT |+1]

Card([|LT | + 1] \ {u1, . . . , ui1}, ui1)

=
�

i1∈[|LT |+1]:

i1 �=L−1
T ∪{i}(i)

Card
�
([|LT | + 1] \ {uL−1

T ∪{i}(i)})

\ {u1, . . . , uL−1
T ∪{i}(i)−1, uL−1

T ∪{i}(i)+1, . . . , ui1}, ui1

�
+ |{i2 ∈ [L−1

T ∪{i}(i) − 1] : uL−1
T ∪{i}(i) < ui2}|

+ |{i3 ∈ [L−1
T ∪{i}(i) + 1 : |LT | + 1] : ui3 < u|LT |+1}|

(126a)

=
�

i1∈[|LT |+1]:

i1 �=L−1
T ∪{i}(i)

Card
�
([|LT | + 1] \ {uL−1

T ∪{i}(i)})

(−1)
−Ind−1

T (k)−Ind−1
T (k�)+

�
i1∈[|LT |]

Card([|LT |]\{u1,...,ui1},ui1)+
�

i�1∈[|LT |]
Card([|LT |]\{u�

1,...,u�
i�1

},u�
i�1

)

= −1. (114)

Authorized licensed use limited to: University of North Texas. Downloaded on June 10,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

WAN et al.: ON THE OPTIMAL LOAD-MEMORY TRADEOFF OF CACHE-AIDED SCALAR LINEAR FUNCTION RETRIEVAL 4017

(−1)

�
i1∈[|LT |]

Card([|LT |]\{u1,...,ui1},ui1)+
�

i�1∈[|LT |]
Card([|LT |]\{u�

1,...,u�
i�1
},u�

i�1
)

= (−1)
Card([|LT |],uL−1

T (i)
)+Card([|LT |],u�

L−1
T (i)

)
. (118)

(−1)

�
i1∈[|LT |]

Card([|LT |]\{u1,...,ui1},ui1)+
�

i�1∈[|LT |]
Card([|LT |]\{u�

1,...,u�
i�1
},u�

i�1
)

= (−1)Ind−1
T (k�)−2+Ind−1

T (k)−1 (123a)

= (−1)Ind−1
T (k�)+Ind−1

T (k)+1. (123b)

(−1)
−Ind−1

T (k)−Ind−1
T (k�)+

�
i1∈[|LT |]

Card([|LT |]\{u1,...,ui1},ui1)+
�

i�1∈[|LT |]
Card([|LT |]\{u�

1,...,u�
i�1

},u�
i�1

)

= (−1)−Ind−1
T (k)−Ind−1

T (k�)+Ind−1
T (k�)+Ind−1

T (k)+1 (124a)

= −1, (124b)

(−1)
1+L−1

T ∪{i}(i)−Ind−1
T (�k)+

�
i1∈[|LT |+1]

Card([|LT |+1]\{u1,...,ui1},ui1)+
�

�i1∈[|LT |]
Card([|LT |]\{�u1,...,�u

�i1
},�u

�i1
)

= −1. (125)

(−1)
1+L−1

T ∪{i}(i)−Ind−1
T (�k)+

�
i1∈[|LT |+1]

Card([|LT |+1]\{u1,...,ui1},ui1)+
�

�i1∈[|LT |]
Card([|LT |]\{�u1,...,�u

�i1
},�u

�i1
)

= (−1)
−Ind

−1
T (�k)+Card([|LT |+1],uL−1

T ∪{i}(i)
)

(128a)

= −1, (128b)

\ {u1, . . . , uL−1
T ∪{i}(i)−1, uL−1

T ∪{i}(i)+1, . . . , ui1}, ui1

�
+ L−1

T ∪{i}(i)−1−|{i2∈ [L−1
T ∪{i}(i) − 1] : ui2<uL−1

T ∪{i}(i)}|

+ Card([|LT |+1], uL−1
T∪{i}(i))

−|{i2∈ [L−1
T ∪{i}(i) − 1] : ui2 < uL−1

T ∪{i}(i)}| (126b)

From the construction of $u in (105a), we have�
i1∈[|LT |+1]:

i1 �=L−1
T ∪{i}(i)

Card
�
([|LT | + 1] \ {uL−1

T∪{i}(i)})

\ {u1, . . . , uL−1
T∪{i}(i)−1, uL−1

T ∪{i}(i)+1, . . . , ui1}, ui1

�
=

�
�i1∈[|LT |]

Card([|LT |] \ {$u1, . . . , $u�i1}, $u�i1). (127)

From (126b) and (127), and the fact that (−1)2a = (−1)0 for
any integer a, we have, (128), shown at the top of the page.

where (128b) comes from that $k := IndT (uL−1
T ∪{i}(i)), and

thus uL−1
T ∪{i}(i) = Ind

−1
T ($k)

REFERENCES

[1] K. Wan, H. Sun, M. Ji, D. Tuninetti, and G. Caire, “Cache-aided scalar
linear function retrieval,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2020, pp. 1717–1722.

[2] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[3] K. Wan, D. Tuninetti, and P. Piantanida, “On the optimality of uncoded
cache placement,” in Proc. IEEE Inf. Theory Workshop (ITW), Sep. 2016,
pp. 161–165.

[4] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-
memory tradeoff for caching with uncoded prefetching,” IEEE Trans.
Inf. Theory, vol. 64, no. 2, pp. 1281–1296, Feb. 2018.

[5] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Characterizing the
rate-memory tradeoff in cache networks within a factor of 2,” IEEE
Trans. Inf. Theory, vol. 65, no. 1, pp. 647–663, Jan. 2019.

[6] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching
in wireless D2D networks,” IEEE Trans. Inf. Theory, vol. 62, no. 2,
pp. 849–869, Feb. 2016.

[7] F. Engelmann and P. Elia, “A content-delivery protocol, exploiting the
privacy benefits of coded caching,” in Proc. 15th Int. Symp. Modeling
Optim. Mobile, Ad Hoc, Wireless Netw. (WiOpt), May 2017, pp. 1–6.

[8] K. Wan and G. Caire, “On coded caching with private demands,” IEEE
Trans. Inf. Theory, vol. 67, no. 1, pp. 358–372, Jan. 2021.

[9] K. Wan, H. Sun, M. Ji, D. Tuninetti, and G. Caire, “Device-to-device
private caching with trusted server,” 2019, arXiv:1909.12748. [Online].
Available: http://arxiv.org/abs/1909.12748

[10] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed comput-
ing,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–128, Jan. 2018.

[11] M. Adel Attia and R. Tandon, “Near optimal coded data shuffling
for distributed learning,” IEEE Trans. Inf. Theory, vol. 65, no. 11,
pp. 7325–7349, Nov. 2019.

[12] A. Elmahdy and S. Mohajer, “On the fundamental limits of coded data
shuffling for distributed machine learning,” IEEE Trans. Inf. Theory,
vol. 66, no. 5, pp. 3098–3131, May 2020.

Authorized licensed use limited to: University of North Texas. Downloaded on June 10,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

4018 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 6, JUNE 2021

[13] K. Wan, D. Tuninetti, M. Ji, G. Caire, and P. Piantanida, “Fundamental
limits of decentralized data shuffling,” IEEE Trans. Inf. Theory, vol. 66,
no. 6, pp. 3616–3637, Jun. 2020.

[14] M. Ji, A. Tulino, J. Llorca, and G. Caire, “Caching-aided coded
multicasting with multiple random requests,” in Proc. IEEE Inf. Theory
Workshop (ITW), Apr. 2015, pp. 1–5.

[15] A. Sengupta and R. Tandon, “Improved approximation of storage-rate
tradeoff for caching with multiple demands,” IEEE Trans. Commun.,
vol. 65, no. 5, pp. 1940–1955, May 2017.

[16] J. So, B. Guler, and A. S. Avestimehr, “CodedPrivateML: A fast
and privacy-preserving framework for distributed machine learning,”
IEEE J. Sel. Areas Inf. Theory, early access, Jan. 21, 2021, doi:
10.1109/JSAIT.2021.3053220.

[17] M. Aliasgari, O. Simeone, and J. Kliewer, “Private and secure distributed
matrix multiplication with flexible communication load,” IEEE Trans.
Inf. Forensics Security, vol. 15, pp. 2722–2734, 2020.

[18] K. Shanmugam, M. Ji, A. M. Tulino, J. Llorca, and A. G. Dimakis,
“Finite-length analysis of caching-aided coded multicasting,” IEEE
Trans. Inf. Theory, vol. 62, no. 10, pp. 5524–5537, Oct. 2016.

[19] S. Jin, Y. Cui, H. Liu, and G. Caire, “A new order-optimal decentral-
ized coded caching scheme with good performance in the finite file
size regime,” IEEE Trans. Commun., vol. 67, no. 8, pp. 5297–5310,
Aug. 2019.

[20] M. Cheng, J. Jiang, Q. Wang, and Y. Yao, “A generalized grouping
scheme in coded caching,” IEEE Trans. Commun., vol. 67, no. 5,
pp. 3422–3430, May 2019.

[21] Q. Yan, M. Cheng, X. Tang, and Q. Chen, “On the placement delivery
array design for centralized coded caching scheme,” IEEE Trans. Inf.
Theory, vol. 63, no. 9, pp. 5821–5833, Sep. 2017.

[22] X. Zhong, M. Cheng, and J. Jiang, “Placement delivery array based
on concatenating construction,” IEEE Commun. Lett., vol. 24, no. 6,
pp. 1216–1220, Jun. 2020.

[23] M. Cheng, J. Li, X. Tang, and R. Wei, “Linear coded caching scheme
for centralized networks,” IEEE Trans. Inf. Theory, vol. 67, no. 3,
pp. 1732–1742, Mar. 2021.

[24] K. Shanmugam, A. M. Tulino, and A. G. Dimakis, “Coded caching
with linear subpacketization is possible using Ruzsa-Szeméredi graphs,”
in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017, pp. 1237–1241.

[25] L. Tang and A. Ramamoorthy, “Coded caching schemes with reduced
subpacketization from linear block codes,” IEEE Trans. Inf. Theory,
vol. 64, no. 4, pp. 3099–3120, Apr. 2018.

[26] S. Agrawal, K. V. Sushena Sree, and P. Krishnan, “Coded caching based
on combinatorial designs,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jul. 2019, pp. 1227–1231.

[27] H. H. S. Chittoor, M. Bhavana, and P. Krishnan, “Coded caching via
projective geometry: A new low subpacketization scheme,” in Proc.
IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2019, pp. 682–686.

[28] H. Sun and S. A. Jafar, “The capacity of private computation,” IEEE
Trans. Inf. Theory, vol. 65, no. 6, pp. 3880–3897, Jun. 2019.

[29] Y. Yakimenka, H.-Y. Lin, and E. Rosnes, “On the capacity of private
monomial computation,” 2020, arXiv:2001.06320. [Online]. Available:
http://arxiv.org/abs/2001.06320

[30] C. Yapar, K. Wan, R. F. Schaefer, and G. Caire, “On the optimality
of D2D coded caching with uncoded cache placement and one-shot
delivery,” IEEE Trans. Commun., vol. 67, no. 12, pp. 8179–8192,
Dec. 2019.

[31] Q. Yan and D. Tuninetti, “Fundamental limits of caching for demand
privacy against colluding users,” IEEE J. Sel. Areas Inf. Theory, early
access, Jan. 21, 2021, doi: 10.1109/JSAIT.2021.3053372.

Kai Wan (Member, IEEE) received the B.E. degree in optoelectronics
from the Huazhong University of Science and Technology, China, in 2012,
and the M.Sc. and Ph.D. degrees in communications from Université Paris
Saclay, France, in 2014 and 2018, respectively. He is currently a Post-
Doctoral Researcher with the Communications and Information Theory Chair
(CommIT), Technische Universität Berlin, Berlin, Germany. His research
interests include information theory, coding techniques, and their applications
on coded caching, index coding, distributed storage, distributed computing,
wireless communications, privacy, and security.

Hua Sun (Member, IEEE) received the B.E. degree in communications engi-
neering from the Beijing University of Posts and Telecommunications, China,
in 2011, and the M.S. degree in electrical and computer engineering and the
Ph.D. degree in electrical engineering from the University of California at
Irvine, USA, in 2013 and 2017, respectively.

He is currently an Assistant Professor with the Department of Electrical
Engineering, University of North Texas, USA. His research interests include
information theory and its applications to communications, privacy, security,
and storage. He was a recipient of the NSF CAREER Award in 2021. His
coauthored papers received the IEEE Jack Keil Wolf ISIT Student Paper
Award in 2016 and the IEEE GLOBECOM Best Paper Award in 2016.

Mingyue Ji (Member, IEEE) received the B.E. degree in communication
engineering from the Beijing University of Posts and Telecommunications,
China, in 2006, the M.Sc. degree in electrical engineering from the Royal
Institute of Technology, Sweden, in 2008, the M.Sc. degree in electrical
engineering from the University of California at Santa Cruz, Santa Cruz, in
2010, and the Ph.D. degree from the Ming Hsieh Department of Electrical
Engineering, University of Southern California, in 2015. He was subsequently
a Staff II System Design Scientist with Broadcom Corporation (Broadcom
Ltd.) from 2015 to 2016. He is currently an Assistant Professor with the
Electrical and Computer Engineering Department, The University of Utah.
His research interests include information theory, coding theory, concentration
of measure and statistics with the applications of caching networks, wireless
communications, distributed storage and computing systems, federated learn-
ing, and (statistical) signal processing. He received the IEEE Communications
Society Leonard G. Abraham Prize 2019, the Best Paper Award in IEEE ICC
2015 Conference, the Best Student Paper Award in IEEE European Wireless
2010 Conference, and the USC Annenberg Fellowship from 2010 to 2014. He
is also an Associate Editor of IEEE TRANSACTIONS ON COMMUNICATIONS.

Daniela Tuninetti (Fellow, IEEE) received the Ph.D. degree in electrical
engineering from ENST/Télécom ParisTech, Paris, France, in 2002, with work
done at the Eurecom Institute, Sophia Antipolis, France. She is currently
a Professor with the Department of Electrical and Computer Engineering,
University of Illinois at Chicago (UIC), where she joined in 2005. She
was a Post-Doctoral Research Associate with the School of Communication
and Computer Science, Swiss Federal Institute of Technology in Lausanne
(EPFL), Lausanne, Switzerland, from 2002 to 2004. Her research interests
include the ultimate performance limits of wireless interference networks
(with special emphasis on cognition and user cooperation), coexistence
between radar and communication systems, multi-relay networks, content-
type coding, cache-aided systems, and distributed private coded computing.
She was a recipient of the Best Paper Award at the European Wireless
Conference in 2002, the NSF CAREER Award in 2007, and named as
the University of Illinois Scholar in 2015. She was the Editor-in-Chief of
the IEEE Information Theory Society Newsletter from 2006 to 2008, an
Editor of IEEE COMMUNICATIONS LETTERS from 2006 to 2009, IEEE
TRANSACTIONS ON WIRELESS COMMUNICATIONS from 2011 to 2014, and
IEEE TRANSACTIONS ON INFORMATION THEORY from 2014 to 2017. She
is also an Editor of IEEE TRANSACTIONS ON COMMUNICATIONS. She is
also a Distinguished Lecturer of the Information Theory Society.

Giuseppe Caire (Fellow, IEEE) was born in Torino in 1965. He received the
B.Sc. degree in electrical engineering from the Politecnico di Torino in 1990,
the M.Sc. degree in electrical engineering from Princeton University in 1992,
and the Ph.D. degree from the Politecnico di Torino in 1994.

He was a Post-Doctoral Research Fellow with the European Space Agency
(ESTEC), Noordwijk, The Netherlands, from 1994 to 1995, an Assistant
Professor of telecommunications with the Politecnico di Torino, an Associate
Professor with the University of Parma, Italy, a Professor with the Department
of Mobile Communications, Eurecom Institute, Sophia-Antipolis, France, and
a Professor of electrical engineering with the Viterbi School of Engineer-
ing, University of Southern California, Los Angeles. He is currently an
Alexander von Humboldt Professor with the Faculty of Electrical Engineering
and Computer Science, Technical University of Berlin, Germany. His main
research interests include communications theory, information theory, and
channel and source coding, with particular focus on wireless communications.
He received the Jack Neubauer Best System Paper Award from the IEEE
Vehicular Technology Society in 2003, the IEEE Communications Society and
Information Theory Society Joint Paper Award in 2004 and 2011, the Okawa
Research Award in 2006, the Alexander von Humboldt Professorship in 2014,
the Vodafone Innovation Prize in 2015, the ERC Advanced Grant in 2018, the
Leonard G. Abraham Prize for Best IEEE JOURNAL ON SELECTED AREAS
IN COMMUNICATIONS Paper in 2019, and the IEEE Communications Society
Edwin Howard Armstrong Achievement Award in 2020. He was a recipient
of the 2021 Leibinz Prize of the German National Science Foundation (DFG).
He has served in the Board of Governors of the IEEE Information Theory
Society from 2004 to 2007, and as an Officer from 2008 to 2013. He was the
President of the IEEE Information Theory Society in 2011.

Authorized licensed use limited to: University of North Texas. Downloaded on June 10,2021 at 18:22:15 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/JSAIT.2021.3053220
http://dx.doi.org/10.1109/JSAIT.2021.3053372

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

