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Multilevel Topological Interference Management:
A TIM-TIN Perspective
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Abstract— The robust principles of treating interference as
noise (TIN) when it is sufficiently weak, and avoiding it when it
is not, form the background of this work. Combining TIN with
the topological interference management (TIM) framework that
identifies optimal interference avoidance schemes, we formulate
a TIM-TIN problem for multilevel topological interference man-
agement, wherein only a coarse knowledge of channel strengths
and no knowledge of channel phases is available to transmitters.
To address the TIM-TIN problem, we first propose an analytical
baseline approach, which decomposes a network into TIN and
TIM components, allocates the signal power levels to each user
in the TIN component, allocates signal vector space dimensions
to each user in the TIM component, and guarantees that the
product of the two is an achievable number of signal dimensions
available to each user in the original network. Next, a distributed
numerical algorithm called ZEST is developed. The convergence
of the algorithm is demonstrated, leading to the duality of the
TIM-TIN problem in terms of generalized degrees-of-freedom
(GDoF). Numerical results are also provided to demonstrate the
superior sum-rate performance and fast convergence of ZEST.

Index Terms— Interference channels, treating interference as
noise (TIN), topological interference management (TIM), gener-
alized degrees-of-freedom (GDoF).

I. INTRODUCTION

THE capacity of wireless interference networks is a rapidly
evolving research front, spurred in part by exciting

breakthroughs such as the idea of interference alignment [2]
which provides fascinating theoretical insights and shows
much promise under idealized conditions. The connection
to practical settings however remains tenuous. This is in
part due to the following two factors. First, because of the
assumption of precise channel knowledge, idealized studies
often get caught in the minutiae of channel realizations, e.g.,
rational versus irrational values, that have little bearing in
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practice. Second, by focusing on the degrees-of-freedom (DoF)
of fully connected networks, these studies ignore the most
critical aspect of interference management in practice – the
differences of signal strengths due to path loss and fading
(in short, network topology). Indeed, the DoF metric treats
every channel as essentially equally strong (capable of carrying
exactly 1 DoF). So the desired signal has to actively avoid
every interferer, whereas in practice each user needs to avoid
only a few significant interferers and the rest are weak enough
to be safely ignored. Therefore, by trivializing the topology
of the network, the DoF studies of fully connected networks
make the problem much harder than it needs to be. Non-trivial
solutions to this harder problem invariably rely on much more
channel knowledge than is available in practice. Thus, the two
limiting factors re-enforce each other.

Evidently, in order to avoid these pitfalls, one should
shift focus away from optimal ways of exploiting precise
channel knowledge (which is rarely available), and toward
powerful even optimal ways of exploiting a coarse knowl-
edge of interference network topology. This line of thought
motivates robust models of interference networks where only
a coarse knowledge of channel strength levels is available to
the transmitters and no channel phase knowledge is assumed.
This is the multilevel topological interference management
framework. It is a generalization of the elementary topological
interference management (TIM) framework introduced in [3],
wherein the transmitters can only distinguish between channels
that are connected (strong) and not connected (weak).

A. Robust Principles of Interference Management: Ignore,
Avoid

Existing wireless interference networks are mainly based
on two robust interference management principles — 1) ignore
interference that is sufficiently weak, and 2) avoid interference
that is not. In slightly more technical terms, ignoring interfer-
ence translates into treating interference as noise (TIN) [4],
[5], and avoiding interference translates into access schemes
such as TDMA/FDMA/CDMA. Recent work has explored the
optimality of both of these principles.

1) TIN: The optimality of the first principle, treating inter-
ference as noise when it is sufficiently weak, is discussed
extensively. In [6]–[8], it is shown that in a so-called
“noisy interference” regime, TIN achieves the exact sum
capacity of interference channels. In [9], for general
K-user interference channels, it provides a broadly
applicable TIN-optimality condition under which TIN is
optimal from a generalized degrees-of-freedom (GDoF)
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perspective and achieves a constant gap (of no more than
log(3K) bits) to the entire capacity region. Remarkably,
this result holds even if perfect channel knowledge
is assumed everywhere. The GDoF-optimality result
of TIN is also generalized to other channel models
(e.g., X channels [10], [11], parallel channels [12],
compound networks [13], MIMO channels [14], and
cellular networks [15], [16]) and is reformulated from
a combinatorial perspective [17].

2) TIM: The optimality of the second principle, avoidance,
has been investigated most recently by [3], as the TIM
problem. With channel knowledge at the transmitters
limited to a coarse knowledge of network topology
(which links are stronger/weaker than the effective noise
floor), TIM is shown in [3] to be essentially an index
coding problem [18]. TIM subsumes within itself the
TDMA/FDMA/CDMA schemes as trivial special cases,
but is in general much more capable than these conven-
tional approaches. Remarkably, for the class of linear
schemes, which are found to be optimal in most cases
studied so far, and within which TIM is equivalent
to the index coding problem, TIM is essentially an
optimal allocation of signal vector spaces based on
an interference alignment perspective [19]. Variants of
the TIM problem have also been investigated, such as
those under short coherent time [20], with alternating
connectivity [21], [22], with multiple antennas [23],
with transmitter/receiver cooperation [24], [25], with
reconfigurable antennas [26], with network topology
uncertainty [27], and with confidential messages [28].

B. TIM-TIN: Joint View of Signal Vector Spaces and Signal
Power Levels

The two principles – avoiding versus ignoring interference
– which are mapped to TIM and TIN, respectively, naturally
correspond to interference management in terms of signal vec-
tor spaces and signal power levels. TIM uses the interference
alignment perspective [3], [19] to optimally allocate signal
vector subspaces among the interferers. Note that in order
to resolve the desired signal from interference based on the
signal vector spaces, the strength of each signal is irrelevant.
What matters is only that desired signal and the interference
occupy linearly independent spaces. TIN, on the other hand,
optimally allocates signal power levels among users by setting
the transmit power levels at transmitters and the noise floor
levels at receivers. Thus TIN depends very much on the
strengths of signals relative to each other. Associating TIM
with signal vector space allocations and TIN with signal
power level allocations within the multilevel TIM framework,
we refer to the joint allocation of signal vector spaces and
signal power levels as the TIM-TIN problem.

TIM-TIN Problem: With only a coarse knowledge of chan-
nel strengths available to the transmitters, we wish to carefully
allocate not only the beamforming vector1 directions (signal

1Here we follow the terminology from [3], i.e., the “beamforming” vectors
are in fact the “alignment” vectors that are used to align the signal vector space
of different users. Hereafter, we will use beamforming vectors and alignment
vectors interchangeably.

vector spaces) but also the transmit powers (signal power
levels) to each of those beamforming vectors. The necessity
of a joint TIM-TIN perspective is evident as follows. In vector
space allocation schemes used for DoF studies, the signal
space containing the interference is entirely rejected (zero-
forced). This is typically fine for linear DoF studies because
all signals are essentially equally strong, every substream
carries one DoF, so any desired signal projected into the
interference space cannot achieve a non-zero DoF. However,
once we account for the difference in signal strengths in
the GDoF framework, the signal vector space dimensions
occupied by interference may not be fully occupied in terms
of power levels if the interference is weak. So, non-zero
GDoF may be achieved by desired signals projected into
the same dimensions as occupied by the interference, where
interference is weaker than desired signal. It is this aspect that
we wish to exploit in this work. It is worthwhile noticing
that within the multilevel TIM framework, in general the
solution based on a combination of TIM and TIN is not
optimal. For example, in [29] it has been shown that for
K-user symmetric interference channels, the GDoF optimal
solution relies on rate splitting and superposition encoding at
transmitters and (partial) interference decoding at receivers.2

The appeal of joint TIM-TIN mainly lies in its implementation
simplicity and wide applicability in existing wireless networks.

C. Overview of Results

First, to address the TIM-TIN problem, an analytical base-
line approach is presented. Because of the minimal channel
knowledge requirements in the TIM and TIN settings, a robust
combination of the two, denoted as TIM-TIN decomposition
presents itself. Any given network is decomposed into a TIM
component and a TIN component, containing only strong
and weak interferers, respectively, and a direct multiplication
of the signal dimensions available in each is shown to be
achievable in the original network. In other words, the TIM
solution identifies the fraction of the signal space that is
available to each user, and within each of these available signal
space dimensions, the TIN approach identifies the fraction of
signal levels that are available to the same user. A product
of the two fractions therefore identifies the net fraction of
signal dimensions available to each user in this decompo-
sition based approach. The optimality of this decomposi-
tion approach is also discussed for some non-trivial network
settings.

Next, a distributed numerical approach is developed, which
only needs local channel measurements to update transmit
powers and beamforming vectors. The proposed algorithm,
called ZEST, utilizes the reciprocity of wireless networks,
and is guaranteed to be convergent in terms of GDoF. As a
byproduct, the duality of the TIM-TIN problem is established.
We also include modest numerical experiments that demon-
strate superior GDoF performance and fast convergence of
ZEST.

2Within the multilevel TIM framework, for a K-user interference with
arbitrary channel strengths, the optimal GDoF region is still open.
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Notations: For a positive integer Z , [Z] � {1, 2, . . . , Z}.
For vectors u and v, we say that u dominates v if u ≥ v,
where ≥ denotes componentwise inequality. For a matrix A,
det(A) denotes its determinant, span(A) represents the space
spanned by the column vectors of A, and A(i, j) is the entry
of A in the i-th row and j-th column. All logarithms are to
the base 2.

II. SYSTEM MODEL

In this work, we consider a K-user complex Gaussian
interference channel, where Transmitter k (k ∈ [K]) intends
to communicate with Receiver k and all the transmitters and
receivers are equipped with one antenna. Following [9], [30],
the channel model is given by

Yk(t) =
K∑

i=1

√
PαkiejθkiXi(t) + Zk(t), ∀k ∈ [K], (1)

where at each time index t, Xi(t) is the transmitted sym-
bol of Transmitter i (subject to a unit power constraint,
i.e., E[|Xi(t)|2] ≤ 1), Yk(t) is the received signal of Receiver
k, and Zk(t) ∼ CN (0, 1) is the additive white Gaussian
noise (AWGN) at Receiver k. In (1), P > 1 is a nom-
inal power value, αki ≥ 0 is called the channel strength
level of the link between Transmitter i and Receiver k,
and θki is the corresponding channel phase. The definitions
of messages, achievable rate of user k (Rk) and channel
capacity region (C) are all standard. The GDoF region is
defined as

D �
{
(d1, d2, . . . , dK) : di = lim

P→∞

Ri

log P
, ∀i ∈ [K],

(R1, R2, . . . , RK) ∈ C
}
. (2)

In the multilevel TIM framework, only a coarse knowledge
of channel strength levels is available to the transmitters
and no channel phase knowledge is assumed. The channel
strength level knowledge at transmitters can either be perfect
or quantized. We also assume that receivers have perfect
channel state information. Apparently, multilevel TIM is a
generalization of the elementary one in [3]. It also should
be noted that unlike most previous works in pursuit of the
coarse DoF metric where all non-zero channels are essentially
treated as approximately equally strong (i.e., each non-zero
channel carries one DoF), in the multilevel TIM framework,
the main challenge lies in how to leverage the disparate
channel strengths, and the more general GDoF metric is of
interest. This progressive refinement (from DoF to GDoF)
has been shown instrumental for capacity approximation of
Gaussian interference networks in recent works [9], [10], [30],
[31], where the GDoF result usually further serves as a step-
ping stone for the capacity characterization within a constant
gap.

Below we define the problem of multilevel TIM with
quantized channel strength levels, or quantized multilevel TIM
(QM-TIM) in more details.3 Note that in practice, the desired

3With a little abuse of notations, in QM-TIM, we also use αij to denote
the quantized channel strength level for the link between Transmitter j and
Receiver i, ∀i, j ∈ [K].

signal strength and interfering signal strength usually fall
into different ranges, so it is reasonable to assume that
desired links and interfering links have different quantization
schemes. For direct channels, the channel strength levels
are assumed to be large enough to guarantee a satisfying
interference-free achievable rate. As a result, for direct links
the quantized channel strength levels are always normalized to
one ( i.e., αii = 1, ∀i ∈ [K]) without loss of generality. While
for interfering links, for better interference management, there
are l quantization thresholds t1, t2, . . . , tl, where 0 ≤ t1 <
t2 < . . . < tl < ∞. Hereafter, we denote the QM-TIM
problem with the above quantization configuration by QM-
TIM(t1, t2, . . . , tl). Apparently, the original TIM problem is
a special case of QM-TIM, which can be denoted by QM-
TIM(0). As another example, the simplest setting of QM-TIM
beyond the elementary one is QM-TIM(t1, t2). One natural
choice for the two quantized thresholds could be t1 = 0 and
t2 = 0.5. In this case, we have the following three kinds
of interfering links: 1) Weak interfering links: the interfering
links that are no stronger than the noise floor; 2) Medium
interfering links: the interfering links whose channel strength
level value falls into the range from 0 to 0.5; 3) Strong
interfering links: the interfering links whose channel strength
level is no less than 0.5.

III. TIM-TIN PROBLEM FORMULATION

In this section, we formulate the TIM-TIN problem within
the multilevel TIM framework formally. As mentioned before,
with only a coarse knowledge of channel strengths available
to the transmitters, in the TIM-TIN problem, we allocate not
only the beamforming vectors but also the transmit powers
to each of those beamforming vectors, in order to jointly
optimize both signal vector space and signal power level
allocations.

For a K-user interference channel in (1), over n channel
uses, Transmitter i sends out bi (bi ≤ n) independent scalar
data streams, each of which carries one symbol si,l and is
transmitted along an n× 1 beamforming vector vi,l, l ∈ [bi].
Assume that all symbols si,l are drawn from independent
Gaussian codebooks, each with zero mean and unit power, and
the beamforming vectors vi,l are scaled to have unit norm.
Over n channel uses, Receiver k obtains an n × 1 vector
yk =

∑K
i=1

∑bi

l=1

√
Pαkiejθki

√
P ri,lvi,lsi,l + zk , where zk

is an n × 1 zero mean unit variance circularly symmetric
AWGN vector at Receiver k, P ri,l is the transmit power for l-
th data stream of User i. Due to the unit power constraint,
we require ri,l ≤ 0. For User k, the covariance matrix
of the desired signal is QD

k =
∑bk

l=1(vk,lv
†
k,l)P

rk,l+αkk .
The covariance matrix of the net interference-plus-noise is
QN+I

k =
∑

i�=k Qki + I, where I is an n × n identity

matrix, and Qki =
∑bi

l=1(vi,lv
†
i,l)P

ri,l+αki is the covariance
matrix of the interference from Transmitter i 	= k. Given the
beamforming vectors of each transmitter and power allocations
of all data streams, as in the TIM-TIN problem the receivers
do not attempt to decode interference from unintended trans-
mitters, for User k ∈ [K] the achievable rate per channel
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use is given by4

Rk =
1
n

I(sk,1, sk,2, . . . , sk,bk
;yk)

=
1
n

[
h(yk)− h(yk|sk,1, sk,2, . . . , sk,bk

)
]

=
1
n

{
log

[
det(QD

k + QN+I
k )

]
− log

[
det(QN+I

k )
]}

,

and the achievable GDoF value dk is

dk = lim
P→∞

Rk

log P

= lim
P→∞

log
[
det(QD

k + QN+I
k )

]
− log

[
det(QN+I

k )
]

n log P
.

(3)

Next, we simplify the achievable GDoF expression into a
more intuitive form. Consider a term of the type log

[
det(I+∑m

i=1 P κiviv
†
i )

]
, where vi (i ∈ [m]) is an n × 1 vector.

Without loss of generality, assume κ1 ≥ κ2 ≥ . . . ≥ κm ≥ 0.
Consider the vectors vi’s one by one. For v1, we relabel
it as vΠ(1) and correspondingly its power exponent κ1 as
κΠ(1). For v2, if it falls into span(vΠ(1)), we remove it
and then proceed to v3; otherwise, we relabel it as vΠ(2)

and correspondingly κ2 as κΠ(2). We repeat this operation
for each vector. In other words, for vi, if it falls into
span(vΠ(1), . . . ,vΠ(l)) (i.e., the space spanned by all previous
linearly independent vectors obtained from {v1, . . . ,vi−1}),
we remove it and then proceed to vi+1; otherwise, we relabel
it as vΠ(l+1) and correspondingly its power exponent κi

as κΠ(l+1). Finally, we have γ ≤ n linearly independent
beamforming vectors VΠ = {vΠ(1), . . . ,vΠ(γ)} and their
associated power exponents PΠ = {κΠ(1), . . . , κΠ(γ)}. With
those definitions, we have the following lemma.

Lemma 1: Suppose that vi, i ∈ [m] are n× 1 vectors, and
κ1 ≥ κ2 ≥ . . . ≥ κm ≥ 0. We have

log
[
det(I+

m∑
i=1

P κiviv
†
i )

]
=

γ∑
i=1

κΠ(i) log P + o(log(P )).

(4)

The proof of Lemma 1 is given in Appendix A. Now we
can proceed to the following lemma.

Lemma 2: In the TIM-TIN problem, given the beamform-
ing vectors and the power allocations for each user, zero-
forcing with successive cancellation (ZF-SC) achieves the
maximal GDoF value of each user given by (3).5

The proof of Lemma 2 is deferred to Appendix B. With
Lemma 2, to maximize the achievable GDoF in the TIM-TIM
problem, the remaining challenge is choosing beamforming
vectors and their powers for each user judiciously. To address
this problem, in the following we develop two approaches,
i.e., an analytical decomposition approach and a numerical
distributed approach.

4Note that here the number of channel uses n is an integer number no less
than 1.

5Note that with the ZF-SC receiver, each user only successively decodes and
cancels the (possible multiple) desired data streams from its own transmitter,
but does not decode interfering signals from others.

Fig. 1. The received signal at Receiver 1, where the length of the vector
represents the received power of the carried symbol. Here the number of
channel uses n is 2.

Example 1: To help understand Lemma 1 and 2, consider
a 3-user interference channel, in which over 2 channel uses
User 1, 2 and 3 deliver 2, 2 and 1 data streams, respectively.
Given the beamforming vectors, the transmitted power allo-
cated to each symbol and channel strength levels for each link,
the received signal at Receiver 1 is depicted in Fig. 1, where
v2,1 and v3,1 are aligned along one direction. The length of
the vector represents the received power of the carried symbol.
We have r1,1 +α11 > r1,2 +α11 > r3,1 +α13 > r2,1 +α12 >

r2,2 + α12 > 0. Define d′k = limP→∞
log[det(QD

k +QN+I
k

)]

log P and

d′′k = limP→∞
log[det(QN+I

k )]

log P . Following Lemma 1, we have
d′1 = r1,1 +α11 +r1,2 +α11 and d′′1 = r3,1 +α13 +r2,2 +α12.
So the achievable GDoF value of User 1 is

d1 =
d′1 − d′′1

2

=
[(r1,1+α11+r1,2+α11)−(r3,1 + α13 + r2,2 + α12)]

2
.

(5)

Next, we illustrate how to achieve this GDoF value via a ZF-
SC receiver. To decode s1,1, we first zero force the strongest
interference s1,2 and then treat all the other interference as
noise. The achievable GDoF value of data stream s1,1 is

d1,1 =
(r1,1 + α11−max{r3,1+α13, r2,1+α12, r2,2 + α12})

2

=
1
2
(r1,1 + α11 − r3,1 − α13).

After recovering s1,1, we subtract it off from the received
signal and then decode s1,2. Similarly, we first zero force the
strongest interference s3,1 (and its aligned counterpart s2,1)
and then treat the remaining interference s2,2 as noise. The
achievable GDoF value of data stream s1,2 is d1,2 = 1

2 (r1,2 +
α11 − r2,2 − α12). The achievable GDoF value for User 1 is
the sum of d1,1 and d1,2, which equals (5). Also note that
the achievable GDoF value does not depend on the decoding
order, i.e., if we reverse the decoding order of s1,1 and s1,2,
we still achieve the same GDoF value for User 1. �
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IV. AN ANALYTICAL DECOMPOSITION APPROACH

In this section, for the TIM-TIN problem we present an
analytical baseline approach, denoted by TIM-TIN decompo-
sition. The basic idea is as follows. Any given network can be
decomposed into a TIM component and a TIN component,
each containing all the desired links and non-overlapping
interfering links, such that in total, these two components cover
all the interfering links. In other words, denote the sets of all
interfering links in the original network, TIM component, and
TIN component by I, ITIM, and ITIN, respectively. We have
ITIM ∩ ITIN = φ and ITIM ∪ ITIN = I. First, consider the
TIM component only. Assume that all the links are equally
strong. Applying the TIM solution yields an achievable GDoF
tuple (d1,TIM, . . . , dK,TIM), which identifies the fraction of
the signal space available to each user. Next, consider the TIN
component only. Applying appropriate power control at each
transmitter and treating interference as noise at each receiver,
we obtain an achievable GDoF tuple (d1,TIN, . . . , dK,TIN),
which identifies within the available signal space dimen-
sions assigned to each user, the fraction of signal levels
that are available to each of them. Finally, the product of
the two above fractions, i.e., the GDoF tuple (d1,TIN ×
d1,TIM, . . . , dK,TIN × dK,TIM), is achievable, identifying the
net fraction of signal dimensions available to each user by
this decomposition approach. Note that the decomposition is
quite flexible, i.e., any interfering link can be considered in
either TIM or TIN component (but not both simultaneously).
Therefore, for one interference channel, we have multiple
possible decompositions. For this TIM-TIN decomposition
approach, we have the following theorem.6

Theorem 1: For one specific TIM-TIN decomposition in a
general K-user interference channel, let DTIM be the achiev-
able GDoF region of the TIM component via signal space
approach (i.e., interference alignment and ZF), and DTIN

be the achievable GDoF region of the TIN component via
signal level approach (i.e., power control and TIN). Then,
the following GDoF region is achievable in the original K-user
interference channel,

D̄ =
{
(d1, d2, . . . , dK) : di = di,TIM × di,TIN, ∀i ∈ [K],

∀dTIM = (d1,TIM, . . . , dK,TIM) ∈ DTIM,

∀dTIN = (d1,TIN, . . . , dK,TIN) ∈ DTIN

}
. (6)

The whole achievable GDoF region based on
the TIM-TIN decomposition approach is given by
DTIM−TIN = Convex Hull

( ⋃
T IM−T IN D̄

)
, where

T IM− T IN denotes the set of all the possible TIM-TIN
decompositions and the convex hull operation comes from
time-sharing.

Proof : The key is to prove (6). In a specific TIM-TIN
decomposition, for User k, denote the set of its interferers
in the TIM component by Ik. To achieve the GDoF tuple
(d1,TIM× d1,TIN, . . . , dK,TIM× dK,TIN) in the original chan-
nel, the beamforming vectors of each user are the same as
those yield the GDoF tuple dTIM in the TIM component, and

6Interested readers are referred to examples and discussions in [32] to help
understand results in Section IV and V.

Fig. 2. (a) A 5-user interference channel. The red solid lines and dashed
blue lines represent strong and medium interfering links, respectively. The
weak interfering links are omitted to avoid cluttering the graph. (b) The TIN
component with all medium interfering links. (c) The TIM component with all
strong interfering links. (d) The achievable scheme to achieve the symmetric
GDoF value 0.3 in the original network.

the power allocation for (all the data streams of) each user
follows from the solution that yields the GDoF tuple dTIN in
the TIN component. Receiver k zero-forces the interference
from the users in Ik and treats the remaining interference as
noise, which achieves the GDoF value dk,TIM × dk,TIN. �

Example 2: Consider a 5-user interference channel within
the QM-TIM(0,0.5) framework in Fig. 2(a). The network is
decomposed into a TIN component and a TIM component as
shown in Fig. 2(b) and Fig. 2(c), respectively. For the TIN
component, which contains all the medium interfering links
and satisfies the TIN-optimality condition of [9], according to
Theorem 1 in [9] we obtain that its optimal symmetric GDoF
value is 0.6. In the TIM component, which contains all the
strong interfering links, the symmetric GDoF value is 0.5 [3].
Therefore, through this decomposition, in the original network
the symmetric GDoF value 0.6 × 0.5 = 0.3 is achievable.
The achievable scheme is given explicitly in Fig. 2(d). In this
scheme, n = 2 and bi = 1, ∀i ∈ {1, . . . , 5}. More specifi-
cally, the achievable scheme uses a 2 dimensional space and
4 beamforming vectors, where any two of them are linearly
independent and W2 and W5 are aligned along the same
vector. The transmit power allocations are r1 = 0, r2 = −0.1,
r3 = −0.2, r4 = −0.3 and r5 = −0.4. It is easy to verify that
every user achieves a GDoF value 0.3.

• Receiver 1 first zero forces the interference from Trans-
mitter 4 (to simplify notations, in the following for each
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Receiver k we denote the interference from Transmitter
i 	= k by Ii). Then, in the remaining signal dimen-
sion, it treats the interference I2 as noise. Therefore,
the achievable GDoF value for Receiver 1 is (1 − 0.4)/
2 = 0.3.

• Receiver 2 zero forces I1 and treats I3 and I5 as noise
to get (0.9− 0.3)/2 = 0.3 GDoF.

• Receiver 3 zero forces I2 and I5 and treats I4 as noise
to get (0.8− 0.2)/2 = 0.3 GDoF.

• Receiver 4 zero forces I1 and treats I5 as noise to get
(0.7− 0.1)/2 = 0.3 GDoF.

• Receiver 5 zero forces I4 to get 0.6/2 = 0.3 GDoF. �
As mentioned before, within the multilevel TIM framework,

in general the solution based on a combination of TIM and
TIN (including the decomposition approach presented in this
section) is not optimal from an information theoretic per-
spective. However, this robust decomposition approach works
rather well when the quantized channel strength levels for
cross links are concentrated around the bottom half of the
signal levels, where it characterizes the symmetric GDoF value
to a constant factor that is no larger than 2.

Theorem 2: For QM-TIM(t1, t2, . . . , tl) where tl ≤ 0.5,
the TIM-TIN decomposition approach characterizes the sym-
metric GDoF value dsym within a factor of 1

1−tl
≤ 2.

The proof of Theorem 2 is relegated to Appendix C.
Remark 1: The setting of QM-TIM(t1, t2, . . . , tl) where

tl ≤ 0.5 is justified by the conjecture that the optimal allo-
cation of limited quantization bins for interfering links would
be more concentrated near the noise floor. Intuitively, this is
because the opportunities to communicate exist only where
the desired signal significantly dominates noise/interference
strengths, especially for settings with channel uncertainties
where one might be forced to treat interference as noise.
Although in general the optimal channel quantization is still
an interesting open problem (which is beyond the scope of this
paper), the above conjecture is partially settled for the 2-user
Z interference channel in [33].

Finally, we show that TIM-TIN decomposition may achieve
the optimal GDoF for certain network settings. Here we con-
sider a class of multilevel neighboring interference channel,
which is a generalization of the cellular blind interference
alignment problem (or wireless index coding problem) in [19].
In order to limit the number of parameters while still cover-
ing broad classes of network setups, here we mainly study
symmetric cases, i.e., where relative to its own position, each
receiver has the same set of strong and medium interfer-
ing links. More specifically, consider the channel depicted
in Fig. 3, which is a locally connected interference channel
with an infinite number of users within the QM-TIM(0,0.5)
framework. For each receiver k, there are 2(S + M) + 1
transmitters connected to it with channel strength level no less
than the effective noise floor. One of them is the desired Trans-
mitter k. The 2S transmitters with indices {k−S, . . . , k− 1}
and {k + 1, . . . , k + S} are connected to Receiver k with
strong interfering links, and the 2M transmitters with indices
{k−S−M, . . . , k−S− 1} and {k +S +1, . . . , k +S +M}
are connected to Receiver k with medium interfering links.
For such networks, we have the following result.

Fig. 3. The symmetric multilevel neighboring interference channel with an
infinite number of users. To avoid cluttering the figure, only the direct links
for users with indexes {K − S − M − 1, . . . , K + S + M + 1} and the
interring links for Receiver k are shown. The red solid lines and blue dashed
lines represent strong and medium interfering links, respectively.

Theorem 3: For the above symmetric multilevel neighbor-
ing interference channel, the symmetric GDoF value is

dsym =

⎧⎪⎨
⎪⎩

1
S + M + 1

, M ≤ S

1
2(S + 1)

, M > S
(7)

which is achievable by TIM-TIN decomposition.
The proof details are provided in Appendix D. It is notable

that for the symmetric neighboring interference channel,
the signal space approach (with one-to-one alignments, see
Appendix D) always achieves 1/(S + M + 1) GDoF. When
M > S + 1, according to Theorem 3, the decomposition
approach outperforms the pure signal space approach in terms
of GDoF, and with M increasing the gap between these two
strictly increases.

Remark 2: The result in Theorem 3 can be extended to
some asymmetric cases directly. For instance, suppose that the
number of strong interferers for each user k is still 2S, whose
indices are still {k − S, . . . , k − 1} and {k + 1, .., k + S}.
However, different users have different numbers of medium
interferers. For User k, the indices of the medium interferers
are {k−S−MUk

, . . . , k−S−1} and {k+S+1, . . . , k+S+
MDk

}. If ∀k, MUk
> S and MDk

> S, the symmetric GDoF
value for such asymmetric multilevel neighboring interference
channels remains as 1

2(S+1) . The converse and achievability
arguments both follow from the proof of Theorem 3.
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V. A DISTRIBUTED NUMERICAL APPROACH

The TIM-TIN decomposition approach is a centralized
analytical method, which requires the coarse channel strength
information of all links in the network together for joint signal
vector space and signal power level allocation. In this section,
we devise a distributed numerical algorithm to address the
TIM-TIN problem, which only requires local measurements
on the signal strengths at each user. The proposed algorithm
is built upon a distributed power control algorithm based on
the duality of TIN [34], whose key ingredient is restated below.

Lemma 3: (Lemma 1 in [34]) In a general K-user inter-
ference channel, assume that a valid power allocation
(r1, . . . , rK),7 ri ≤ 0, ∀i ∈ [K], achieves a GDoF tuple
(d1, . . . , dK). In its reciprocal channel using the power allo-
cation (r̄1, . . . , r̄K), where

r̄k = −max
j:j �=k

{0, αkj + rj}, ∀k ∈ [K], (8)

the achieved GDoF tuple (d̄1, . . . , d̄K) dominates
(d1, . . . , dK), i.e., d̄k ≥ dk, ∀k ∈ [K].

The proposed TIM-TIN distributed numerical algorithm,
called ZEST, is specified at the top of the right column in
this page.8 The convergence of the ZEST algorithm is given
in Theorem 4.

Theorem 4: In the ZEST algorithm,
−→
d

(m)
Σ converges.

The proof of Theorem 4 is presented in Appendix E, where
we show that
−→
d (m) ≤ ←−d (m)

switch ≤
←−
d (m) ≤ −→d (m)

switch ≤
−→
d (m+1). (9)

Remarkably, the proof of Theorem 4 leads to the duality of
the TIM-TIN problem naturally.

Theorem 5 (Duality of TIM-TIN): In the TIM-TIN
problem, any K-user interference channel and its reciprocal
channel have the same achievable GDoF region.

Proof : Through (9), one can find that for any channel with
arbitrary beamforming vectors and power allocations, in its
reciprocal channel, we can always construct some beamform-
ing vectors and their associated power allocations, such that
the obtained GDoF tuple in the reciprocal channel dominates
that achieved in the original channel. Since in the TIM-TIN
problem, the achievable GDoF region for any interference
channel must be upper-bounded, the original channel and its
reciprocal channel have the same achievable GDoF region. �

A. Numerical Validations

To further validate the GDoF performance of the proposed
ZEST algorithm, we consider a random 5-user interference
channel. We assume that the channel strength levels of all

7In the TIN scheme, assume that the allocated power to User i ∈ [K] is
P ri , ri ≤ 0. From the GDoF perspective, we refer to the power exponent
vector (r1, . . . , rK) as the power allocation.

8Note that in steps 3) and 5) of the ZEST algorithm, when the beam l ∈ [bk]
of User k ∈ [K] updates its power allocation following Lemma 3, it treats all
the remaining received beams after ZF and SC (including the other desired
beams of User k) as interference. Also note that since in steps 2) and 4) a
successive cancellation is adopted in the lexicographic order, the beam l of
User k does not receive interference from beam s of User k, where s, l ∈ [bk]
and s < l.

Algorithm 1 ZEST: ZEro-Forcing With Successive Cancella-
tion and Power Control for TIM-TIN

1) Let m = 1. Set n and bk, and randomly choose unit-norm
beamforming vectors−→v (m)

k,l and power allocations−→r (m)
k,l that

satisfy the unit power constraint, k ∈ [K], l ∈ [bk].
2) In the original channel, update the receiving vectors
−→u (m)

k,l to the unit-norm ZF-SC receiving vectors that achieve
the maximal GDoF value for each user (See Lemma 2.
Without loss of generality, the cancellation is taken in the
lexicographic order). Compute the achievable GDoF tuple−→
d (m) and the achievable sum-GDoF value

−→
d

(m)
Σ .

3) Reverse the direction of the communication. Calculate the
power allocation ←−r (m)

k,l for each data stream in the recip-
rocal channel following (8), and set the beamforming and
receiving vectors←−v (m)

k,l and←−u (m)
k,l following←−v (m)

k,l = −→u (m)
k,l ,

←−u (m)
k,l = −→v (m)

k,l , ∀k ∈ [K], ∀l ∈ [bk]. Compute the achiev-

able GDoF tuple
←−
d (m)

switch and the achievable sum-GDoF

value
←−
d

(m)

Σ,switch (using receivers with the reverse lexico-
graphic cancellation order).
4) In the reciprocal channel, update the receiving vectors
←−u (m)

k,l to the unit-norm ZF-SC receiving vectors that achieve
the maximal GDoF value for each user (Again, the can-
cellation is taken in the lexicographic order). Compute the
achievable GDoF tuple

←−
d (m) and the achievable sum-GDoF

value
←−
d

(m)
Σ .

5) Reverse the direction of the communication. Calculate the
power allocation−→r (m+1)

k,l for each data stream in the original

channel following (8), and set −→v (m+1)
k,l =←−u (m)

k,l , −→u (m+1)
k,l =

←−v (m)
k,l , ∀k ∈ [K], ∀l ∈ [bk]. Compute the achievable

GDoF tuple
−→
d (m)

switch and the achievable sum-GDoF value
−→
d

(m)

Σ,switch (using receivers with the reverse lexicographic
cancellation order). Then let m = m + 1.
6) Repeat steps 2) through 5) until the achievable sum GDoF
value (i.e.,

−→
d

(m)
Σ ) converges or m reaches a predefined

threshold.

direct links are always equal to 1. Motivated by cellular net-
works where users suffer strong interference from neighboring
cells, we assume that at Receiver i, the interference from
Transmitter i − 1 and i + 1 are strong interference, and the
others are weak.9 For the strong interference, we assume that
their channel strength levels fall into a uniform distribution of
[x, 1], and the channel strength levels of the weak interfering
links fall into a uniform distribution of [0, 1 − x], where
x ≥ 0.5. Following [13], [17], [34], we keep the channel
strength levels αij fixed and scale the parameter P in each
random channel realization, and we always assume that every
transmitter is subject to a unit peak power constraint and the
noise variance at each receiver is normalized to one. Since all
the direct channels are with channel strength level 1, P in fact
denotes the SNR of the desired link for each user.

9Here we consider a cyclic setting, i.e., when i = 1, i − 1 = 5 and when
i = 5, i + 1 = 1.
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We compare the achievable sum-GDoF of the proposed
ZEST algorithm, the well-known distributed interference
alignment algorithm Max-SINR [35],10 the state-of-the-art
power control algorithm SAPC (i.e., SINR approximation
power control) [36], TDMA (i.e., the orthogonal scheme
with equal time sharing among all users) and the full power
transmission (i.e., every user always utilizes full power to
transmit its own signal). It is notable that Max-SINR and
SAPC optimizes the signal space allocation and signal level
allocation, respectively. Among all the schemes considered
here, only ZEST jointly optimizes the signal space and sig-
nal level allocation for data transmission. For both ZEST
and Max-SINR, we set the number of channel uses n as
2 and the number of scalar data streams for each user dk

as 1, ∀k ∈ {1, . . . , 5}. We also note that for both ZEST
and Max-SINR, different initializations may yield different
sum-rates, particularly for ZEST in low and medium SNR
regimes.11 In our experiment, for both ZEST and Max-SINR,
in each channel realization we start from multiple random
initializations and pick the largest yielded sum-rate as the final
solution. When the SNR value P is less than 30 dB, we set
the number of random initializations as 30, and 10 otherwise.
How to smartly choose the initialization of ZEST to improve
sum-rate in low and medium SNR regimes is an interesting
open question.

In our experiments, we consider two specific x values,
i.e., x = 0.5 and x = 0.75, where the latter models the settings
with more diverse channel strengths between strong and weak
interfering links. For the two different x values, the averaged
sum-rate of all algorithms over 200 random channel realiza-
tions are given in Fig. 4(a) and 4(b), respectively. It can be
seen that in both cases ZEST achieves the largest sum-GDoF
value (i.e., the steepest slope in the high SNR regime) among
all the schemes. More interestingly, ZEST outperforms SAPC,
TDMA and the full power transmission almost over the entire
SNR range. Compared with Max-SINR, ZEST is particularly
favorable in the settings with more disparate interference
strengths (e.g., when x = 0.75), and in both cases ZEST only
suffers slight sum-rate degradation when the SNR value is
relatively low.

Next, we consider the convergence of the ZEST algorithm.
In general, the numerical results show that in all channel
realizations and in all SNR regimes, ZEST exhibits a much
faster convergence rate than Max-SINR and SAPC. In our
experiment, a few iterations are usually sufficient for ZEST’s

10The Max-SINR algorithm is originally proposed for MIMO interference
channels. Here we adopt the algorithm for SISO interference channels with
multiple channel uses.

11We point out that the convergence of Max-SINR is still open. In our
experiment, we note that for Max-SINR, with a sufficient number of iterations,
different initializations usually converge to the same sum-rate. In practice,
when the number of iterations is limited, different initializations may lead to
different final solutions though. In [37] a convergent Max-SINR algorithm is
developed, which in fact jointly optimizes the signal vector space and signal
power level allocations. However, the proposed algorithm in [37] is based
on the duality of SINR in multiuser MIMO networks under an artificial sum
power constraint. While in ZEST, the convergence is guaranteed under the
practical individual user power constraint. But due to the non-convexity of
the problem, the convergent point depends on the initialization. For SAPC,
following [36] we always set the initial power of each user as its maximal
transmit power.

Fig. 4. Sum-rate performance of ZEST, Max-SINR, TDMA, SAPC, and the
full power transmission, when (a) x = 0.5, and (b) x = 0.75, where the
latter models the settings with more diverse channel strengths between strong
and weak interfering links.

Fig. 5. A representative example for the convergence behavior of ZEST,
max-SINR, and SAPC.

convergence. A representative example is given in Fig. 5 when
x = 0.5 and SNR = 30 dB. Note that as shown in Fig. 5,
the convergence of Max-SINR is not always monotone, which
has been reported in [37] as well.
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While our numerical experiments are modest in scale and
scope, they are indicative of the following strengths of ZEST:
1) with proper initialization and choice of parameters (e.g.,
the numbers of channel uses and data streams), ZEST appears
capable of achieving superior GDoF performance compared
with the conventional schemes which only optimize the alloca-
tion of signal vector space or signal power levels individually,
especially for the cases where the interference strengths are
disparate; 2) ZEST exhibits a fast convergence rate. More
elaborate numerical experiments that study the performance
of ZEST at a larger scale remain an interesting topic for
future work. Advances in the ability to efficiently find good
initialization points for ZEST in large networks are likely to be
particularly impactful. Ongoing efforts along these lines, that
compare and contrast MaxSINR, and TIMTIN, and combine
them with autoencoders based on deep learning principles are
notable in this regard [38]. Evidently, this research avenue
remains an active area with much potential for progress.

VI. CONCLUSION

In this paper, we formulate a joint signal vector space
and signal power level allocation problem (i.e., the TIM-TIN
problem) under the assumption that only a coarse knowledge
of channel strengths and no knowledge of channel phases is
available to the transmitters. A decomposition of the problem
into TIN and TIM components is proposed as a baseline.
A distributed numerical algorithm called ZEST is developed
as well. The convergence of the ZEST algorithm leads to
the duality of the TIM-TIN problem. The joint TIM-TIN
approach is promising as a building block for existing and
future wireless networks, due to its robustness to channel
uncertainty at the transmitters, implementation simplicity (e.g.,
no need to decode any interference, and being implemented
in a distributed fashion) and its potential for superior per-
formance. However, this line of research is still in its early
stages. It is hoped that this work could inspire more future
research in this area. Future directions include, e.g., translating
theoretical insights obtained in this work into the design of
practical large-scale wireless networks, such as device-to-
device networks and heterogeneous cellular networks.

APPENDIX A
PROOF OF LEMMA 1

Let xi ∼ CN (0, P κi) be independent Gaussian variables.
Denote by z an n × 1 zero mean unit variance circularly
symmetric Gaussian vector. When m > γ, denote the n × 1
vectors vi � VΠ as vΠ′(j), j ∈ [m− γ]. We have

log
[
det

(
I +

m∑
i=1

P κiviv
†
i

)]

= h
( m∑

i=1

vixi + z
)

+ o(log(P )) (10)

= h
( γ∑

i=1

vΠ(i)xΠ(i) +
m−γ∑
j=1

vΠ′(j)xΠ′(j) + z
)

+ o(log(P ))

(11)

= h
( γ∑

i=1

vΠ(i)xΠ(i) + z
)

+ o(log(P )) (12)

= log
[
det

(
I +

γ∑
i=1

P κΠ(i)vΠ(i)v
†
Π(i)

)]
+ o(log(P )),

(13)

where (12) is due to the facts that vΠ′(j), ∀j ∈ [m − γ]
is a linear combination of the vectors in VΠ =
{vΠ(1),vΠ(2), . . . ,vΠ(γ)}, and the term

∑m−γ
j=1 vΠ′(j)xΠ′(j)

becomes insignificant when P approaches infinity. More
specifically, as P → ∞, for the term vi(xi + xj + . . . + xk)
(i < j < . . . < k), only the symbol xi with the dominant
power exponent κi matters, implying that for the vector vi

we can ignore all the other independent symbols with equal
or smaller power exponents in the limit of P →∞. The fol-
lowing is essentially the same as the proof of Lemma 1 in [39].
Define VΠ � [vΠ(1) vΠ(2) . . . vΠ(γ) ] with size n× γ, and
the diagonal matrix PΠ � diag[P κΠ(1) P κΠ(2) . . . PκΠ(γ) ]
with size γ × γ. We have

log
[
det(I +

γ∑
i=1

P κΠ(i)vΠ(i)v
†
Π(i))

]

= log
[
det(I + VΠPΠV†

Π)
]

(14)

= log
[
det(I + V†

ΠVΠPΠ)
]

(15)

= log
[
det(PΠ)

]
+ log

[
det(P−1

Π + V†
ΠVΠ)

]
(16)

=
γ∑

i=1

κΠ(i) log P +O(1) (17)

APPENDIX B
PROOF OF LEMMA 2

Recall that in Section III, from vectors V = {v1, . . . ,vm}
and their associated power exponents R = {κ1, . . . , κm},
we obtain γ ≤ n linearly independent beamforming vectors
VΠ = {vΠ(1),vΠ(2), . . . ,vΠ(γ)} and their associated power
exponentsPΠ = {κΠ(1), κΠ(2), . . . , κΠ(γ)}. Define these oper-
ations as Nv and Nκ, respectively, i.e., Nv(V ,R) = VΠ and
Nκ(V ,R) = PΠ. Denote by κΣ,Nκ(V,R) the sum of all entries
in Nκ(V ,R).

To prove lemma 2, without loss of generality, we only need
to consider User 1 and assume that the successive cancellation
is taken in the lexicographic order. According to the chain rule,
we have

R1 =
1
n

I(s1,1, s1,2, . . . , s1,b1 ;y1)

=
b1∑

i=1

1
n

I(s1,i;y1|s1,1, . . . , s1,i−1)︸ ︷︷ ︸
�R1,i

(18)

Let d1,i = limP→∞
R1,i

log P , ∀i ∈ [b1]. We have

d1 =
b1∑

i=1

d1,i (19)
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For Receiver 1, denote the sets of the beamforming vectors
and associated power exponents for all the received data
streams as V1 and R1, respectively. Consider each term in the
right hand side of (19). Start with d1,1. We have the following
two cases.

• r1,1 + α11 ∈ Nκ(V1,R1): In this case, we have v1,1 ∈
Nv(V1,R1). From Lemma 1, we have

R1,1 =
1
n

[
h(y1)− h(y1|s1,1)

]
=

1
n

[
κΣ,Nκ(V1,R1) − κΣ,Nκ(V1\v1,1,R1\{r1,1+α11})

]
× log P + o(log(P ))

Therefore, in the GDoF sense, we have d1,1 =
κΣ,Nκ(V1,R1)−κΣ,Nκ(V1\v1,1,R1\{r1,1+α11})

n , which is
achievable by zero-forcing all the data streams falling
into span(Nv(V1,R1)\v1,1) and treating the remaining
interference as noise.

• r1,1 + α11 /∈ Nκ(V1,R1): In this case, v1,1 /∈
Nv(V1,R1). We have R1,1 = o(log(P )) and d1,1 = 0,
which is trivially achievable (by ZF and TIN).

After decoding s1,1, we subtract it out from the received signal
and then consider the second term in the right hand side
of (19), i.e., d1,2. Similarly, we can argue that by zero-forcing
certain interfering data streams for s1,2 and treating others as
noise, d1,2 is achievable. Repeating this subtract-and-decode
argument until all the desired data streams for User 1 are
decoded, we establish that d1 is achievable via the ZF-SC
receiver and complete the proof.

APPENDIX C
PROOF OF THEOREM 2

In the achievability, the original network is decomposed
into a TIN component containing all the interfering links with
channel strength levels no stronger than tl and a TIM compo-
nent containing all the other interfering links. First, consider
the TIN component. When tl ≤ 0.5, the TIN component
satisfies the TIN-optimality condition identified in [9] (recall
that the channel strength level of the direct link is normalized
to 1). Following Theorem 1 in [9], its symmetric GDoF value
dTIN

sym ≥ 1 − tl. Next, for the TIM component, assume that
given the optimal signal space solution, the optimal symmetric
GDoF value is denoted by dTIM

sym . Finally, according to Theo-

rem 1 in this paper, the symmetric GDoF value dTIM
sym ×dTIN

sym
is achievable.

For the converse, dTIM
sym and dTIN

sym are both outer bounds
for the original network, since removing interfering links
from the channel does not decrease GDoF. Therefore,
min{dTIM

sym , dTIN
sym} can serve as an outer bound for the sym-

metric GDoF value of the original network. We have dTIN
sym ×

dTIM
sym ≤ dsym ≤ min{dTIN

sym, dTIM
sym }, and the symmetric

GDoF value dsym can be characterized to a factor

β =
min{dTIM

sym , dTIN
sym}

dTIN
sym × dTIM

sym
≤

min{dTIM
sym , 1}

(1− tl)× dTIM
sym

=
1

1− tl
, (20)

which is no larger than 2.

APPENDIX D
PROOF OF THEOREM 3

First, consider the achievability. When M is no larger
than S, the achievable scheme is to treat all the medium
interfering links as strong interfering links and apply the one-
to-one alignment (see Theorem 6 of [19]). Note that this
scheme falls into the category of TIM-TIN decomposition,
where the TIN component contains no interfering links and the
TIM component contains all the medium and strong interfering
links. Otherwise, when M is larger than S, we use the
following decomposition to achieve the optimal symmetric
GDoF value: let the TIN and TIM component contain all
the medium interfering links and all the strong interfering
links, respectively. For the TIN component, the achievable
symmetric GDoF value is 1

2 , and for the TIM component,
the achievable symmetric GDoF value is 1

S+1 [19]. Therefore,
in the original network, the symmetric GDoF value 1

2(S+1) is
achievable.

Next, consider the converse. We start with a useful lemma.
Lemma 4: Consider a 3-user interference channel within

the QM-TIM(0,0.5) framework, where i, j, k ∈ {1, 2, 3},
i 	= j, j 	= k, and i 	= k. Denote by lij the link between
Transmitter j and Receiver i, M the set of all medium
interfering links, and S the set of all strong interfering links.
If lij ∈ S, and lki, lik, lkj , ljk ∈ {S∪M}, then the sum GDoF
value of this channel is 1.

Proof: The achievability is straightforward. In the follow-
ing we only consider the converse. Without loss of generality,
we assume i = 1, j = 2, and k = 3. To obtain the desired
outer bound, we first set α21 = 0. This does not hurt the sum
capacity because regardless of the channel strength level of
the cross link l21, we can always provide the message W1 to
Receiver 2 through a genie and remove this interfering link.

Without perfect channel knowledge at transmitters,
the channel can be regarded as a compound channel (with
an infinite number of channel states), and its capacity is
upper bounded by the capacity of any possible channel
state [13]. By definition, in QM-TIM(0,0.5) for both strong
and medium interfering links, their channel strength levels
can be set as the threshold value 0.5. Consider a specific
channel realization where α11 = α22 = α33 = α12 = 1,
α13 = α31 = α23 = α32 = 0.5, and all the links have the
same channel phase. The capacity of the original channel is
upper bounded by this case.

For any reliable decoding scheme, Receiver 1 can always
decode its own message W1. After decoding W1, Receiver 1
can subtract it from its received signal and has the same
signal as Receiver 2. So Receiver 1 can also decode W2. Now
consider Transmitters 1 and 2. We find that they have the
same channel vectors to Receiver 1 and 3. It implies that the
sum capacity of the original channel is upper bounded by that
of a 2-user interference channel with transmitters {T1,2, T3}
and receivers {R1, R3}, where T1,2 is a combination of
Transmitter 1 and 2. The sum-GDoF value of this 2-user
interference channel (where both desired links have channel
strength level 1 and both cross links have channel strength
level 0.5) is known to be 1 [30]. Therefore, we establish the
desired outer bound. �
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Fig. 6. For the converse, when M ≤ S and M > S, we consider the
(S+M+1)-user interference channel in (a) and the 2(S+1)-user interference
channel in (b), respectively. In both channels, the channel strength levels of
the red solid lines and blue dashed lines are 1 and 0.5, respectively.

As mentioned before, for the compound channel setting,
the capacity of any possible channel state serves as a capacity
upper bound. To complete the converse proof, the main task is
to identify the channel state providing the tightest upper bound.
For both cases discussed below, the proof follows three steps:
(1) picking up the target subnetwork with a certain number of
users, (2) identifying the specific channel realizations which
provide the desired outer bound, and (3) completing the
proof by reducing the obtained channel to a relatively simple
equivalent channel with known sum-GDoF result.

Case I (M ≤ S): Consider any consecutive S + M + 1
users. Without loss of generality, assume that the user indices
range from 1 to S + M + 1. For these users, we intend to
prove the outer bound d1 + d2 + . . . + dS+M+1 ≤ 1.

Towards this end, first remove all the users other than the
considered S + M + 1 users, which does not hurt the sum
capacity of users 1 to S + M + 1. Next, in the remaining
network, divide the S + M + 1 users into three subgroups as
shown in Fig. 6(a):

• G1: this subgroup includes users 1 to M ;
• G2: this subgroup includes users M + 1 to S + 1;
• G3: this subgroup includes users S + 2 to S + M + 1.

To derive the desired outer bound, consider the channel
realization below. Assume that all the links have the same
channel phase. For the direct links, recall that their channel
strength levels are all equal to 1. For the medium interfering
links, we set their channel strength levels to be exactly 0.5. For
the strong interfering links, we set their channel strength levels

to be either 1 or 0.5 as follows. For all the transmitters in G1,
we assume that the cross links between them and the receivers
in G1 and G2 are all with channel strength level 1, while the
cross links between them and the receivers in G3 are all with
channel strength level 0.5. Next, for the transmitters in G2,
the cross links between them and all the receivers are with
channel strength level 1. Finally, for the transmitters in G3,
the cross links between them and the receivers in G2 and G3

are all with channel strength level 1, while the cross links
between them and the receivers in G1 are all with channel
strength level 0.5.

Now, note that in this network, all the receivers in the same
subgroup Gi i ∈ {1, 2, 3}, are equipped with the same received
signal. Thus removing all of them but one cannot hurt the
sum capacity. Also note that for all the transmitters in the
same subgroup Gi, i ∈ {1, 2, 3}, they have the same channel
vectors to all the remaining three receivers. Thus combining all
the transmitters in each subgroup into one transmitter does not
hurt the sum capacity either. Therefore, the network is reduced
to a 3-user interference channel where α13 = α31 = 0.5 and
all the other links are with channel strength level value 1.
According to Lemma 4, the sum-GDoF value of this network
is 1, which establishes the desired outer bound.

Case II (M > S): Consider any consecutive 2(S + 1)
users. Without loss of generality, assume the user indices
range from 1 to 2(S + 1). For these users, we intend to
show d1 + d2 + . . . + d2(S+1) ≤ 1. Similar to the previous
case, we first remove all the other users. In the remaining
network, divide the 2(S+1) users into two subgroups as shown
in Fig. 6(b):

• G1: this subgroup includes users 1 to S + 1;
• G2: this subgroup includes users S + 2 to 2(S + 1).
Again, assume that all the links have the same channel

phase. For the direct links, their channel strength levels are
all 1. For the medium interfering links, we set their channel
strength levels to be exactly 0.5. Next, we set the channel
strength levels of the strong interfering links to be either 1 or
0.5 as follows. For transmitters in each subgroup Gi, the cross
links between them and the receivers in the same subgroup
Gi are all with channel strength level 1, and the cross links
between them and all the receivers in the other subgroup Gj

are with channel strength level 0.5, where i, j ∈ {1, 2} and
i 	= j. Removing all the receivers but one in each subgroup
Gi, i ∈ {1, 2}, cannot hurt the sum capacity. Combining all
the transmitters in each subgroup Gi, i ∈ {1, 2}, into one
transmitter cannot hurt the sum capacity either. Finally, we end
up with a 2-user interference channel with α11 = α22 = 1,
α12 = α21 = 0.5 and sum-GDoF value 1 [30], which leads to
the desired outer bound.

APPENDIX E
PROOF OF THEOREM 4

As the sum-GDoF of an interference channel must be
upper bounded by a finite value, to prove this theorem,
we only need to show that the achievable sum-GDoF via the
ZEST algorithm monotonically increases after each update,
i.e.,
−→
d

(m)
Σ ≤ ←−d (m)

Σ,switch ≤
←−
d

(m)
Σ ≤ −→d (m)

Σ,switch ≤
−→
d

(m+1)
Σ .
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Towards this end, we show that the GDoF tuple obtained in
each step satisfies

−→
d (m)

(a)

≤ ←−d (m)

switch

(b)

≤ ←−d (m)
(c)

≤ −→d (m)

switch

(d)

≤ −→d (m+1), (21)

where (b) and (d) follow from Lemma 2 directly, as in these
two steps, the receiver is updated to the ZF-SC receiver that
achieves the maximal GDoF.

Next, consider (a). Let B =
∑K

k=1 bk. In the m-th iteration,
define an indicator function

I{|−→u (m)†
k,l

−→v (m)
j,s |�=0} =

{
1, |−→u (m)†

k,l
−→v (m)

j,s | 	= 0
0, |−→u (m)†

k,l
−→v (m)

j,s | = 0
(22)

Next, define Gj,s
k,l = αkj I{|−→u (m)†

k,l
−→v (m)

j,s |�=0}, which is the

effective channel strength level from data stream s of User j
to data stream l of User k in the original channel. Also define

a B ×B matrix G
( ∑k−1

n=1 bn + l,
∑j−1

m=1 bm + s

)
= Gj,s

k,l.

Recall that a successive cancellation procedure is adopted
at each receiver. According to the ZEST algorithm given in
Section V, without loss of generality, we have assumed that
the cancellation is taken in the lexicographic order. Therefore,
for Receiver k ∈ [K], the effective channel strength level
from data stream p of User k to data stream q of User k is 0,
for p, q ∈ [bk] and p < q. Set the corresponding entries of G
as 0, i.e.,

G
( k−1∑

n=1

bn + q,

k−1∑
n=1

bn + p

)
= 0, ∀k ∈ [K],

∀p, q ∈ [bk], p < q, (23)

and denote the obtained matrix by
−→
G. Next, for the K-user

original channel in the m-th iteration with beamforming
vectors −→v (m)

j,s and ZF-SC receiving vectors −→u (m)
k,l ,

we construct a counterpart B-user interference channel with
the channel strength level matrix

−→
G, which is denoted by

ICo. For ICo,
−→
G(j, i) denotes the channel strength level from

Transmitter i to Receiver j. Assume that in ICo, the allocated
power to Transmitter i is −→r i = −→r (m)

j,s where i =
∑j−1

l=1 bl +s.
By treating interference as noise at each receiver, we obtain
the achievable GDoF tuple of ICo (d1,o, . . . , dB,o) and∑i′j

i=ij
di,o = n × −→d (m)

j , where ij =
∑j−1

l=1 bl + 1,

i′j =
∑j

l=1 bl, and
−→
d

(m)
j is the j-th entry of

−→
d (m).

Similarly, for the reciprocal channel in the m-th iteration
with beamforming vectors ←−v (m)

j,s = −→u (m)
j,s and receiving

vectors ←−u (m)
k,l = −→v (m)

k,l , we construct a counterpart B-user
interference channel with the channel strength level matrix←−
G =

−→
GT , which is the reciprocal channel of ICo and denoted

by ICr.12 Assume that in ICr, the allocated power to Trans-
mitter i is ←−r i = ←−r (m)

j,s where i =
∑j−1

l=1 bl + s. By treating
interference as noise at each receiver, we obtain the achievable
GDoF tuple of ICr (d1,r, . . . , dB,r) and

∑i′j
i=ij

di,r = n ×
←−
d

(m)

j,switch, where
←−
d

(m)

j,switch is the j-th entry of
←−
d (m)

switch.

12Note that the new channel ICr with the channel strength level matrix−→
GT corresponds to the reciprocal channel in the m-th iteration where the
successive cancellation for each user is taken in the reverse lexicographic
order.

According to Lemma 3, we have
∑i′j

i=ij
di,o ≤

∑i′j
i=ij

di,r ⇒−→
d

(m)
j ≤ ←−d (m)

j,switch, ∀j ∈ [K], and hence prove (a). The
proof of (c) follows similarly. Therefore, we establish (21)
and complete the proof.
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