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The Capacity of Robust Private Information
Retrieval With Colluding Databases
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Abstract— Private information retrieval (PIR) is the problem
of retrieving as efficiently as possible, one out of K messages
from N non-communicating replicated databases (each holds all
K messages) while keeping the identity of the desired message
index a secret from each individual database. The informa-
tion theoretic capacity of PIR (equivalently, the reciprocal of
minimum download cost) is the maximum number of bits of
desired information that can be privately retrieved per bit of
downloaded information. T -private PIR is a generalization of PIR
to include the requirement that even if any T of the N databases
collude, the identity of the retrieved message remains completely
unknown to them. Robust PIR is another generalization that
refers to the scenario where we have M ≥ N databases, out
of which any M − N may fail to respond. For K messages
and M ≥ N databases out of which at least some N must
respond, we show that the capacity of T -private and Robust
PIR is (1 + T/N + T 2/N2 + · · · + T K−1/N K−1)−1. The result
includes as special cases the capacity of PIR without robustness
(M = N) or T -privacy constraints (T = 1).

Index Terms— Capacity, private information retrieval, collud-
ing databases, unresponsive databases.

I. INTRODUCTION

THE private information retrieval (PIR) problem is moti-
vated by the desire to protect the privacy of a user

against data providers. Besides its direct applications in data
privacy, it is intimately related to many fundamental prob-
lems in cryptography, e.g., oblivious transfer [1], instance
hiding [2]–[4], secure multiparty computation [5], and secret
sharing schemes [6], [7]. The significance of PIR also extends
beyond security, through its fundamental connections to other
prominent topics such as locally decodable codes [8] and batch
codes [9] in coding theory, relationships between communi-
cation and computation [10] in complexity theory, and most
recently blind interference alignment [11] in wireless com-
munications. In fact most constructions of locally decodable
codes are translated directly from PIR schemes. Through the
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connections between locally decodable and locally recoverable
codes [12], PIR also connects to distributed data storage
repair [13] and index coding [14], which in turn encompass all
of network coding [15]. Therefore PIR represents an important
focal point to tackle significant challenges across these fields.

The goal of PIR is to find the most efficient way for a
user to retrieve a desired message from a set of N distributed
databases, each of which stores all K messages, without
revealing anything (in the information theoretic sense)1 about
which message is being retrieved, to any individual database.
The PIR problem was initially studied in the setting where
each message is one bit long [8], [19]–[23], where the cost
of a PIR scheme is measured by the total amount of commu-
nication between the user and the databases, i.e., the sum of
communications from the user to the databases (upload) and
from the databases to the user (download). What is pursued
in this work is the traditional Shannon theoretic formulation,
where message size is allowed to be arbitrarily large, and
therefore the upload cost is negligible compared to the down-
load cost [20], [24]. The information theoretic capacity of
PIR is the maximum number of bits of desired information that
can be privately retrieved per bit of downloaded information.
Equivalently, it is the reciprocal of the minimum possible
download cost per bit of desired message. In [25], we showed
that the information theoretic capacity of PIR, for arbitrary
number of messages K and arbitrary number of databases N
is

�
1 + 1/N + 1/N2 + · · · + 1/N K−1

�−1
.

There are several interesting extensions of PIR that
explore its limitations under additional constraints. These
include extensions where up to T of the N databases may
collude [26], [27] (T -private PIR); where some of the data-
bases may not respond [28] (Robust PIR); where both the
privacy of the user and the databases must be protected [1]
(Symmetric PIR); where only one database holds all the
messages and all other databases hold independent informa-
tion [29]; where retrieval operations are unsynchronized [30];
and where beyond communications, computation is also a
concern [31]. There is also much recent work in the distributed
storage setting [24], [32]–[34] (the databases form a distributed
storage system) where the main focus is on how the coding
of the storage system works jointly with PIR.

In this work, we mainly consider T -private PIR in the
Shannon theoretic setting, where we have an arbitrary number

1There is another line of research, where privacy needs to be satisfied only
for computationally bounded databases [16]–[18].
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of messages (K ), arbitrary number of databases (N), each
database stores all the messages, the messages are allowed
to be arbitrarily large, and the privacy of the desired message
index must be guaranteed even if any T of the N databases
collude. The main contribution of this work is to show
that the information theoretic capacity of T -private PIR is�
1 + T/N + T 2/N2 + · · · + T K−1/N K−1

�−1
.

We further consider the extension to robust T -private PIR,
where we have M ≥ N databases, out of which any M − N
databases may not respond, so that with answers from any
N databases, we need to ensure both privacy and correctness.
In this context, the contribution of this work is to show that the
information theoretic capacity of robust T -private PIR remains
the same as that of T -private PIR, i.e., there is no capacity cost
from not knowing in advance which N databases will respond.

Notation: For n1, n2 ∈ Z, n1 ≤ n2, define the notation [n1 :
n2] as the set {n1, n1 + 1, · · · , n2} and (n1 : n2) as the vector
(n1, n1 + 1, · · · , n2). For an index set I = {i1, i2, · · · , in},
the notation AI represents the set {Ai : i ∈ I}. For an
index vector I = (i1, i2, · · · , in), the notation AI represents
the vector (Ai1 , Ai2 , · · · , Ain ). For a matrix S, the notation
S[I, :] represents the submatrix of S formed by retaining
only the rows corresponding to the elements of the vector I.
The notation X ∼ Y is used to indicate that X and Y are
identically distributed.

II. PROBLEM STATEMENT

A. T -Private PIR

Consider K independent messages W1, · · · , WK of size
L bits each.

H (W1, · · · , WK ) = H (W1) + · · · + H (WK ), (1)

H (W1) = · · · = H (WK ) = L . (2)

There are N databases. Each database stores all the messages
W1, · · · , WK . A user wants to retrieve Wk , k ∈ [1 : K ]
subject to T -privacy, i.e., without revealing anything about the
message identity, k, to any colluding susbset of up to T out
of the N databases.

To retrieve Wk privately, the user generates N queries
Q[k]

1 , · · · , Q[k]
N , where the superscript denotes the desired

message index. Since the queries are generated with no
knowledge of the realizations of the messages, the queries
must be independent of the messages,

I (W1, · · · , WK ; Q[k]
1 , · · · , Q[k]

N ) = 0. (3)

The user sends query Q[k]
n to the n-th database, ∀n ∈ [1 : N].

Upon receiving Q[k]
n , the n-th database generates an answering

string A[k]
n , which is a deterministic function of Q[k]

n and the
data stored (i.e., all messages W1, · · · , WK ),

H (A[k]
n |Q[k]

n , W1, · · · , WK ) = 0. (4)

Each database returns to the user its answer A[k]
n . From

all answers A[k]
1 , · · · , A[k]

N , the user can decode the desired
message Wk ,

[Correctness] H (Wk|A[k]
1 , · · · , A[k]

N , Q[k]
1 , · · · , Q[k]

N ) = 0.

(5)

To satisfy the privacy constraint that any T colluding
databases learn nothing about the desired message index k
information theoretically, information available to any T data-
bases (queries, answers and the stored messages) must be
independent of k. Let T be a subset of [1 : N] and its
cardinality be denoted by |T |. Q[k]

T represents the subset
{Q[k]

n , n ∈ T }. A[k]
T is defined similarly. To satisfy the

T -privacy requirement we must have

[Privacy] I (Q[k]
T , A[k]

T , W1, · · · , WK ; k) = 0,

∀T ⊂ [1 : N], |T | = T . (6)

To underscore that any set of T or fewer answering strings is
independent of the desired message index, we may suppress
the superscript and write AT directly instead of A[k]

T , and

express the elements of such a set as An instead of A[k]
n .

The metric that we study in this paper is the PIR rate,2

which characterizes how many bits of desired information are
retrieved per downloaded bit. Note that the PIR rate is the
reciprocal of download cost. The rate R of a PIR scheme is
defined as follows.

R
�= L

D
(7)

where D is the expected value of the total number of bits
downloaded by the user from all the databases. The capacity,
C , is the supremum of R over all PIR schemes.

B. Robust T -Private PIR

The robust T -private PIR problem is defined similar to the
T -private PIR problem. The only difference is that instead of
N databases, we have M ≥ N databases, and the correctness
condition needs to be satisfied when the user collects any
N out of the M answering strings.

III. MAIN RESULT: CAPACITY OF ROBUST T -PRIVATE PIR

The following theorem states the main result.
Theorem 1: For T -private PIR with K messages and

N databases, the capacity is

C =
�

1 + T/N + T 2/N2 + · · · + T K−1/N K−1
�−1

. (8)

The capacity of PIR with T colluding databases generalizes
the case without T -privacy constraints, where T = 1 [25].
The capacity is a strictly decreasing function of T . When
T = N , the capacity is 1/K , meaning that the user has
to download all K messages to be private, as in this case,
the colluding databases are as strong as the user. Similar
to the T = 1 case, the capacity is strictly decreasing in
the number of messages, K , and strictly increasing in the
number of databases, N . When the number of messages
approaches infinity, the capacity approaches 1 − T/N , and
when the number of databases approaches infinity (T remains

2In the Shannon theoretic formulation where the message size is allowed
to grow, the upload cost (the length of the query strings) is negligible relative
to download cost because it does not scale with message size. For example,
if the message size is doubled (e.g., double the value of L in the schemes
presented in this paper), the same query applies to both parts of the message.
A more detailed treatment may be found in Proposition 4.1.1 of [20].
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constant), the capacity approaches 1. Finally, note that since
the download cost is the reciprocal of the rate, the capacity
characterization in Theorem 1 equivalently characterizes the
optimal download cost per message bit for T -private PIR
as

�
1 + T/N + T 2/N2 + · · · + T K−1/N K−1

�
bits. Note that

when N 	= T , the capacity expression can be equivalently
expressed as (1 − T

N )/
�

1 − � T
N

�K
�

.
The capacity-achieving scheme that we construct for

T -private PIR, generalizes easily to incorporate robustness
constraints. As a consequence, we are also able to characterize
the capacity of robust T -private PIR. This result is stated in
the following theorem.

Theorem 2: The capacity of robust T -private PIR is

C =
�

1 + T/N + T 2/N2 + · · · + T K−1/N K−1
�−1

. (9)

Since the capacity expressions are the same, we note
that there is no capacity penalty from not knowing in
advance which N databases will respond. Even though this
uncertainty increases as M increases, capacity is not a
function of M . However, we note that the communication
complexity of our capacity achieving scheme does increase
with M .

Remark: The capacity results in both Theorem 1 and
Theorem 2 extend to the �-error case. Please refer to the
Appendix for details.

IV. PROOF OF THEOREM 1 AND

THEOREM 2: ACHIEVABILITY

The achievability of the two theorems follows along
similar lines, so we present the proofs together in this
section.

There are two key aspects of the achievable scheme – 1) the
query structure, and 2) the specialization of the query structure
to ensure T -privacy and correctness. While the query structure
is different from the T = 1 setting of [25], it draws upon
the iterative application of the same three principles that were
identified in [25]. These principles are listed below.

(1) Enforcing Symmetry Across Databases
(2) Enforcing Message Symmetry within the Query to Each

Database
(3) Exploiting Previously Acquired Side Information

of Undesired Messages to Retrieve New Desired
Information

The specialization of the structure to ensure T -privacy and
correctness is another novel element of the achievable scheme.
To illustrate how these ideas work together in an iterative
fashion, we will present a few simple examples correspond-
ing to small values of K , M, N and T , and then gener-
alize it to arbitrary K , M, N and T . Let us begin with a
lemma.

Lemma 1: Let S1, S2, · · · , SK ∈ Fα×α
q be K random

matrices, drawn independently and uniformly from all α × α

full-rank matrices over Fq . Let G1, G2, · · · , GK ∈ Fβ×β
q be

K invertible square matrices of dimension β × β over Fq .
Let I1,I2, · · · ,IK ∈ N

β×1 be K index vectors, each

containing β distinct indices from [1 : α]. Then

(G1S1[I1, :], G2S2[I2, :], · · · , GK SK [IK , :])
∼ (S1[(1 : β), :], S2[(1 : β), :], · · · , SK [(1 : β), :]) (10)

where Si [Ii , :], i ∈ [1 : K ] are β × α matrices comprised of
the rows of Si with indices in Ii .

Proof: We wish to prove that the left hand side of (10) is
identically distributed (recall that the notation X ∼ Y means
that X and Y are identically distributed) to the right hand side
of (10). Because the rank of a matrix does not depend on the
ordering of the rows, we have

(S1[I1, :], S2[I2, :], · · · , SK [IK , :])
∼ (S1[(1 : β), :], S2[(1 : β), :], · · · , SK [(1 : β), :]).

Since Si are picked uniformly from all full-rank matrices,
conditioned on any feasible value of the remaining rows
Si [(β + 1 : α), :], the first β rows Si [(1 : β), :] are uniformly
distributed over all possibilities that preserve full-rank for Si .
Now note that the mapping from Si [(1 : β), :] to Gi Si [(1 :
β), :] is bijective, and Si [(1 : β), :] spans the same row
space as Gi Si [(1 : β), :], i.e., replacing Si [(1 : β), :] with
Gi Si [(1 : β), :], preserves Si as a full-rank matrix. Therefore,
conditioned on any feasible Si [(β + 1 : α), :], the set of
feasible values of Si [(1 : β), :] is the same as the set of
feasible Gi Si [(1 : β), :] values. Therefore, Gi Si [(1 : β), :]
is also uniformly distributed over the same set. Finally, since
the Si are chosen independently, the statement of Lemma 1
follows.

In the following, we present 3 examples. In the first two
examples, all databases respond, while the last example is on
the robust setting.

A. K = 2 Messages, M = N = 3 Databases,
T = 2 Colluding Databases

The capacity for this setting, is C = �
1 + 2

3

�−1 = 3
5 .

1) Query Structure: We begin by constructing a query
structure, which will then be specialized to achieve correctness
and privacy. Without loss of generality, let [ak] denote the
symbols of the desired message, and [bk] the symbols of the
undesired message.

DB1 DB2 DB3

a1, a2 a3, a4

(1)−→ DB1 DB2 DB3

a1, a2 a3, a4 a5, a6
· · ·

· · · (2)−→
DB1 DB2 DB3

a1, a2 a3, a4 a5, a6
b1, b2 b3, b4 b5, b6

· · ·

· · · (3)−→
DB1 DB2 DB3

a1, a2 a3, a4 a5, a6
b1, b2 b3, b4 b5, b6

a7 + b7 a8 + b8

· · ·

· · · (1)−→
DB1 DB2 DB3

a1, a2 a3, a4 a5, a6
b1, b2 b3, b4 b5, b6

a7 + b7 a8 + b8 a9 + b9
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We start by requesting the first T K−1 = 2 symbols from each
of the first T = 2 databases: a1, a2 from DB1, and a3, a4
from DB2. Applying database symmetry, we simultaneously
request a5, a6 from DB3. Next, we enforce message symmetry,
by including queries for b1, · · · , b6 as the counterparts for
a1, · · · , a6. Now consider the first T = 2 databases, i.e.,
DB1 and DB2, which can potentially collude with each
other. Unknown to these databases the user has acquired two
symbols of external side information, b5, b6, comprised of
undesired message symbols received from DB3. Splitting the
two symbols of external side information among DB1 and
DB2 allows the user one symbol of side information for
each of DB1 and DB2 that it can exploit to retrieve new
desired information symbols. In our construction of the query
structure, we will assign new labels (subscripts) to the external
side information exploited within each database, e.g., b7 for
DB1 and b8 for DB2, with the understanding that eventually
when the dependencies within the structure are specialized,
b7, b8 will turn out to be functions of previously acquired
side information. Using its assigned side information, each
DB acquires a new symbol of desired message, so that DB1
requests a7 + b7 and DB2 requests a8 + b8. Finally, enforcing
symmetry across databases, DB3 requests a9 + b9. At this
point, the construction is symmetric across databases, the
query to any database is symmetric in itself across messages,
and the amount of side information exploited within any
T colluding databases equals the amount of side information
available external to those T databases. So the skeleton of the
query structure is complete.

Note that if DB1 and DB2 collude, then the external side
information is b5, b6, so we would like the side information
that is exploited by DB1 and DB2, i.e., b7, b8 to be functions
of the external side information that is available, i.e., b5, b6.
However, since any T = 2 databases can collude, it is also
possible that DB1 and DB3 collude instead, in which case
we would like b7, b9 to be functions of side information
that is external to DB1 and DB3, i.e., b3, b4. Similarly, if
DB2 and DB3 collude, then we would like b8, b9 to be
functions of b1, b2. How to achieve such dependencies in a
manner that preserves privacy and ensures correctness is the
remaining challenge. Intuitively, the key is to make b7, b8, b9
depend on all side information b1, b2, · · · , b6 in a generic
sense. In other words, we will achieve the desired functional
dependencies by viewing b1, b2, · · · , b9 as the outputs of
a (9, 6) MDS code, so that any 3 of these bk are functions of
the remaining 6. The details of this specialization are described
next.

2) Specialization to Ensure Correctness and Privacy: Let
each message consist of N K = 9 symbols from a sufficiently
large3 finite field Fq (i.e., L = 9). The messages W1,
W2 ∈ F

9×1
q are then represented as 9 × 1 vectors over Fq . Let

S1, S2 ∈ F
9×9
q represent random matrices chosen privately by

the user, independently and uniformly from all 9 ×9 full-rank
matrices over Fq . Without loss of generality, let us assume

3The requirements on the size of the field have to do with the existence
of MDS codes that are used in the construction. In this case q ≥ N K is
sufficient. We note that the size of the field of operations may be reduced.
Such an example is presented in Section VI.

that W1 is the desired message. Define the 9 × 1 vectors
a[1:9] ∈ F

9×1
q and b[1:9] ∈ F

9×1
q , as follows

a[1:9] = S1W1 (11)

b[1:9] = MDS9×6S2[(1 : 6), :]W2 (12)

where S2[(1 : 6), :] is a 6 × 9 matrix comprised of the first 6
rows of S2. MDS9×6 is the generator matrix of a (9, 6) MDS
code (e.g., a Reed Solomon code). The generator matrix does
not need to be random, i.e., it may be globally known. Note
that because of the MDS property, any 6 rows of MDS9×6 form
a 6 × 6 invertible matrix. Therefore, from any 6 elements of
b[1:9], all 9 elements of b[1:9] can be recovered. For example,
from b1, b2, · · · , b6, one can recover b7, b8, b9. The queries
from each database are constructed according to the structure
described earlier.

DB1 DB2 DB3

a1, a2 a3, a4 a5, a6
b1, b2 b3, b4 b5, b6

a7 + b7 a8 + b8 a9 + b9

(13)

Correctness is easy to see, because the user recovers b[1:6]
explicitly, from which it can recover all b[1:9], thereby allowing
it to recover all of a[1:9]. Let us see why privacy holds. The
queries for any T = 2 colluding databases are comprised of
6 variables from a[1:9] and 6 variables from b[1:9]. Let the
indices of these variables be denoted by the 6 × 1 vectors
Ia,Ib ∈ N

6×1, respectively, so that,

(aIa , bIb) = (S1[Ia, :]W1, MDS9×6[Ib, :]S2[(1 : 6), :]W2)

∼ (S1[(1 : 6), :]W1, S2[(1 : 6), :]W2) (14)

where (14) follows from Lemma 1 because MDS9×6[Ib, :] is
an invertible 6×6 matrix. Therefore, the random map from W1
to aIa variables is i.i.d. as the random map from W2 to bIb ,
and privacy is guaranteed. Note that since 9 desired symbols
are recovered from a total of 15 downloaded symbols, the
rate achieved by this scheme is 9/15 = 3/5, which matches
the capacity for this setting. While this specialization suffices
for our purpose (it achieves capacity), we note that further
simplifications of the scheme are possible, which allow it
to operate over smaller fields and with lower upload cost.
Such an example is provided in the conclusion section of this
paper.

B. K = 3 Messages, M = N = 3 Databases, T = 2
Colluding Databases

The capacity for this setting, is C =�
1 + 2

3 + ( 2
3 )2

�−1 = 9
19 .

1) Query Structure: The query structure is constructed as
follows.

DB1 DB2 DB3

a1, a2, a3, a4 a5, a6, a7, a8

(1)−→ DB1 DB2 DB3

a1, a2, a3, a4 a5, a6, a7, a8 a9, a10, a11, a12

(2)−→
DB1 DB2 DB3

a1, a2, a3, a4 a5, a6, a7, a8 a9, a10, a11, a12

b1, b2, b3, b4 b5, b6, b7, b8 b9, b10, b11, b12

c1, c2, c3, c4 c5, c6, c7, c8 c9, c10, c11, c12
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(3)−→

DB1 DB2 DB3

a1, a2, a3, a4 a5, a6, a7, a8 a9, a10, a11, a12

b1, b2, b3, b4 b5, b6, b7, b8 b9, b10, b11, b12

c1, c2, c3, c4 c5, c6, c7, c8 c9, c10, c11, c12

a13 + b13 a15 + b15

a14 + b14 a16 + b16

a17 + c13 a19 + c15

a18 + c14 a20 + c16

(1)−→

DB1 DB2 DB3

a1, a2, a3, a4 a5, a6, a7, a8 a9, a10, a11, a12

b1, b2, b3, b4 b5, b6, b7, b8 b9, b10, b11, b12

c1, c2, c3, c4 c5, c6, c7, c8 c9, c10, c11, c12

a13 + b13 a15 + b15 a21 + b17

a14 + b14 a16 + b16 a22 + b18

a17 + c13 a19 + c15 a23 + c17

a18 + c14 a20 + c16 a24 + c18

(2)−→

DB1 DB2 DB3

a1, a2, a3, a4 a5, a6, a7, a8 a9, a10, a11, a12
b1, b2, b3, b4 b5, b6, b7, b8 b9, b10, b11, b12
c1, c2, c3, c4 c5, c6, c7, c8 c9, c10, c11, c12

a13 + b13 a15 + b15 a21 + b17

a14 + b14 a16 + b16 a22 + b18

a17 + c13 a19 + c15 a23 + c17

a18 + c14 a20 + c16 a24 + c18

b19 + c19 b21 + c21 b23 + c23

b20 + c20 b22 + c22 b24 + c24

(3)−→

DB1 DB2 DB3

a1, a2, a3, a4 a5, a6, a7, a8 a9, a10, a11, a12
b1, b2, b3, b4 b5, b6, b7, b8 b9, b10, b11, b12
c1, c2, c3, c4 c5, c6, c7, c8 c9, c10, c11, c12

a13 + b13 a15 + b15 a21 + b17
a14 + b14 a16 + b16 a22 + b18
a17 + c13 a19 + c15 a23 + c17
a18 + c14 a20 + c16 a24 + c18
b19 + c19 b21 + c21 b23 + c23
b20 + c20 b22 + c22 b24 + c24

a25 + b25 + c25 a26 + b26 + c26

(1)−→

DB1 DB2 DB3

a1, a2, a3, a4 a5, a6, a7, a8 a9, a10, a11, a12
b1, b2, b3, b4 b5, b6, b7, b8 b9, b10, b11, b12
c1, c2, c3, c4 c5, c6, c7, c8 c9, c10, c11, c12

a13 + b13 a15 + b15 a21 + b17
a14 + b14 a16 + b16 a22 + b18
a17 + c13 a19 + c15 a23 + c17
a18 + c14 a20 + c16 a24 + c18
b19 + c19 b21 + c21 b23 + c23
b20 + c20 b22 + c22 b24 + c24

a25 + b25 + c25 a26 + b26 + c26 a27 + b27 + c27

Starting with T K−1 = 4 symbols each requested from the first
T = 2 databases, we proceed through iterative steps (1) and
(2) to enforce symmetries across databases and messages. In
step (3) we consider the first T = 2 databases together (DB1
and DB2) and account for the external side information, which
in this case contains 4 symbols from [bk] and 4 symbols from
[ck]. Distributed evenly among DB1 and DB2, this allows
a budget of 2 symbols of side information from [bk] and 2
symbols from [ck] per database to be exploited to recover
new symbols of desired information. Proceeding again through
steps (1) and (2) to enforce symmetries across databases

and messages, we end up with new downloads that contain
only undesired information symbols, which can now be used
to download new desired information symbols. Once again,
we consider DB1 and DB2 together, and account for the
new external side information, b23 + c23, b24 + c24. Thus the
external side information is comprised of two symbols, each
of which is a sum of the form bk + ck . Dividing the side
information evenly among databases DB1 and DB2, each is
assigned one side information symbol of the form bk + ck

with new labels. Thus, a25 + b25 + c25 is added to the query
from DB1, and a26 + b26 + c26 is added to the query from
DB2. Finally, applying symmetry across databases, we include
a27+b27+c27 to the query from DB3. At this point, all symme-
tries are satisfied, all external and exploited side information
amounts are balanced, and therefore, the query structure is
complete.

2) Specialization: Let each message consist of N K = 27
symbols from a sufficiently large finite field Fq (i.e., L = 27).
The messages W1, W2, W3 ∈ F

27×1
q are then represented as

27 × 1 vectors over Fq . Let S1, S2, S3 ∈ F
27×27
q represent

random matrices chosen privately by the user, independently
and uniformly from all 27 × 27 full-rank matrices over Fq .
Without loss of generality, let us assume that W1 is the desired
message. Define 27 × 1 vectors a[1:27], b[1:27], c[1:27] ∈ F

27×1
q ,

as follows

a[1:27] = S1W1 (15)

b[1:18] = MDS18×12S2[(1 : 12), :]W2 (16)
c[1:18] = MDS18×12S3[(1 : 12), :]W3 (17)

b[19:27] = MDS9×6S2[(13 : 18), :]W2 (18)

c[19:27] = MDS9×6S3[(13 : 18), :]W3 (19)

where S2[(1 : 18), :] is a 18×27 matrix comprised of the first
18 rows of S2. MDS18×12 is the generator matrix of a (18, 12)
MDS code, and MDS9×6 is the generator matrix of a (9, 6)
MDS code. In particular, note that the same generator matrix
is used in (16) and (17). Similarly, the same generator matrix
is used in (18) and (19). This is important because it allows
us to write

b[19:27] + c[19:27]
= MDS9×6 (S2[(13 : 18), :]W2 + S3[(13 : 18), :]W3) (20)

so that all 9 elements of the vector b[19:27] + c[19:27] can be
recovered from any 6 of its elements, e.g., from b[19:24] +
c[19:24] one can also recover b25 + c25, b26 + c26, b27 + c27.
This observation is the key to understanding the role of
interference alignment in this construction. The effective
number of resolvable undesired symbols is minimized due
to interference alignment. For example, b19 and c19 are
always aligned together into one symbol b19 + c19 in all
the downloaded equations. The two are unresolvable from
each other and act as effectively one undesired symbol in
the downloaded equations, thus reducing the effective number
of undesired symbols, so that the same number of down-
loaded equations can be used to retrieve a greater number of
desired symbols. Note also that desired symbols are always
resolvable.
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These values are plugged into the query structure derived
previously.

DB1 DB2 DB3

a1, a2, a3, a4 a5, a6, a7, a8 a9, a10, a11, a12
b1, b2, b3, b4 b5, b6, b7, b8 b9, b10, b11, b12
c1, c2, c3, c4 c5, c6, c7, c8 c9, c10, c11, c12

a13 + b13 a15 + b15 a21 + b17
a14 + b14 a16 + b16 a22 + b18
a17 + c13 a19 + c15 a23 + c17
a18 + c14 a20 + c16 a24 + c18
b19 + c19 b21 + c21 b23 + c23
b20 + c20 b22 + c22 b24 + c24

a25 + b25 + c25 a26 + b26 + c26 a27 + b27 + c27

Correctness is straightforward. Let us see why T -privacy
holds. The queries for any T = 2 colluding databases are
comprised of 18 variables from a[1:27], 12 variables from
b[1:18], 6 variables from b[19:27], 12 variables from c[1:18] and
6 variables from c[19:27]. Let the indices of these variables be
denoted by the vectors Ia ∈ N

18×1,Ib,12 ∈ N
12×1,Ib,6 ∈

N
6×1,Ic,12 ∈ N

12×1 and Ic,6 ∈ N
6×1, respectively, so that,

aIa = S1[Ia, :]W1 (21)

bIb,12 = MDS18×12[Ib,12, :]S2[(1 : 12), :]W2 (22)

bIb,6 = MDS9×6[Ib,6, :]S2[(13 : 18), :]W2 (23)

cIc,12 = MDS18×12[Ic,12, :]S3[(1 : 12), :]W3 (24)

cIc,6 = MDS9×6[Ic,6, :]S3[(13 : 18), :]W3 (25)

From Lemma 1, we have

(aIa , (bIb,12 ; bIb,6), (cIc,12 ; cIc,6))

∼ (S1[(1 : 18), :]W1, S2[(1 : 18), :]W2, S3[(1 : 18), :]W3)

Thus privacy is guaranteed. Finally, note that since 27 desired
symbols are recovered from a total of 57 downloaded symbols,
the rate achieved by this scheme is 27/57 = 9/19, which
matches the capacity for this setting.

C. K = 2 Messages, M = 3 Databases, N = 2 Responding
Databases, T = 1 Colluding Database

The capacity for this setting, is C = �
1 + 1

2

�−1 = 2
3 .

1) Query Structure: We first construct the query structure,
following the 3 iterative principles previously used for T -
private PIR. Without loss of generality, let [ak] denote the
symbols of the desired message, and [bk] the symbols of the
undesired message.

DB1 DB2 DB3

a1

(1)−→ DB1 DB2 DB3

a1 a2 a3
· · ·

· · · (2)−→
DB1 DB2 DB3

a1 a2 a3
b1 b2 b3

(3)−→
DB1 DB2 DB3

a1 a2 a3
b1 b2 b3

a4 + b4

· · ·

· · · (1)−→
DB1 DB2 DB3

a1 a2 a3
b1 b2 b3

a4 + b4 a5 + b5 a6 + b6

We start by requesting the first T K−1 = 1 symbol from the
first T = 1 database, i.e., a1 from DB1. Applying database
symmetry, we simultaneously request a2 from DB2 and a3
from DB3. Next, we enforce message symmetry, by including
queries for b1, b2, b3 as the counterparts for a1, a2, a3. Note
that only N = 2 databases may respond. As a result, from
the perspective of any individual database, we have only one
symbol of external side information (from the other surviving
database). We then exploit this side information symbol to
retrieve a new desired symbol, i.e., we download a4 + b4
from DB1, a5 + b5 from DB2 and a6 + b6 from DB3. The
construction is complete.

We want to ensure that no matter which 2 databases
respond, we can gather enough desired symbols to decode
the desired message and privacy is preserved to each indi-
vidual database. These are guaranteed by the following
specialization.

2) Specialization to Ensure Correctness and Privacy: Let
each message consist of N K = 4 symbols from a sufficiently
large field (i.e., L = 4). The messages W1, W2 ∈ F

4×1
q

are then represented as 4 × 1 vectors over Fq . Let S1, S2 ∈
F

4×4
q represent random matrices chosen privately by the user,

independently and uniformly from all 4 ×4 full-rank matrices
over Fq . Without loss of generality, let us assume that W1 is
the desired message. Define the 6 × 1 vectors a[1:6] ∈ F

6×1
q

and b[1:6] ∈ F
6×1
q , as follows

a[1:6] = MDS6×4S1W1 (26)

b[1:6] = MDS6×2S2[(1 : 2), :]W2 (27)

where S2[(1 : 2), :] is a 2 × 4 matrix comprised of the first
2 rows of S2. MDS6×4/MDS6×2 is the generator matrix of a
(6, 4)/(6, 2) MDS code.

DB1 DB2 DB3

a1 a2 a3

b1 b2 b3

a4 + b4 a5 + b5 a6 + b6

(28)

Correctness is easy to see, because after receiving answers
from any N = 2 databases, the user recovers all b[1:6] (refer
to (27)). Then the user subtracts out b[1:6] to recover 4 symbols
in a[1:6], from which all a[1:6] are recovered (refer to (26)). The
query for any individual database is comprised of 2 variables
from a[1:6] and 2 variables from b[1:6]. Let the indices of these
variables be denoted by the 2 × 1 vectors Ia,Ib ∈ N

2×1,
respectively, so that,

(aIa , bIb)

= (MDS6×4[Ia, :]S1W1, MDS6×2[Ib, :]S2[(1 : 2), :]W2)

∼ (S1[(1 : 2), :]W1, S2[(1 : 2), :]W2) (29)

where (29) follows from Lemma 1. Therefore, the random map
from W1 to aIa variables is i.i.d. as the random map from W2
to bIb , and privacy is guaranteed. Note that since 4 desired
symbols are recovered from a total of 6 downloaded symbols
(from N = 2 responding databases), the rate achieved by this
scheme is 4/6 = 2/3, which matches the capacity for this
setting.
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D. Arbitrary Number of Messages K , Arbitrary Number of
Databases M, Arbitrary Number of Responding Databases
N, Arbitrary Number of Colluding Databases T

1) Query Structure: For arbitrary K , M, N, T , we fol-
low the same iterative procedure, briefly summarized
below.4

• Step 1: Initialization. Download T K−1 desired symbols
each from the first T databases.

• Step 2: Invoke symmetry across databases to determine
corresponding downloads from DB T + 1 to DB M .

• Step 3: Invoke symmetry of messages to determine addi-
tional downloaded equations (comprised only of unde-
sired symbols) from each database.

• Step 4: Consider the first T databases together. Divide the
new external side information generated in the previous
step (note that as M − N databases may not respond,
side information is counted from N − T other databases)
evenly among the first T databases to determine the side
information budget per database. For each side informa-
tion symbol allocated to a database create an additional
query of the same form as the assigned side information
(with new labels) combined with a new desired symbol.

• Step 5: Go back to Step 2 and run Step 2 to Step 4 a
total of (K − 1) times.

2) Specialization: We now map the message symbols to
the symbols in the query structure. Let each message consist
of N K symbols from a sufficiently large finite field Fq

(i.e., L = N K ). The messages W1, · · · , WK ∈ F
N K ×1
q are

represented as N K × 1 vectors over Fq . Let S1, · · · , SK ∈
F

N K ×N K

q represent random matrices chosen privately by the
user, independently and uniformly from all N K × N K full-
rank matrices over Fq . Suppose Wl , l ∈ [1 : K ], is the desired
message.

Consider any undesired message index k ∈ [1 : K ]/{l}, and
all distinct � = 2K−2 subsets of [1 : K ] that contain k and
do not contain l. Assign distinct labels to each subset, e.g.,
K1,K2, · · ·K�. For each k ∈ [1 : K ]/{l}, define the vector
shown at the top of the next page, where αi , i ∈ [1 : �] is
defined as5 N(N − T )|Ki |−1T K−|Ki |, each x [k]

Ki
is a M

N αi × 1

vector, and each x [k]
Ki∪{l} is a M

N ( N−T
T )αi × 1 vector over Fq .

Now consider the desired message index l, and all dis-
tinct δ = 2K−1 subsets of [1 : K ] that contain l. Assign
distinct labels to each subset, e.g., L1,L2, · · ·Lδ . Define the

4To be more specific, database symmetry refers to the property that each
database downloads a equal number of instances for each type of sums,
and message symmetry refers to the property that within each database,
the symbols from each message are equivalent up to permutations. A more
detailed treatment can be found in [25]. We initialize by downloading
T K −1 symbols such that in Step 4 when we divide side information
symbols, each database always obtains an integer number of side information
symbols.

5The choice of αi is to ensure both correctness and privacy. Specifically, it
guarantees that over each layer, (1) sufficiently many undesired symbols are
exposed to decode the remaining undesired symbols that interfere with the
desired symbols, and (2) the number of symbols seen by any colluding set of
databases matches the MDS code dimension such that they appear uniformly
random. The proof appears later. For example, consider the setting in
Section IV-B, where the desired message index l = 1. Consider the undesired
message index k = 2. Here � = 2, i.e., K1 = {2},K2 = {2, 3}, α1 = 12 and
α2 = 6.

vector
⎡

⎢⎢
⎢
⎢
⎣

x [l]
L1

x [l]
L2...

x [l]
Lδ

⎤

⎥⎥
⎥
⎥
⎦

= MDS M
N N K ×N K Sl Wl

where the length of x [l]
Li

, i ∈ [1 : δ] is M(N−T )|Li |−1T K−|Li |.

For each non-empty subset K ⊂ [1 : K ] generate the query

vector

�

k∈K
x [k]
K (30)

Distribute the elements of the query vector evenly among the
M databases. This completes the specialized construction of
the queries.

The construction has K layers. Over the j -th layer, for
each database, there are (N − T ) j−1T K− j

�K
j

�
equations6

that are comprised of sums of j symbols, out of which
(N − T ) j−1T K− j

�K−1
j−1

�
involve desired data symbols.

Suppose the user collects answering strings from any N
databases. For each set Ki , from N databases, we download
αi symbols from x [k]

Ki
, k 	= l, i ∈ [1 : �], from which we can

recover the interference x [k]
Ki∪{l}, as they are generated by the

generator matrix of a ( M
T αi , αi ) MDS code. After subtracting

out all the interference, we are left with N K desired symbols,
from which we can recover the desired message, as the sym-
bols are generated by the generator matrix of a ( M

N N K , N K )
MDS code. Therefore correctness is guaranteed.

Let us see why privacy holds. The queries for any T collud-
ing databases are comprised of T N K−1 variables from each
x [k], k ∈ [1 : K ]. When k = l, the T N K−1 desired symbols
are generated by the generator matrix of a ( M

N N K , N K ) MDS
code such that these symbols have full rank. For each k 	= l,
the T N K−1variables from x [k] consist of αi variables out of
M
T αi variables x [k]

Ki
, x [k]

Ki∪{l}, for each set Ki , i ∈ [1 : �]. Note
that these αi variables are generated by the generator matrix
of a ( M

T αi , αi ) MDS code, so that they have full rank. Let the
indices of the appeared variables be denoted by the vectors
Ix [k] ∈ N

T N K−1×1,∀k ∈ [1 : K ]. From Lemma 1, we have

x [k]
Ix[k] ∼ Sk [(1 : T N K−1), :]Wk . (31)

Thus privacy is guaranteed.
Finally, we compute the ratio of the number of desired

symbols to the number of total downloaded symbols (from
N responding databases),

R = N

N

K
j=1(N − T ) j−1T K− j

�K−1
j−1

�

K
j=1(N − T ) j−1T K− j

�K
j

� (32)

= N

N

N K−1

1
N−T

�K
j=1(N − T ) j T K− j

�K
j

�� (33)

6Over the j-th layer, the downloads are in the form of sums of j symbols,
each from one distinct message. The term (N − T ) j−1T K − j comes from
the side information exploitation step (Step 4) and can be verified recursively.
A detailed analysis in similar flavor can be found in [25].
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⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

x [k]
K1

x [k]
K1∪{l}

-----------
x [k]
K2

x [k]
K2∪{l}

-----------...
-----------
x [k]
K�

x [k]
K�∪{l}

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

MDS M
T α1×α1

0 0 0
----------------------------------------------------------------------
0 MDS M

T α2×α2
0 0

----------------------------------------------------------------------

0 · · · . . . 0
----------------------------------------------------------------------
0 0 0 MDS M

T α�×α�

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

Sk[(1 : T N K−1), :]Wk

=
1
N N K

1
N−T

�
N K − T K

� = 1 − T
N

1 − T K

N K

(34)

=
�

1 + T

N
+ T 2

N2 + · · · + T K−1

N K−1

�−1

(35)

Thus, the PIR rate achieved by the scheme always matches
the capacity.

Remark: When we set T = 1, M = N, Theorem 1 recovers
the PIR capacity result in [25]. The two schemes achieve
the same rate (capacity achieving), but the two differ in that
although the query structures are the same, the specialization
here uses MDS codes over a large field while the specialization
in [25] uses permutations over message bits.

V. PROOF OF THEOREM 1 AND THEOREM 2: CONVERSE

Clearly the capacity of robust T -private PIR cannot be larger
than the capacity of T -private PIR. Therefore, we only need
to prove the converse for T -private PIR.

For compact notation, let us define

Q �= {Q[k]
n : k ∈ [1 : K ], n ∈ [1 : N]} (36)

A[k]
I

�= {A[k]
n : n ∈ I} (37)

HT
�= 1

�N
T

�
�

T :|T |=T

H (AT |Q)

T
,T ⊂ [1 : N] (38)

We first state Han’s inequality ( [35, Th. 17.6.1]), which
will be used later and is described here for the sake of
completeness.

Theorem 3 (Han’s Inequality, [35, Th. 17.6.1]:)

HT ≥ H (A[k]
1 , A[k]

2 , · · · , A[k]
N |Q)

N
(39)

We next proceed to the converse proof. The proof of outer
bound for Theorem 1 is based on an induction argument. To
set up the induction, we will prove the outer bound for K = 1
(the trivial case) for arbitrary N, T , and then proceed to the
case of arbitrary K .

A. K = 1 Message, N Databases

L = H (W1) = H (W1|Q) (40)

= I (A[1]
1 , A[1]

2 , · · · , A[1]
N ; W1|Q) (41)

= H (A[1]
1 , A[1]

2 , · · · , A[1]
N |Q) (42)

≤ NHT (43)

≤
N�

n=1

H (An|Q) (44)

⇒ R = L

D
≤ L

N
n=1 H (An|Q)

≤ 1 (45)

where (43) follows from Han’s inequality, and (44) is due
to the property that dropping conditioning does not reduce
entropy.

B. K ≥ 2 Messages, N Databases

Consider T ⊂ [1 : N] with cardinality |T | = T . Denote
the complement of T as T . From AT , A[1]

T , · · · , A[K ]
T ,Q, we

can decode all K messages W1, · · · , WK .

K L = H (W1, · · · , WK |Q) (46)

= I (AT , A[1]
T , · · · , A[K ]

T ; W1, · · · , WK |Q) (47)

= H (AT , A[1]
T , · · · , A[K ]

T |Q) (48)

= H (AT , A[1]
T |Q) + H (A[2]

T , · · · , A[K ]
T |AT , A[1]

T ,Q)

(49)
≤ NHT + H (A[2]

T , · · · , A[K ]
T |AT , A[1]

T , W1,Q) (50)

≤ NHT + H (A[2]
T , · · · , A[K ]

T |AT , W1,Q) (51)

= NHT + H (AT , A[2]
T , · · · , A[K ]

T |W1,Q)

− H (AT |W1,Q) (52)

= NHT + H (AT , A[2]
T , · · · , A[K ]

T , W2, · · · , WK |W1,Q)

− H (AT |W1,Q) (53)

= NHT + (K − 1)L − H (AT |W1,Q) (54)

where (50) is due to the fact that W1 is a function of
(AT , A[1]

T ,Q). (53) follows from the fact that W2, · · · , WK

is a function of (AT , A[2]
T , · · · , A[K ]

T ,Q). In (54), the second
term is due to the fact that the answers are deterministic
functions of the messages and queries, and the messages are
independent.

Consider (54) for all subsets of [1 : N] that have exactly T
elements and average over all such subsets. We have

NHT ≥ L + 1
�N

T

�
�

T :|T |=T

H (AT |W1,Q) (55)

To proceed, we note that for the last term of (55), condition-
ing on W1, the setting reduces to a PIR problem with K − 1
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messages and N databases. Thus, (55) sets up an induction
argument, which claims that for the K messages setting,

NHT ≥ L

�
1 + T

N
+ · · · + T K−1

N K−1

�
(56)

We have proved the basis cases of K = 1 in (43). Suppose
now the bound (56) holds for K − 1. Then plugging in (55),
we have that the bound (56) holds for K . Since both the basis
and the inductive step have been performed, by mathematical
induction, we have proved that (56) holds for all K . The
desired outer bound follows as

R = L

D
≤ L

N
n=1 H (An|Q)

≤ L

NHT

≤
�

1 + T

N
+ · · · + T K−1

N K−1

�−1

(57)

Thus, the proof of the outer bound is complete.

VI. CONCLUSION

We characterize the capacity of robust T -private PIR with
arbitrary number of messages, arbitrary number of (respond-
ing) databases, and arbitrary privacy level. Let us conclude
with a few observations. First, while in this paper we adopt
the zero error framework, we note that our converse extends
in a straightforward manner to the �-error framework as well,
where the probability of error is only required to approach
zero as the message size approaches infinity. An outline of
this extension is provided in the Appendix. Therefore, for
robust T -private PIR, the �-error capacity is the same as the
zero error capacity. Second, recall that the capacity achieving
scheme for PIR in our prior work [25] had a remarkable feature
that if some of the messages were eliminated and the scheme
projected onto a subset of messages, it remained capacity
optimal for that subset of messages. The same phenomenon
is observed for our achievable scheme for robust T -private
PIR. On the other hand, an important point of distinction
of the previous achievable scheme in [25] from the achiev-
able scheme in this paper is that the former directly uses
each available side information symbol individually, whereas
here we need MDS coded side information (uncoded side
information symbols do not suffice). This is because of the
T -privacy constraint which simultaneously creates multiple
perspectives of external side information depending upon
which subset of databases decides to collude. Third, we
note that in this paper we require perfect privacy (refer to
(6), I (Q[k]

T , A[k]
T , W1, · · · , WK ; k) = 0). Similar to the �-

error relaxation, we may relax this to a σ -privacy constraint,
where the information leaked about the desired message index
vanishes as the message size grows. That is, we could replace
the privacy constraint (6) by I (Q[k]

T , A[k]
T , W1, · · · , WK ; k) ≤

σ , where σ approaches zero as the message size approaches
infinity. It turns out that the capacity under σ -privacy is the
same as the capacity under perfect privacy. Our converse
proof extends to this setting by noting that the σ -privacy
constraint implies that for any two message indices k1, k2 ∈
[1 : K ], the difference H (Q[k1]

T , A[k1]
T , W1, · · · , WK ) −

H (Q[k2]
T , A[k2]

T , W1, · · · , WK ) = σ , vanishes with the mes-
sage size and all other steps remain unchanged.

Finally, we note that since we focus only on download
cost, upload cost is not optimized in this work. However,
even with T -privacy, significant optimizations of upload cost
are possible through refinements of our achievable scheme.
For example, the symbols may be grouped in a manner
that randomizations are needed only within smaller groups,
which may reduce the number of possible queries, and the
size of the field of operations significantly. To illustrate this,
consider the achievable scheme for K = 2, N = 3, T = 2
that was presented in Section IV-A, where each message is
comprised of 9 symbols. We will operate over F2 (note that
previously we required the field size q to be larger than 9).
Suppose we divide the 9 bits into 3 groups of 3 bits each,
and label the groups so that A1 represents the first three bits
of W1, A2 the next three and A3 represents the last three
bits from W1. Similarly, let B1, B2, B3 represent three groups
of three bits each from W2. Now, for any group of 3 bits,
say X = (x1, x2, x3), let X (1), X (2), X (3) represent three
randomly chosen linearly independent elements from the set
{x1, x2, x3, x1 +x2, x1 +x3, x2 +x3, x1 +x2 +x3}, i.e., selected
uniformly among the choices that do not sum to zero in F2.
This essentially means that X (1), X (2) may be freely chosen
as any two distinct elements of the set and then X (3) is chosen
uniformly from the 4 elements that are not X (1), X (2) or
X (1) + X (2). The queries are constructed as follows.

DB1 DB2 DB3

A1(1), A2(1) A2(2), A3(2) A3(3), A1(3)
B1(1), B2(1) B2(2), B3(2) B3(1 + 2), B1(1 + 2)

A3(1) + B3(1) A1(2) + B1(2) A2(3) + B2(1 + 2)

where we use the notation X (1+2) = X (1)+X (2) for brevity.
Note that for the undesired symbols B , we used the (2, 3)
MDS code (B(1), B(2)) −→ (B(1), B(2), B(1 + 2)) within
each group. Due to the grouping of symbols the upload cost
is significantly reduced. Moreover, because of the grouping we
are able to operate over a smaller field. Whereas the original
scheme presented in Section IV-A uses (6, 9) MDS codes
which do not exist over F2, the refined example presented
above uses only a (2, 3) MDS code which does exist over F2.
As illustrated by this example, optimizations of upload costs as
well as symbol size remain interesting avenues for future work.

APPENDIX: �-ERROR CAPACITY

In the �-error framework, a rate R is said to be �-error
achievable if there exists a sequence of PIR schemes, indexed
by the message size L, each of rate greater than or equal to R,
for which the probability of error approaches 0 as L → ∞.
For such a sequence of PIR schemes, from Fano’s inequality,
we have the following correctness condition (corresponding
to (5) in the zero-error framework).

[Correctness] H (Wk|A[k]
1 , · · · , A[k]

N , Q[k]
1 , · · · , Q[k]

N ) = o(L)

(58)

where any function of L, say f (L), is said to be o(L) if
limL→∞ f (L)/L = 0. The supremum of �-error achievable
rates is called the �-error capacity.

We next show that the zero error capacity results in both
Theorem 1 and Theorem 2 hold under the �-error framework.
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Note that zero-error achievable schemes automatically satisfy
�-error criterion (58). Thus we are only left to prove that the
converse proof extends to the �-error setting. This follows from
the simple observation that in the current zero-error converse
proof, in (41) and (47), we can simply replace the zero-
error correctness condition (5) with the �-error correctness
condition (58) and all other steps follow in the same manner.
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